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I. INTRODUCTION

A recent discovery in high-multiplicity proton-proton and
proton-nucleus collisions are correlations between pairs of
charged hadrons that are collimated in their relative azimuthal
angle and are long range in relative rapidity. These “ridge”
correlations were mostly unanticipated for such small-size
systems, albeit a similar striking effect was previously seen
in heavy-ion collisions at the BNL Relativistic Heavy Ion
Collider (RHIC) and subsequently also at the CERN Large
Hadron Collider (LHC). The ridge in

√
s = 7 TeV proton-

proton collisions was discovered by the CMS collaboration [1].
In proton-lead collisions at

√
s = 5.02 TeV/nucleon, a sizable

ridge was observed by the CMS collaboration [2], the
ALICE collaboration [3], and the ATLAS collaboration [4].
In addition, the PHENIX collaboration at RHIC recently
discovered a ridge in very central deuteron-gold collisions
at

√
s = 200 GeV/nucleon [5].

These long-range correlations are of fundamental im-
portance because they probe the very early time dynamics
of matter produced in hadronic collisions. A question of
considerable recent interest is whether the ridge effect in
p + p and p/d + A collisions is attributable to initial-state
effects arising from the correlations of gluons already present
in the nucleon and nuclear wave functions or whether it is
attributable to final-state rescattering effects that are amenable
to a hydrodynamic description. In both cases, one assumes
a dynamical scenario where long-range rapidity correlations
are generated in the initial state.1 The question is whether the
azimuthal collimation observed in the ridge is also attributable

1In hydrodynamical models, these long-range rapidity correlations
are a consequence of the choice of initial conditions, wherein the
initial transverse spatial profile of the energy density distribution
is assumed to be the same at all rapidities. Though not widely

to the same initial-state correlations that generate long-range
rapidity correlations or whether they are generated primarily
by the final-state flow of these correlated structures.

A powerful framework in which long-range rapidity cor-
relations can be computed systematically is the color glass
condensate (CGC) effective field theory (EFT) [6]. In the CGC
EFT, these correlations are a consequence of gluon saturation
at central impact parameters in the proton and nuclear wave
functions. In the hadronic collision, gluon fields are generated
that stretch out in rapidity between the receding hadrons and
are coherent in the transverse plane over distances 1/Qs , where
Qs is the saturation scale. The saturation scale in a hadron
or nucleus is a function of the parton momentum fraction x
and impact parameter and grows with increasing energy and
nuclear size.

Multiparticle production, by the decay of the gauge field
configurations corresponding to these Glasma flux tubes [7],
is nearly boost invariant and nearly azimuthally isotropic; the
resulting multiplicity distribution is the negative binomial dis-
tribution [8]. The QCD graphs that generate these distributions
are called “Glasma graphs.” At high kT " Qs , the contribution
of these graphs is highly suppressed. In contrast, for kT ! Qs ,
where high occupancies in hadron wave functions are probed,
Glasma graphs are enhanced by α−8

s , a factor of ∼105 for
typical values of the probed QCD fine structure constant
αs . In nuclear collisions at ultrarelativistic energies, these
(nearly) boost-invariant configurations are argued to provide
the dominant mechanism for multiparticle production, and

appreciated, this choice corresponds to an assumption of strong
long-range correlations in the dynamics of multiparticle production
at short transverse spatial distances. Only azimuthal correlations are
dynamically generated by the hydrodynamic equations.

064906-10556-2813/2013/87(6)/064906(10) ©2013 American Physical Society

Phys. Rev. C 87, 064906 (2013) [arXiv:1304.3403]

9. “Multiplicity distributions in p+p, p+A and A+A collisions from Yang-Mills dynamics”
Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
Phys. Rev. C 89, 024901 (2014) [arXiv:1311.3636]

10. “Initial state geometry and fluctuations in Au+Au, Cu+Au and U+U collisions at RHIC”
Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
Phys. Rev. C 89, 064908 (2014) [arXiv:1403.2232]

Conferences

1. “Inclusive hadron distributions in p+p collisions from saturation models of HERA-DIS data”
Prithwish Tribedy and Raju Venugopalan.
Nucl. Phys. A 862-863, 367-370 (2011) - Special Issue [arXiv:1101.5922].

