

Results
 on transverse spin asymmetries in the polarized proton-proton elastic scattering in the CNI region at STAR

Dmitry Svirida (ITEP) for the STAR Collaboration

International Workshop on Diffraction
in High-Energy Physics,
Otranto, Italy, September 10-15, 2010

Helicity amplitudes for spin $1 / 21 / 2 \rightarrow 1 / 21 / 2$

Matrix elements

$\phi_{1}(s, t)=\langle++| M|++\rangle$ spin non-flip
$\phi_{2}(s, t)=\langle++| M|--\rangle$ double spin flip
$\phi_{3}(s, t)=\langle+-| M|+-\rangle$ spin non-flip
$\phi_{4}(s, t)=\langle+-| M|-+\rangle$ double spin flip
$\phi_{5}(s, t)=\langle++| M|+-\rangle$ single spin flip

$$
\phi_{i}(s, t)=\phi_{i}^{E M}(s, t)+\phi_{i}^{H A D}(s, t)
$$

Formalism is well developed, however not much data !
At high energy only A_{N} measured to some extent.

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{2 \pi}{s^{2}}\left\{\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2}+4\left|\phi_{5}\right|^{2}\right\} \\
& A_{N}(s, t) \frac{d \sigma}{d t}=\frac{-4 \pi}{s^{2}} \operatorname{Im}\left\{\phi_{5}^{*}\left(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}\right)\right\} \\
& A_{N N}(s, t) \frac{d \sigma}{d t}=\frac{4 \pi}{s^{2}}\left\{2\left|\phi_{5}\right|^{2}+\operatorname{Re}\left(\phi_{1}^{*} \phi_{2}-\phi_{3}^{*} \phi_{4}\right)\right\} \\
& A_{S S}(s, t) \frac{d \sigma}{d t}=\frac{4 \pi}{s^{2}} \operatorname{Re}\left\{\phi_{1} \phi_{2}^{*}+\phi_{3} \phi_{4}^{*}\right\} \begin{array}{c}
\text { also } \\
A_{S L} A_{L L}
\end{array}
\end{aligned}
$$

$A_{N} \&$ Coulomb nuclear interference

The left - right scattering asymmetry A_{N} arises from the interference of the spin non-flip amplitude with the spin flip amplitude (Schwinger)

> In absence of hadronic spin - flip
> Contributions A_{N} is exactly calculable (Kopeliovich \& Lapidus)
> Hadronic spin- flip modifies the QED 'predictions'. Hadronic spin-flip is usually parametrized as:

$$
A_{N}(t)=\frac{\sqrt{-t}}{m} \frac{\left[\kappa(1-\rho \delta)+2\left(\delta \operatorname{Re} r_{5}-\operatorname{Im} r_{s}\right)\right] \frac{t_{c}}{t}-2\left(\operatorname{Re} r_{5}-\rho \operatorname{Im} r_{5}\right)}{\left(\frac{t_{c}}{t}\right)^{2}-2(\rho+\delta) \frac{t_{c}}{t}+\left(1+\rho^{2}\right)}
$$

A_{N} measurements in the CNI region

RHIC-Spin accelerator complex

Roman pots at STAR

- Scattered protons have very small transverse momentum and travel with the beam through the accelerator magnets
- Roman pots allow to get very close to the beam without breaking accelerator vacuum
- Optimal detector position is were scattered particles are already separated from the beam and their coordinate is most sensitive to the scattering angle through the machine optics
Beam transport equations relate measured position at the detector to the scattering angle.

The most significant matrix elements are $L_{\text {eff }}$, so that approximately

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{D}} \approx \mathrm{~L}^{\mathrm{x}}{ }_{\text {eff }} \Theta_{\mathrm{x}}^{*} \\
& \mathrm{y}_{\mathrm{D}} \approx \mathrm{~L}_{\mathrm{eff}} \Theta_{\mathrm{y}}^{*}
\end{aligned}
$$

Integration of RPs with STAR:

- STAR Trigger system
- STAR Data aqusition system
- Additional opportunities for other goals central production etc. See the talk by W.Guryn at this conference
- STAR BBC or VPD for normalization
- 4 planes of $400 \mu \mathrm{~m}$ Silicon microstrip detectors:
$>4.5 \times 7.5 \mathrm{~cm}^{2}$ sensitive area
$>100 \mu \mathrm{~m}$ strip pitch
$>$ Good resolution, low occupancy
> Redundancy: 2X- and 2Y-detectors in each package
$>$ Closest proximity to the beam $\sim 10 \mathrm{~mm}$
- 8 mm trigger scintillator with two PMT readout behind Silicon planes
- Total 32 silicon planes by Hamamatsu Photonics in 8 packages
- Only 5 dead/noisy strips per ~14000 active strips.

