

Significant charge splitting of rapidity-odd directed flow and its implication on electromagnetic effect in Au+Au, Ru+Ru, and Zr+Zr collisions from STAR

Diyu Shen (dyshen@fudan.edu.cn), Fudan University, for the STAR Collaboration

Abstract

Heavy-ion collisions can produce an ultra-strong magnetic field, the evolution of which was predicted to decrease (increase) the directed flow slope, dv_1/dy , for positively (negatively) charged particles. In this work, we study this effect with large statistics datasets accumulated for Au+Au, $^{96}_{44}$ Ru+ $^{96}_{44}$ Ru, and $^{96}_{40}$ Zr+ $^{96}_{40}$ Zr isobar collisions at $\sqrt{s_{NN}}$ = 200 GeV, and Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV. The charge dependent dv_1/dy splitting, $\Delta(dv_1/dy)$, will be presented for π^{\pm} , K^{\pm} , and (anti)proton. A finite $\Delta(dv_1/dy)$ between protons and anti-protons has been observed and it changes from positive to negative as a function of centrality from central to peripheral collisions. This is the first observation of a significant negative $\Delta(dv_1/dy)$ between **proton and anti-protons.** A similar decreasing trend of slope difference between K^+ and K^- has also been observed in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and 27 GeV, and in isobar collisions with less significance. The slope difference between π^+ and π^- is negative and decreases as a function of centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV, while no significant slope difference is observed in Au+Au and isobar collisions at $\sqrt{s_{NN}}$ = 200 GeV. Our measurements of significant negative $\Delta(dv_1/dy)$ cannot be explained by conventional mechanisms (e.g. transported quarks), but qualitatively agree with the theoretical prediction with an ultrastrong electromagnetic field in peripheral collisions.

I. Electromagnetic field in heavy-ion collisions

II. Probe EM-field via charge splitting of v₁ in heavy-ion collisions

Illustration for proton and anti-proton:

Neutron Proton

✓ First observation of negative ∆*dv*₁/*dy* between *p* and *p̄* in all the systems(energies) with significance larger than 5*σ*, which can not be explained by transported quarks.
✓ ~5 times larger in lower energy, which could be the longer lifetime of magnetic field.

STAR

iEBE-VISHNU + EM-Field: U. Gursoy et al. Phys. Rev. C 98, 055201 (2018)

- \checkmark Decreasing trend of $\Delta dv_1/dy$ as a function of centrality.
- Solution $\Delta dv_1/dy$ in peripheral, which is consistent with the dominance of Faraday/ Coulomb effect.