2. “Initial state fluctuations and higher harmonic flow in heavy-ion collisions”
Charles Gale, Sangyong Jeon, Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
Nucl. Phys. A904-905 2013, 409c (2013) [arXiv:1210.5144].

3. “Glasma fluctuations in heavy-ion collisions”
Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
AIP Conf. Proc. 1560, 650 (2013)

4. “Gluon field fluctuations in nuclear collisions: Multiplicity and eccentricity distributions”
Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
Nucl. Phys. A102-108, 926 (2014)[arXiv:1312.5588]

5. “Particle production and final state effects in nuclear collisions”
Charles Gale, Sangyong Jeon, Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
J. Phys. Conf. Ser. 535 (2014) 012026.

6. “Initial state geometry and fluctuations in deformed and asymmetric nuclear collisions in
the IP-Glasma framework”
Björn Schenke, Prithwish Tribedy and Raju Venugopalan.
Nucl. Phys. A 931, 288-292 (2014)

6

http://arxiv.org/abs/1209.6330
http://arxiv.org/abs/1301.3395
http://arxiv.org/abs/1304.3403
http://arxiv.org/abs/1311.3636
http://arxiv.org/abs/1403.2232
http://arxiv.org/abs/1101.5922
http://dx.doi.org/10.1063/1.4826862
http://arxiv.org/abs/1312.5588
http://www.sciencedirect.com/science/article/pii/S037594741400298X


Dedicated to my grandparents

7



Acknowledgement

I am extremely thankful to my advisor Prof. Subhasis Chattopadhyay for his constant supervi-
sion and training. I admire his patience during the early stages of my training and very much
appreciate his encouragement towards independent thinking. I convey my deepest gratitude
to my mentor Prof. Raju Venugopalan for his constant teachings and guidance. Words are
inadequate for his efforts to enrich my knowledge and to grow my interest towards various open
problems through countless number of discussions. Special thank goes to my collaborators Dr.
Bjoern Schenke and Dr. Aihong Tang whose caring and invaluable support helped me to com-
mence a major part of my research. I thank the members of my thesis committee and referees
for their constructive suggestions. I am grateful to Prof. Jane Alam, Prof. Ashis K Choudhuri,
Prof. Sourendu Gupta, Prof. Sangyong Jeon, Prof. Larry McLerran, Prof. Ajit Mohanty, Prof.
Tapan K Nayak, Prof. B K Patra, Prof. Bikash Sinha, Prof. Sourav Sarkar, Prof. Dinesh K
Srivastava and Prof. Raghava Varma for their teachings, valuable suggestions and encourage-
ments. I would like to convey my heartfelt thanks to my colleagues and collaborators Partha P
Bhaduri and Prasad Hedge for sharing their experience and insights with me. I am very much
grateful to my senior colleagues Bedanga Mohanty, Anand K Dubey, Sanjib Muhuri, Mriganka
M Mondal, Sidharth K Prasad and Jajati K Nayak. Their advice on my research and career
have been very useful to me. A special note of thanks goes to Premomoy Ghosh whose con-
stant caring companionship has enriched my personal and professional life. A warm affection
and gratitude is extended towards my friends, Debashis Banerjee, Santosh K Dash, Hari Poi,
Victor Roy, Nihar R Sahoo, Pratap Roy and Arindam Roy who have helped me in many ways
to complete this work. I thank all my fellow collaborators of the STAR experiment at RHIC,
particularly Daniel Cebra, Paul Sourensen, Hiroshi Masui and Zhangbu Xu, from whom I have
learned a lot over past years. I enjoyed my time of discussion with Raktim Abir, Adam Bz-
dak, Purnendu Chakraborty, Sandeep Chatterjee, Kevin Dusling, Swagato Mukharjee and Hui
Wang. I thank Nuclear theory group of BNL, TPSC of India and department of Physics of
IIT Roorkee, IIT Bombay, University of Jammu and Central China Normal University for their
hospitality and support. I thank Prof. Sean Gavin, Prof. Xin Nian Wang and Prof. Nu Xu
for their kind invitations to present my work. I thank everyone from the PMD collaboration of
India. The computing facilities of RCF at BNL, NERSC at LBNL, grid-peer Kolkata, DRONA
and PRAFULLA clusters at VECC are acknowledged.