Dmitry Svirida (ITEP) for the STAR Collaboration

Hit selection and Detector performance

- Pedestals and pedestal spreads σ_{P} calculated for each strip
- Signal beyond $5 \sigma_{P}$ is a signal candidate
- Look for adjacent strips with signals to form a cluster
- Reject cluster with >4
- Apply cluster charge cut based on cluster width
- Planes with >5 clusters rejected in given event
- Clusters in the planes of the same coordinate in a package are combined into one hit if closer than 2 strips (200 um) or left as separate clusters otherwise
- All possible X-Y hit pairs are taken (not more than 20 per package)

System acceptance and -t ranges

- Hits on each side translated into angles at IP using transport matrix and alignment data (both in x and y directions)
- Hits on each side with angles in x and y within 0.06 mrad combined into one track (intersection regions)
- Number of hits in each track is counted

Number of events in each $-t$-range

Range $-t$	$<-t>$	Events
$0.005>-t$	0,0040	890434
$0.005-0.010$	0,0077	4104266
$0.010-0.015$	0,0125	5241353
$0.015-0.020$	0,0174	4854983
$-t>0.020$	0,0234	4186571

Elastic events angular distribution

Elastic events selection

- On each side, if there is more than one track, only tracks with 4 or more contributing planes left (noise reduction)
-Require exactly 1 track on each side
-For elastic events $\Theta^{*}{ }_{\text {EAST }}=-\Theta^{*}$ WEST - elastic correlation
- For each East-West track pair calculated $\chi^{2}=\left(\Delta\left(\Theta_{X}\right)^{2}+\Delta\left(\Theta_{Y}\right)^{2}\right) / \sigma^{2}, \sigma=0.057 \mathrm{mrad}$
- Final event selection: number of planes contributed $>=6$ and $\chi^{2} \leq 5$ (8.2% elastic event loss)

Additional cuts:

- Bunches in abort gaps rejected

Event counting (45 runs)

Total in files	58344907
Elastic triggers in files	32916916
Tracks in both sides	25028096
Single track on both sides	23924753
Selected elastic events	19277607

Calculation of asymmetry A_{N}

Square root formula: don't need external normalization, acceptance asymmetry and luminosity asymmetry cancel out
We have all bunch polarization combinations: $\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow$-- can build various asymmetries
$\varepsilon_{N}(\varphi)=\frac{\left(P_{B}+P_{Y}\right) A_{N} \cos \varphi}{1+\delta(\varphi)}=\frac{\sqrt{N^{++}(\varphi) N^{--}(\pi+\varphi)}-\sqrt{N^{--}(\varphi) N^{++}(\pi+\varphi)}}{\sqrt{N^{++}(\varphi) N^{--}(\pi+\varphi)}+\sqrt{N^{--}(\varphi) N^{++}(\pi+\varphi)}} \quad \begin{aligned} & \text { - } \begin{array}{l}\text { Both beams polarized }- \\ \text { half of the statistics, but }\end{array} \\ & \text { effect } \sim\left(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{Y}}\right)\end{aligned}$
$\varepsilon_{N}^{B}(\varphi)=P_{B} A_{N} \cos \varphi=\frac{\sqrt{N_{B}^{+}(\varphi) N_{B}^{-}(\pi+\varphi)}-\sqrt{N_{B}^{-}(\varphi) N_{B}^{+}(\pi+\varphi)}}{\sqrt{N_{B}^{+}(\varphi) N_{B}^{-}(\pi+\varphi)}+\sqrt{N_{B}^{-}(\varphi) N_{B}^{+}(\pi+\varphi)}}$ - One beam polarized, the other 'unpolarized' full statistics, but effect is only $\sim \mathrm{P}_{\mathrm{B}}$ (or P_{Y})
$\varepsilon_{N}^{\prime}(\varphi)=\frac{\left(P_{B}-P_{Y}\right) A_{N} \cos \varphi}{1-\delta(\varphi)}=\frac{\sqrt{N^{+-}(\varphi) N^{++}(\pi+\varphi)}-\sqrt{N^{++}(\varphi) N^{+-}(\pi+\varphi)}}{\sqrt{N^{+-}(\varphi) N^{++}(\pi+\varphi)}+\sqrt{N^{++}(\varphi) N^{+-}(\pi+\varphi)}}$

- Opposite relative polarization - effect $\sim\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{Y}}\right)$ should be close to 0 - systematics
where $\delta(\varphi)=P_{B} P_{Y}\left(A_{N N} \cos ^{2} \varphi+A_{S S} \sin ^{2} \varphi\right)<0.01 \ll 1$ check

Beam polarization: $\mathrm{P}_{\mathrm{B}}=0.602 \pm 0.026 \quad \mathrm{P}_{\mathrm{Y}}=0.618 \pm 0.028 \quad \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{Y}}=0.372 \pm 0.023$

$$
\left(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{Y}}\right)=1.221 \pm 0.038, \quad\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{Y}}\right)=-0.016 \pm 0.038=0.013\left(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{Y}}\right)
$$

