

Results on transverse spin asymmetries in the polarized proton-proton elastic scattering in the CNI region at STAR

Dmitry Svirida (ITEP) for the STAR Collaboration

International Workshop on Diffraction in High-Energy Physics, Otranto, Italy, September 10-15, 2010

Helicity amplitudes for spin $\frac{1}{2}$ $\frac{1}{2}$ \rightarrow $\frac{1}{2}$ $\frac{1}{2}$

Matrix elements

 $\phi_{1}(s,t) = \langle ++ | M | ++ \rangle \text{ spin non-flip}$ $\phi_{2}(s,t) = \langle ++ | M | -- \rangle \text{ double spin flip}$ $\phi_{3}(s,t) = \langle +- | M | +- \rangle \text{ spin non-flip}$ $\phi_{4}(s,t) = \langle +- | M | -+ \rangle \text{ double spin flip}$ $\phi_{5}(s,t) = \langle ++ | M | +- \rangle \text{ single spin flip}$ $\phi_{i}(s,t) = \phi_{i}^{EM}(s,t) + \phi_{i}^{HAD}(s,t)$

Formalism is well developed, however not much data ! At high energy only A_N measured to some extent.

cross sections and spin asymmetries $\sigma_{tot} = \frac{4\pi}{5} \operatorname{Im} \{ \phi_1 + \phi_3 \}_{t=0}$ $\Delta \sigma_T = \sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow} = -\frac{8\pi}{2} \operatorname{Im} \{\phi_2\}_{t=0}$ $\Delta \sigma_L = \sigma^{\vec{\leftarrow}} - \sigma^{\vec{\rightarrow}} = \frac{8\pi}{10} \operatorname{Im} \{ \phi_1 - \phi_3 \}_{t=0}$ $\frac{d\sigma}{dt} = \frac{2\pi}{s^2} \left\{ |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2 \right\}$ $A_N(s,t)\frac{d\sigma}{dt} = \frac{-4\pi}{s^2} \operatorname{Im}\left\{ \phi_5^*(\phi_1 + \phi_2 + \phi_3 - \phi_4) \right\}$ $A_{NN}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \left\{ 2|\phi_5|^2 + \text{Re}(\phi_1^*\phi_2 - \phi_3^*\phi_4) \right\}$ $A_{SS}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \operatorname{Re}\left\{\phi_1\phi_2^* + \phi_3\phi_4^*\right\} \left| \begin{array}{c} \text{also} \\ A_{SL}A_{LL} \end{array} \right|$

Observables:

A_N & Coulomb nuclear interference

The left – right scattering asymmetry A_N arises from the interference of the spin non-flip amplitude with the spin flip amplitude (Schwinger)

In absence of hadronic spin – flip Contributions A_N is exactly calculable (Kopeliovich & Lapidus)

Hadronic spin- flip modifies the QED 'predictions'. Hadronic spin-flip is usually parametrized as:

$$\phi_5^{had} = r_5 \frac{\sqrt{-t}}{m_p} \frac{1}{2} \operatorname{Im} \left(\phi_1^{had} + \phi_3^{had} \right)$$

$$A_N(t) = \frac{\sqrt{-t}}{m} \frac{\left[\kappa (1-\rho \,\delta) + 2(\delta \operatorname{Re} r_5 - \operatorname{Im} r_5)\right] \frac{t_c}{t} - 2(\operatorname{Re} r_5 - \rho \operatorname{Im} r_5)}{\left(\frac{t_c}{t}\right)^2 - 2(\rho + \delta)\frac{t_c}{t} + (1+\rho^2)}$$

STAR

Dmitry Svirida (ITEP) for the STAR Collaboration

3

A_N measurements in the CNI region

STAR

4

RHIC-Spin accelerator complex

STAR

Roman pots at STAR

- Scattered protons have very small transverse momentum and travel with the beam through the accelerator magnets
- Roman pots allow to get very close to the beam without breaking accelerator vacuum
- Optimal detector position is were scattered particles are already separated from the beam and their coordinate is sensitive the most to scattering angle through the machine optics

Beam transport equations relate measured position at the detector to the scattering angle.

- X_D a_{13} Θ_D^x y_D Θ_D^y
 - x_0, y_0 : Position at interaction point $\begin{array}{cccc} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & \overbrace{L_{eff}^{y}}^{y} \end{array} \begin{vmatrix} \Theta_{x}^{*} \\ \Theta_{y}^{*} \end{vmatrix} \qquad \begin{array}{c} \Theta_{x}^{*} \\ \Theta_{x}^{*} \\ \Theta_{y}^{*} \end{vmatrix} \qquad \begin{array}{c} \Theta_{x}^{*} \\ \Theta_{y}^{*} \end{aligned} \qquad \begin{array}{c} \Theta_{y}^{*} \\ Scattering angle at IP \\ x_{D}, y_{D} \end{aligned} \qquad \begin{array}{c} Scattering angle at IP \\ x_{D}, y_{D} \end{aligned}$ $\Theta^{x}_{D}, \Theta^{y}_{D}$: Angle at detector