I am very lucky to have a wonderful family that has been the source of endless love and
support. I am grateful to my parents, Probir Kumar Tribedy and Anusua Tribedy and also my
sister Elora Tribedy for their constant inspiration to pursue a career in research.

8



Contents

Synopsis 12

List of Figures 15

List of Tables 25

1 Introduction 26
1.1 New form of matter under extreme conditions . . . . . . . . . . . . . . . . . . . . 26
1.2 Phase transitions in QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3 The Conventional model of Heavy ion collisions and QGP . . . . . . . . . . . . . 31
1.4 Observables for HG to QGP transitions in relativistic heavy ion collisions . . . . 32

1.4.1 De-confinement transition of the medium . . . . . . . . . . . . . . . . . . 32
1.4.2 Fluid like property of the medium . . . . . . . . . . . . . . . . . . . . . . 34
1.4.3 Opacity of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.4 Thermal property of the medium . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.5 Correlation and fluctuations in the medium . . . . . . . . . . . . . . . . . 39

1.5 Outline of this thesis work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.1 Modelling of fluctuations from the initial stages of heavy ion collisions. . . 40
1.5.2 Modelling of fluctuation from the final stages of evolution and detection . 41
1.5.3 Measurement of inclusive charged and neutral multiplicity fluctuation in

heavy ion collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Observables for multiplicity fluctuation and correlation 45
2.1 Introduction: selection of observables . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Factorial moments and generating function approach . . . . . . . . . . . . . . . . 46
2.3 Observable νdyn and rm,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Effect of efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.2 Effect of mis-identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 Effect of resonance decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.4 Effect of rapidity gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.5 Effect of centrality selection . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Application of the observables in heavy ion collisions : model studies . . . . . . . 61
2.4.1 Statistical models for pion production. . . . . . . . . . . . . . . . . . . . . 62
2.4.2 Transport and Mini-jet model predictions . . . . . . . . . . . . . . . . . . 64

9



2.5 γ-charge correlation and DCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.1 Effect of mixture of pion sources . . . . . . . . . . . . . . . . . . . . . . . 68
2.5.2 A Monte-carlo model for DCC formation. . . . . . . . . . . . . . . . . . . 70

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Measurement of charge and neutral multiplicity fluctuation in Au+Au colli-
sions 76
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 The STAR detector systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.2 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.3 Time of Flight Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.4 Forward Time Projection Chambers . . . . . . . . . . . . . . . . . . . . . 82
3.3.5 Photon Multiplicity Detector . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.6 Detector setup for this measurement . . . . . . . . . . . . . . . . . . . . . 83

3.4 Data Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.1 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.2 Data sets and particle identification . . . . . . . . . . . . . . . . . . . . . 85
3.4.3 Quality Assurance studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.4 Run-by-Run QA for removal of bad runs. . . . . . . . . . . . . . . . . . . 89

3.5 Events mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6 Bin-width effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.7 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7.1 Statistical uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.7.2 Systematic uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8 GEANT simulation for detector response . . . . . . . . . . . . . . . . . . . . . . 101
3.9 Results for charge-neutral correlations . . . . . . . . . . . . . . . . . . . . . . . . 105
3.10 Individual charge and neutral fluctuations . . . . . . . . . . . . . . . . . . . . . . 105
3.11 charge-neutral correlation and νdyn . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.12 Robust observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.13 Comparison to net charge correlation . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.14 Effect of rapidity gap on γ − ch correlation . . . . . . . . . . . . . . . . . . . . . 109
3.15 Npart dependence of γ − ch correlation. . . . . . . . . . . . . . . . . . . . . . . . . 112
3.16 Effect of flow on γ − ch correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.17 An upper limit of DCC like signals from data . . . . . . . . . . . . . . . . . . . . 116
3.18 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Modelling fluctuations from the initial stages of collisions 118
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2 The phenomenon of gluon saturation . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3 The small-x problem of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4 Saturation models of HERA DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.1 The IP-Sat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10