Raw single spin asymmetry $\varepsilon_{N}=A_{N} * P$

-Typical result for a single t-range

- As expected,

$$
\frac{\varepsilon_{N}}{\varepsilon_{N}^{B}} \approx \frac{\varepsilon_{N}}{\varepsilon_{N}^{Y}} \approx 2.0
$$

- Low statistical errors 2-3\% - Single beam asymmetries use the same statistics, but independent polarization variables - can be combined
- $\varepsilon^{\prime}{ }_{N}$ is consistent with $0-$ proof of 2 statements:
- $\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{Y}}\right) \sim 0$ and
- Low systematic shifts
- $\Delta \varphi$ reflects small deviation of the beam spin from vertical direction - the same by all calculations

Normalization and ε_{N} systematics checks

-Normalization is based on "inelastic" event counts assuming their negligible polarization dependence
-Two independent STAR subsystems, both having 2π acceptance for forward particles in east and west:

BBC - beam-beam counters VPD - vertex position detector
 spin combination, $\mathrm{V}^{+/-}$-- normalization factor from BBC/VPD

	statistics	++	+-	-+	stat σ	
VPD	38246243	0.24544	0.24676	0.24940	0.25839	0.00007
BBC	449686340	0.24512	0.24595	0.25028	0.25864	0.00002
average		0.24528	0.24636	0.24984	0.25852	

$$
\varepsilon_{N}^{N}(\varphi)=\frac{\left(P_{B}+P_{Y}\right) A_{N} \cos \varphi}{1+\delta(\varphi)}=\frac{K^{++}(\varphi)-K^{--}(\varphi)}{K^{++}(\varphi)+K^{--}(\varphi)}
$$

$\cdot \mathrm{V}^{+/-}$differs beyond statistical error (0.25%) for VPD/BBC - two different physics processes \Rightarrow average

- Asymmetry value in good agreement \Rightarrow
- Small systematic errors
- High normalization quality - but may not be good enough for $\mathrm{A}_{\mathrm{NN}} \& \mathrm{~A}_{\mathrm{SS}}$

Dmitry Svirida (ITEP) for the STAR Collaboration

A_{N} results and r_{5} estimates

r_{5} confidence levels

NO account for polarization and -t uncertainties

$$
A_{N}(t)=\frac{\sqrt{-t}}{m} \frac{\left.\left[\kappa(1-\rho \delta)+2\left(\delta \operatorname{Re} r_{5}-\operatorname{Im} r_{s}\right)\right] \frac{t_{c}}{t}-2\left(\operatorname{Re} r_{5}\right)-\rho \operatorname{Im} r_{s}\right)}{\left(\frac{t_{c}}{t}\right)^{2}-2(\rho+\delta) \frac{t_{c}}{t}+\left(1+\rho^{2}\right)} \begin{aligned}
& \begin{array}{l}
t_{c}=-8 \pi \alpha / \sigma_{t o t} ; \\
\text { moment of the proton; }
\end{array}
\end{aligned} \begin{aligned}
& \text { N. H. Buttimore et. al. Phys. } \\
& \text { Rev. D59, 114010 (1999) }
\end{aligned}
$$

$A_{N N}$ and $A_{\text {SS }}$

Double spin asymmetry

- Both A_{NN} and A_{SS} are very small $\sim 10^{-3}$ (except for the lowest t-range where larger systematic shifts may occur)
- Need better systematic error studies - current normalization uncertainties are of the order of the effect

Conclusions and plans

-Roman Pots installed at STAR IR and integrated into STAR detector for low t studies

- $\sim 20 \cdot 10^{6}$ elastic events recorded in 40 hours of data taking in 5 days with RPs in 2009 at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$ and special machine optics $\beta^{*}=21 \mathrm{~m}$
- Excellent detector performance provides extremely clean data set
- Single spin asymmetry A_{N} obtained with unprecedented 2% accuracy in $5 t$-ranges
- No significant contribution of hadronic spin-flip amplitude seen: $r_{5} \sim 0$
- Double spin effects are seen, but need more accurate studies

THE PATH TO THE FINAL RESULT

- Finalize detector alignment using data
- Constraint several transport matrix elements using data
- More systematic error studies: random polarization, forbidden asymmetries, acceptance asymmetries etc.
- Advance r_{2} and r_{4} estimates from double spin asymmetry studies

NEAREST FUTURE IN 2011

- Plan to run 1 week at $\sqrt{s}=500 \mathrm{GeV}$ with the same physics goals

FURTHER PLANS

- Measurements with longitudinal polarization - A_{LL} - possible with STAR spin rotators