The most significant matrix elements are L_{eff}, so that approximately $x_D \approx L_{eff}^x \Theta_x^*$ $y_{\rm D} \approx L^{\rm y}_{\rm eff} \Theta_{\rm v}^*$

Dmitry Svirida (ITEP) for the STAR Collaboration

6

Integration of RPs with STAR:

- STAR Trigger system
- STAR Data aquiition system
- STAR BBC or VPD for normalization

In the tunnel

 Additional opportunities for other goals – central production etc. See the talk by W.Guryn at this conference

Si detector package

• 4 planes of 400 µm Silicon microstrip detectors:

- > 4.5 x 7.5 cm² sensitive area
- \geq 100 µm strip pitch
- Good resolution, low occupancy
- Redundancy: 2X- and 2Y-detectors in each package
- Closest proximity to the beam ~10 mm

- 8 mm trigger scintillator with two PMT readout behind Silicon planes
- Total 32 silicon planes by Hamamatsu Photonics in 8 packages
- Only 5 dead/noisy strips per ~14000 active strips.

Hit selection and Detector performance

• Pedestals and pedestal spreads σ_P calculated for each strip

STAR

- Signal beyond $5\sigma_P$ is a signal candidate
- Look for adjacent strips with signals to form a cluster
- Reject cluster with >4
- Apply cluster charge cut based on cluster width
- Planes with >5 clusters rejected in given event
- Clusters in the planes of the same coordinate in a package are combined into one hit if closer than 2 strips (~200 um) or left as separate clusters otherwise
- All possible X-Y hit pairs are taken (not more than 20 per package)

Dmitry Svirida (ITEP) for the STAR Collaboration

Diffraction 2010

System acceptance and -t ranges

• Hits on each side translated into angles at IP using <u>transport matrix</u> and alignment data (both in x and y directions)

STAR

- Hits on each side with angles in x and y within 0.06 mrad combined into one track (intersection regions)
- Number of hits in each track is counted

Number of events in each -*t*-range

Range -t	<-t>	Events	
0.005 > -t	0,0040	890434	
0.005 – 0.010	0,0077	4104266	
0.010 – 0.015	0,0125	5241353	
0.015 – 0.020	0,0174	4854983	
-t > 0.020	0,0234	4186571	

Elastic events selection

- •On each side, if there is more than one track, only tracks with 4 or more contributing planes left (noise reduction)
- •Require exactly 1 track on each side
- •For elastic events $\Theta^*_{EAST} = -\Theta^*_{WEST}$ elastic correlation
- •For each East-West track pair calculated $\chi^2 = (\Delta(\Theta_X)^2 + \Delta(\Theta_Y)^2) / \sigma^2, \sigma = 0.057 \text{ mrad}$
- •Final event selection: number of planes contributed >= 6 and $\chi^2 \le 5$ (8.2% elastic event loss)

Additional cuts:

•Bunches in abort gaps rejected

Event counting (45 runs)					
Total in files	58344907				
Elastic triggers in files	32916916				
Tracks in both sides	25028096				
Single track on both sides	23924753				
Selected elastic events	19277607				

Dmitry Svirida (ITEP) for the STAR Collaboration

Δ(θ_×)

1200

1000

800

600

400

200

-0.3

Diffraction 2010

Square root formula: don't need external normalization, acceptance asymmetry and luminosity asymmetry cancel out We have all bunch polarization combinations: $\uparrow\uparrow$, $\uparrow\downarrow$, $\downarrow\uparrow$, $\downarrow\downarrow$ -- can build various asymmetries

$$\varepsilon_{N}(\varphi) = \frac{(P_{B} + P_{Y})A_{N}\cos\varphi}{1 + \delta(\varphi)} = \frac{\sqrt{N^{++}(\varphi)N^{--}(\pi + \varphi)} - \sqrt{N^{--}(\varphi)N^{++}(\pi + \varphi)}}{\sqrt{N^{++}(\varphi)N^{--}(\pi + \varphi)} + \sqrt{N^{--}(\varphi)N^{++}(\pi + \varphi)}}$$

$$\varepsilon_{N}^{B}(\varphi) = P_{B}A_{N}\cos\varphi = \frac{\sqrt{N_{B}^{+}(\varphi)N_{B}^{-}(\pi+\varphi)} - \sqrt{N_{B}^{-}(\varphi)N_{B}^{+}(\pi+\varphi)}}{\sqrt{N_{B}^{+}(\varphi)N_{B}^{-}(\pi+\varphi)} + \sqrt{N_{B}^{-}(\varphi)N_{B}^{+}(\pi+\varphi)}}$$

$$\mathcal{E}'_{N}(\varphi) = \frac{(P_{B} - P_{Y})A_{N}\cos\varphi}{1 - \delta(\varphi)} = \frac{\sqrt{N^{+-}(\varphi)N^{-+}(\pi + \varphi)} - \sqrt{N^{-+}(\varphi)N^{+-}(\pi + \varphi)}}{\sqrt{N^{+-}(\varphi)N^{-+}(\pi + \varphi)} + \sqrt{N^{-+}(\varphi)N^{+-}(\pi + \varphi)}}$$