4.4.2 The b-CGC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.3 The rc-BK Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Particle production : Perturbative approach . . . . . . . . . . . . . . . . . . . . . 129
4.5.1 Results for p+p collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5.2 Results for p+A/d+A collisions . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5.3 Results for A+A collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.5.4 Multiplicity fluctuation in the perturbative framework . . . . . . . . . . . 143

4.6 Particle production : Non-perturbative approach . . . . . . . . . . . . . . . . . . 150
4.6.1 Results for p+p collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.6.2 Results for p+A/d+A collisions . . . . . . . . . . . . . . . . . . . . . . . . 158
4.6.3 Results for A+A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.6.4 Multiplicity fluctuation in the non-perturbative framework . . . . . . . . 163

4.7 Initial state geometry and fluctuation in heavy ion collisions . . . . . . . . . . . . 168
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Summary 173

Bibliography 178

Index 193

11



Synopsis

The conventional model of relativistic heavy ion collisions describes two Lorentz contracted

sheets of saturated partonic matter colliding to form a high energy density ensemble of gluonic

states at the initial stage. This initial phase undergoes a pre-equilibrium evolution and eventually

thermalizes to form a strongly correlated Quark Gluon Plasma (sQGP) which subsequently

undergoes a transition to hadronic matter. The hadronic matter undergoes further interaction

and finally free stream to the detectors. The total number of particles produced (multiplicity)

in heavy ion collisions fluctuates from even-to-event.

The goal of this thesis is to study the fluctuations and correlation of inclusive multiplicity

in heavy ion collisions. Contributions to multiplicity fluctuation and correlation come form

different stages of collisions and can carry information of the evolution of the system. Hadronic

collisions serve as reference to set the baseline for various observations in heavy ion collisions.

This work addresses the following broad topics :

1. Correlation and fluctuation from the initial stages of heavy ion collisions.

The geometric fluctuation of the overlap zone of two nuclei due to fluctuation of impact

parameter is the major source of multiplicity fluctuation in heavy ion collisions. The

quantum fluctuation of nucleon positions which are distributed according to Fermi distri-

bution is another dominant source of initial state fluctuation. In addition to that there are

sub-nucleonic quantum fluctuations, the dynamics of which is governed by the saturated

nuclear wave function at low Bjorken x. The framework of Color Glass Condensate pro-

vides an ab initio treatment to this problem by including all such sources of fluctuations.
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This thesis work includes extraction of hadronic and nuclear wave functions using satu-

ration models of HERA DIS data to predict inclusive multiplicity distributions in p+p,

p+A and A+A collisions at RHIC and LHC energies. To study different sources of fluctu-

ation at the initial stages of collisions a new model of initial conditions called the “Impact

Parameter dependent Glasma” (IP-Glasma) was developed. This model computes the ini-

tial gluon fields and their Yang-Mills evolution on a two dimensional real-time lattice. It

naturally describes inclusive multiplicity fluctuations and can be used to study wide range

of systems like p+p, p+A/d+A and A+A. When combined with viscous hydrodynamic

simulations, at present, “IP-Glasma” is the only model of initial condition that consis-

tently describes all higher orders of anisotropic flow harmonics and their event-by-event

fluctuations measured at RHIC and LHC.

2. Correlation and fluctuation from the medium created in heavy ion collisions.

The subsequent stage after the pre-equilibrium evolution is the formation of a medium

of Quark-Gluon Plasma. This medium undergoes a phase transition to Hadronic matter.

