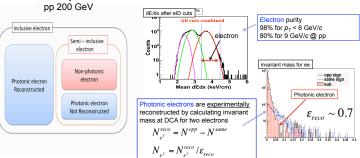


Extracting bottom quark contributions to non-photonic electron yields and the bottom quark energy loss in the dense matter in STAR

Shingo Sakai (Univ. of California Los Angeles) for STAR collaboration

Abstract

At STAR-RHIC, B decay contribution has been studied by measuring azimuthal angular correlations between non-photonic electrons and charged hadrons. Our measurement indicates that B decay contribution is about 50% of the non-photonic electron yields for p_T greater than 5 GeV/c. Combined with the previously reported large suppression of non-photonic electrons allows us to constrain the nuclear modification factor for semi-leptonic electron decay from B (R_{AA}^{eB}) and D mesons (R_{AA}^{eD}). We also present correlations between R_{AA}^{eB} and R_{AA}^{eD} .


Motivation

- Energy loss for heavy flavor in the dense matter was thought to be small. But electron yield from charm and bottom ("non-photonic" electron) is strongly suppressed as with light hadrons.
- Currently we don't know the contribution from bottom to non-photonic electron. If bottom contribution is significant, energy loss for bottom is larger than expected.
- e-h correlation is one method for B/D separation
 - correlation between hadron and electron from B meson makes wider near side peak than that of D meson

- Analysis

STAR experiment

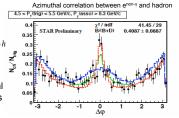
- Large acceptance Full azimuthal coverage
- => good for azimuthal correlation study
 TPC
- measure momentum & dE/dx
- EMC + SMD measure energy & shower shape
- => electron identification
- Dataset ; RHIC year 5 and 6 pp 200 GeV

~

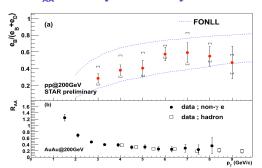
10

e_B-h

 electron sample after removing opposite sign electron (inv. mass<0.1) forms "semi" inclusive electron.


Non-photonic electron can be calculated as;

$$\Rightarrow N_e^{non-\gamma} = N_e^{semi} - (1/\varepsilon_{reco} - 1)N_e^{reco-\gamma} + N_e^{same}$$
$$\Delta \phi_{e^{HF}-h} = \Delta \phi_{e^{semi}-h} - (1/\varepsilon_{reco} - 1)\Delta \phi_{e^{\gamma}-h} + \Delta \phi_{e^{same}-h}$$


Experimental result is fit by simulation results

$$\Delta \phi_{e-h}^{\exp} = r_B \Delta \phi_{e^B - h} + (1 - R_B) \Delta \phi_{e^D}$$

$$r_B = e_B / (e_D + e_B) \qquad \begin{array}{c} -e^D - h \ (MC) \\ -e^B - h \ (MC) \\ -fitting \end{array}$$

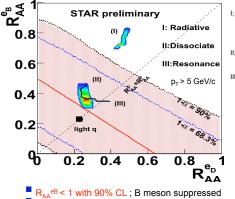
We measured the correlations with several momentum ranges and obtained r_B values

_ B contribution & R_{AA} for heavy flavor decays

B decay contribution to the non-photonic electrons measured by e-h correlations.

B decay contribution is ~50% at and above 5 GeV/c. R_{AA} for non-photonic electron consistent with charged hadrons

R_{AA} for charm decay (R_{AA}^{eD}) and botom (R_{AA}^{eB)} are connected by <u>B decay contribution @ pp</u>


$$R_{AA}^{non\gamma} = \frac{e_B^{AA} + e_D^{AA}}{N_{bin}(e_B^{pp} + e_D^{pp})}$$

$$= \frac{e_B^{AA}}{N_{bin}e_B^{pp}} \cdot \frac{e_B^{pp}}{(e_B^{pp} + e_D^{pp})} + \frac{e_D^{AA}}{N_{bin}e_D^{pp}} \cdot \frac{e_D^{pp}}{(e_B^{pp} + e_D^{pp})}$$

$$= R_{AA}^{eB} r_B + R_{AA}^{eD}(1 - r_B)$$

$$r_B = e_B^{pp} / (e_B^{pp} + e_D^{pp})$$

With the measurements of r_B @ pp and R_{AA}, we can derive a relationship between R_{AA}^{eD} and R_{AA}^{eB}.

I; Radiative energy loss via a few hard scatterings with initial gluon denisty is 1000 [Phys. Lett. B 632, 81 (2006)]

- II; collisional dissociation of D and B [Phys. Lett. B 649, 139 (2007)]
- III; assuming large elastic scattering cross section associated with resonance states of D and B [Phys.Rev.Lett.100(2008)192301]
- R_{AA}e^B < 1 with 90% CL ; B meson suppressed
 Experimental result prefer the models which predict large bottom energy loss (Dissociate & Resonance).
 => indicates a large suppression of not only D meson but also B meson.

Summary

- B decay contribution increases with p_T and is comparable to the contribution from D meson decay at and above p_T 5 GeV/c.
- R_{AA} <1 for electron decay from B with 90 % C.L. This result indicates that B meson production is suppressed at high p_T.

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations

STAR Detector

Δq

PYTHIA calculation

Phys. Rev. Lett. 98 (2007) 19230

8 10 p_T (GeV/c)

X.Y. Lin. hep-ph/0602067