- •Both beams polarized half of the statistics, but effect ~ (P_B+P_Y)
- •One beam polarized, the other 'unpolarized' full statistics, but effect is only $\sim P_B$ (or P_Y)
- Opposite relative polarization – effect ~ (P_B-P_Y) should be close to 0 – systematics check

Diffraction 2010

where $\delta(\varphi) = P_B P_Y (A_{NN} \cos^2 \varphi + A_{SS} \sin^2 \varphi) < 0.01 << 1$

Beam polarization: $P_B = 0.602 \pm 0.026 P_Y = 0.618 \pm 0.028 P_B P_Y = 0.372 \pm 0.023$ $(P_B + P_Y) = 1.221 \pm 0.038, (P_B - P_Y) = -0.016 \pm 0.038 = 0.013(P_B + P_Y)$

Raw single spin asymmetry $\overline{\varepsilon_N} = A_N * P$

STAR

STAR

Normalization and ε_N systematics checks

- •Normalization is based on "inelastic" event counts assuming their negligible polarization dependence
- •Two independent STAR subsystems, both having 2π acceptance for forward particles in east and west:

BBC – beam-beam counters VPD – vertex position detector

•Normalized counts: $K^{+/-} = N^{+/-}/V^{+/-}$, $N^{+/-}$ -- elastic event counts for a certain spin combination, $V^{+/-}$ -- normalization factor from BBC/VPD

	statistics	++	+-	-+		stat σ
VPD	38246243	0.24544	0.24676	0.24940	0.25839	0.00007
BBC	449686340	0.24512	0.24595	0.25028	0.25864	0.00002
average		0.24528	0.24636	0.24984	0.25852	

$$\varepsilon_{N}^{N}(\varphi) = \frac{(P_{B} + P_{Y})A_{N}\cos\varphi}{1 + \delta(\varphi)} = \frac{K^{++}(\varphi) - K^{--}(\varphi)}{K^{++}(\varphi) + K^{--}(\varphi)}$$

- •V^{+/-} differs beyond statistical error (0.25%)for VPD/BBC – two different physics processes \Rightarrow average
- •Asymmetry value in good agreement \Rightarrow
 - •Small systematic errors
 - •High normalization quality but may not be good enough for $A_{NN} \& A_{SS}$

Diffraction 2010

A_N results and r_5 estimates

STAR

 A_{NN} and A_{SS}

STAR

•Cannot use square root formula – have to rely on normalized counts $K^{+/-}$

$$\varepsilon_{NN}(\varphi) = P_B P_Y(A_{NN} \cos^2 \varphi + A_{SS} \sin^2 \varphi) =$$

= $\frac{(K^{++}(\varphi) + K^{--}(\varphi)) - (K^{+-}(\varphi) + K^{-+}(\varphi))}{(K^{++}(\varphi) + K^{--}(\varphi)) + (K^{+-}(\varphi) + K^{-+}(\varphi))}$

•Double spin effects are seen and not consistent with 0

- •Both A_{NN} and A_{SS} are very small ~10⁻³ (except for the lowest *t*-range where larger systematic shifts may occur)
- •Need better systematic error studies – current normalization uncertainties are of the order of the effect

Diffraction 2010

Conclusions and plans

- •Roman Pots installed at STAR IR and integrated into STAR detector for low *t* studies
- •~20·10⁶ elastic events recorded in 40 hours of data taking in 5 days with RPs in 2009 at $\sqrt{s}=200$ GeV and special machine optics $\beta^*=21$ m
- •Excellent detector performance provides extremely clean data set
- •Single spin asymmetry A_N obtained with unprecedented 2% accuracy in 5 *t*-ranges
- •No significant contribution of hadronic spin-flip amplitude seen: $r_5 \sim 0$
- •Double spin effects are seen, but need more accurate studies

THE PATH TO THE FINAL RESULT

- •Finalize detector alignment using data
- •Constraint several transport matrix elements using data
- •More systematic error studies: random polarization, forbidden asymmetries, acceptance asymmetries etc.
- •Advance r_2 and r_4 estimates from double spin asymmetry studies

NEAREST FUTURE IN 2011

• Plan to run 1 week at $\sqrt{s}=500$ GeV with the same physics goals

FURTHER PLANS

•Measurements with longitudinal polarization $-A_{LL}$ possible with STAR spin rotators