Since experimentally a limited phase space is probed, in the Grand Canonical Ensemble

picture, the dynamical fluctuation of conserved charges are sensitive to such a phase tran-

sition. The transition from QGP to hadron gas is associated with the QCD chiral phase

transition. For such a scenario, there have been predictions about formation of metastable

domains of disoriented chiral condensate (DCCs), in which the four component chiral con-

densate is misaligned w.r.to the vacuum. The decay of such domains produce pions of one

particular isospin which would lead to an anti-correlation between observed charged and

neutral particles. The later stage of the heavy ion collisions include decays of many massive

resonances that affect the correlations between charged and neutral particles. This thesis

work includes detailed analysis of data from the STAR experiment to study the dynamical

fluctuations of charged and neutral particle (γ) multiplicities and their correlated produc-

tion in heavy ion collisions. The goal is to search for exotic events like the formation of the

domains of Disoriented Chiral Condensates (DCC) during a QCD chiral phase transition.
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This thesis work includes the only γ-charge correlation measurement and search for DCCs

at RHIC after the WA98 experiment at SPS and the MiniMax experiments at Tevatron.

Detailed study includes the measurement of photon and charge particle distributions us-

ing a combination of a photon detector and two charge particle detectors separated by

a rapidity gap. Observables constructed out of factorial moments of multiplicities have

been used as measures of fluctuation and correlation. Energy, centrality and charge depen-

dence of charged-to-neutral particle correlation were compared to the correlation between

the multiplicities of positively and negatively charged particles. Mixed event and GEANT

simulations were performed to understand the detector effects. Simulations using available

hadronic transport and mini-jet models were performed for baseline studies.

3. Correlation and fluctuation from the final stages of detection.

The binomial response of the detector systems naturally induces spurious multiplicity

fluctuations in the process of particle detection. Additional effects that might give rise to

spurious correlations and fluctuations are decay and mis-identification of particle species.

A moment generating function approach has been used to incorporate different sources

of such spurious fluctuations. This work includes the design of robust observables and

analysis techniques for the STAR experimental setup. Additional studies include : de-

velopment of methods to quantify the strength of DCC like signals and other signals of

dynamical correlation and fluctuation from the measured distributions of photons and

charged particles.
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Chapter 1

Introduction

1.1 New form of matter under extreme conditions

Behaviour of matter under extremely high temperature and density became a topic of interest in

early 1950’s when Fermi proposed the possibility of new states of matter at very large pressure

and temperature [1]. Around similar time Pomeranchuk pointed out that hadrons which are

the constituent of nuclear matter, and the most dense system known at that time, should have

a limiting temperature and density [2]. About a decade after that, Hagedron while studying

an ideal gas of resonances proposed an ultimate temperature of strongly interacting matter [3].

With the pioneering discoveries of the asymptotic freedom [4, 5] and the infrared salvery [6,

7] in 1973-74, Quantum Chromodynamics (QCD) was established to be the right theory of

stong interaction. QCD being an asymptotically free theory predicts a deconfined system of

weakly interacting quarks and gluons at high energy and densities. In 1975 it was realised [8, 9]

that matter at very high energy density (∼ 1 GeV/fm3) will no longer consist of separate

hadrons but a phase consisting of quarks and gluons. Due to analogy with similar phenomena

in atomic physics driven by the laws of Quantum Electrodynamics (QED), in 1980 this new

phase of matter was named as the QCD Plasma or Quark-Gluon Plasma(QGP) [10]. The

phase transition from Hadronic matter (or a phase of Hadron Gas) to QGP is theoretically
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predicted by QCD. Numerical calculations using Lattice QCD also show an approximately first

order phase transition [11] for which the temperature and pressure remain nearly constant over

a wide range of energy densities from 0.5-1.4 GeV/fm3.

