

Triangular flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 17.3 GeV from RHIC-STAR

Yuli Kong(yulikong@mails.ccnu.edu.cn)

Central China Normal University, for the STAR Collaboration

Abstract

Triangular flow in heavy-ion collisions, v_3 , represents the third harmonic coefficient in the Fourier expansion of the azimuthal distribution of produced particles relative to the collision event plane. Since v_3 is sensitive to initial fluctuations of nucleons, it serves as a valuable tool for studying the fluctuations of the initial conditions of the system and the subsequent evolution process.

We will present measurements of the third-order flow coefficient v_3 for π^{\pm} , K^{\pm} , $p\bar{p}$, Λ , $\bar{\Lambda}$, $K^0_S \Xi^-$, $\bar{\Xi}^+$, Ω^- , $\bar{\Omega}^+$, and ϕ mesons in Au+Au collisions at $\sqrt{s_{NN}}=17.3$ GeV, utilizing the Beam Energy Scan (BES-II) dataset from the STAR experiment at RHIC. We will discuss the centrality dependence of v_3 as well as the number of constituent quark scaling (NCQ scaling) for all the particles mentioned above.

Motivation 10 PHOBOS Glauber MC 5 -5 -10 N_{Port} = 91. ε₃ = 0.53 -10 X(fm)

v₃ is an important probe for studying the initial geometry of heavy-ion collisions, and sensitive to the hydrodynamical viscosity of the produced medium.

The Time Projection Chamber(TPC) and Time of Flight(TOF) are used for particle identification.

- The widths $w_{\pi}(n\sigma_{\pi})$ and $w_{\pi}(m^2)$, and peak position, $\mu_{(\pi,K)}(n\sigma_{\pi})$ and $\mu_{(\pi,K)}(m^2)$ were used to fist normalize the m^2 axis to the $n\sigma$ axis.
- Then based on the transformation of the combined TOF m² and TPC nσ_n information to have a maximal separation between kaons and pions.

Reference

- STAR Collaboration, Phys. Rev. C 88, 014902 (2013).
- ➤ E877 Collaboration, Phys. Rev. C, 56 (1997).
- STAR Collaboration, Phys.Rev.C 107, 2, 024912 (2023).

Transverse Momentum Dependence

 At low p_T, triangular flow (v₃) shows mass ordering within uncertainties: lighter particles have larger v₃.

NCQ Scaling

NCQ scaling holds within uncertainties and consistent with the expectation from development of collectivity during the partonic stage of the system evolution.

Summary

- In the low momentum region ($p_T \le 1.5 \text{ GeV/c}$), there is a clear mass ordering.
- NCQ scaling holds within uncertainties for v_3 in Au+Au collision at $\sqrt{s_{NN}} = 17.3$ GeV

Supported in part by the