In early 80’s it was suggested that by colliding two heavy nuclei it may be possible to

excite hadronic matter into the new phase of QGP [10, 12]. Experimental searches of QGP

started when the Alternating Gradient Synchrotron (AGS) facility at BNL and the Super Proton

Synchrotron (SPS) facility at CERN started colliding heavy ions at relativistic energies, which

was explored by several fixed target experiments. SPS collided two Pb nuclei at the centre of

mass energy of
√
sNN = 17 GeV which could produce about an initial energy density of 4

GeV/fm3, a favourable scenario to produce the QGP phase. Experimental results from SPS

provided first hints of the formation of QGP like medium in heavy ion collisions 1. The two

collider facilities, the Relativisitc Heavy Ion Collider at BNL (started in 2000) and the Large

Hadron Colliders at CERN (started in 2010) have been providing heavy ion collisions at even

higher energy. RHIC can collide various heavy ions up to an energy of 100 GeV/Nucleon. Over

the past decade, results from RHIC have provided compelling evidence of the formation of QGP

in heavy ion collisions [13–16]. Recent results from LHC which can accelerate heavy ions up

to several TeV/nucleon has further strengthened such evidences. Future accelerator facilities

like FAIR at GSI will provide relativistic heavy ion collisions at much higher luminosities than

RHIC and LHC to search for rare probes that are essential to establish the existence the QGP

at high density [17].

There are several motivations to study the properties of QGP. Study of QGP has important

connection to cosmology in the context of the evolution of early universe. It is believed that

immediately after the Big-Bang explosion, universe has gone through various phases of unified

fundamental forces and hot and dense mixture of fundamental particles (see [18]). Time line of

evolution of baby universe includes transition through the QGP phase (∼1 µs, TQCDc ∼ 1012

K) [19].

1SPS results indicated a possible onset of de-confinement near the collision energy of
√
s = 7 GeV
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Figure 1.1: Mass generation at the Electro Weak and the QCD scale, schematic from ref. [36]

The transition from hadronic matter to QGP is analogous to phase transitions and critical

phenomenon common in condensed matter physics. The theoretical studies of phase transition

in condensed matter physics deals with one fermion (electron) and one gauge boson (photon) (as

is abelian QED U(1)). Whereas physics of QCD phases is a new domain of non-abelian gauge

theory which is equivalent to a much more enriched form of condensed matter physics with many

“electrons”(NF flavors ×3 colors) and 8 “photons”(gluons in color SU(3) symmetry) [20, 21].

Although the collective properties of QED that form the basis of condensed matter physics is

known at much greater precision, there is a lot more to explore in the sector of QCD. In this

context the studies of phase like QGP will help in understanding of collective dynamics in QCD.

Another important motivation of studying QGP and hadronic matter at high densities is to

understand the origin of mass at the QCD scale. This phenomenon is similar to the phenomenon

of mass generation through symmetry breaking at the Electroweak scale (see Fig. 1.1). One

consequence of QCD mass generation explains why the current masses of light quarks u, d (s)

are much less (5-10 MeV) than their constituent masses (∼ 300 MeV) when confined inside

hadrons. The QCD mass of a quark disappears in the phase of QGP due to restoration of

chiral symmetry. Therefore, the transition from QGP and hadronic matter provides an unique

opportunity to study the origin of dynamical masses of quarks (and hadrons).
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1.2 Phase transitions in QCD

Asymptotically high energy density can be achieved by modern day accelerators by colliding

two heavy ions, at which QCD, the theory of strong interaction predicts the formation of a

de-confined systems of quarks and gluons. Due to color confinement, this system of quarks and

gluons would eventually cool down and undergo a phase transition to a system of hadronic mat-

ter. The phase transition from QGP to hadronic matter (or a hadron gas (HG)) is associated

with de-confinement transition and spontaneous breaking of chiral symmetry. This is a conse-

quence of two symmetries of QCD : pure SU(3) gauge symmetry in the limit of infinite quark

mass and chiral symmetry in the limit of zero quark mass [22]. The spontaneous breakdown of

chiral symmetry is associated with the mass generation at the QCD scale. This is analogous

to the phenomenon of mass generation at the Electroweak scale. In such a scenario, the mass-

less elementary particles gain mass by interacting with the Higgs field [23]. In a very similar

phenomenon, light quarks interact with the QCD vacuum (or the vacuum quark condensates

〈0|qq̄|0〉), and become more massive to form hadrons. In QGP phase where the chiral symmetry

is restored, the quark condensate gets melted, and the QCD masses of the light quarks disap-

pear. Lattice QCD calculations predict that at vanishing baryon densities this transition to be a

cross-over within a temperature range of Tc ≈150-200 for physical quark masses [24, 25]. On the

other hand QCD based models [26–33] including Lattice calculation [34] suggest the transition

at larger baryon densities to be a first-order phase transition. The end point of the first order

line is the QCD critical point (CP). Ongoing efforts from both theory and experiment show

considerable progress in establishing the exitence and the location of QCD CP [35].

The QGP may also exists in different phases. The systems formed in heavy ion collisions

at RHIC or at LHC that are very close to the temperature and density of QCD chiral phase

transition (Tc, µc), manifest liquid like properties. At much higher temperatures (several times

> Tc) one expects a gaseous plasma that existed in the early universe and at much larger baryon

densities (several times > µc) it is expected to manifest as a solid or a color superconducting

plasma that might exist in the core of neutron star [37, 38]. Several experimental observables
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Figure 1.2: Schematic of the QCD phase diagram (conjectured), left panel shows theoretical
predictions and right panels shows the trajectories of heavy ion collisions.

suggest that the plasma formed in the heavy ion collisions is a strongly correlated system of QCD

matter that flows like a nearly perfect fluid, i.e. primarily a liquid like QGP. These remarkable

phenomena together give rise to an enriched phase diagram of QCD matter as shown in Fig. 1.2.

The QCD phase diagrams are generally plotted 2 in terms of two thermodynamic variables

temperature (T ) and baryon chemical potential (µB). Fig. 1.2 (left) shows the theoretically

conjectured phases, the lines of phase transitions. Fig. 1.2 (right) shows the possible trajectories

of the matter in heavy ion collision experiments for different colliding energies. Here, the higher

collision energies correspond to higher temperature and lower chemical potential. The chiral

phase transition line is shown by a (blue) curve which is a first order line at large µB that

ends with a critical point (CP) for physical quark masses. The order parameter for this phase

transition is a condensate of scalar mesons or the chiral condensate 〈ψ̄ψ〉. This quantity is

nonzero in case of Hadronic Matter and zero in the QGP phase. Beyond the CP at very low µB

that is higher collision energy, the cross over between the QGP phase and the Hadronic Matter

is represented by a dotted line.

2Only the location of the point representing the normal nuclear matter (shown by a black circle) is precisely
known from the experiments in these figures
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Figure 1.3: Schematic of heavy ion collisions, a figure by S. Bass.

1.3 The Conventional model of Heavy ion collisions and QGP

The conventional model of relativistic heavy ion collisions (see Fig. 1.3) describes two Lorentz

contracted sheets of saturated partonic matter colliding to form a high energy density ensemble

of gluonic states in the initial stage. This initial phase undergoes a pre-equilibrium evolution

and eventually thermalizes to form a strongly correlated Quark Gluon Plasma (sQGP) which

subsequently undergoes a transition to hadronic matter. The hadronic matter undergoes further

interactions and finally free streams to the detectors.

Nuclei moving at very high energies before collisions are described as Color Glass Condensates

(CGC) [39]. They are composed of highly occupied gluonic states, described as highly coherent

classical Coulombic fields. CGC is a consequence of the stability of QCD matter at very high

energy. With increasing energy, the number of gluons inside a hadron or nucleus increases due to

linear perturbative Bremsstrahlung processes. This linear growth is tamed by non-linear QCD

process, resulting in a saturated gluon dominated wave-function below a momentum scale QS ,

called the saturation scale.

When two CGCs collide, the color electric and magnetic fields from the two nuclei interact

and form an initial state know as the Glasma [40]. Glasma is composed of flux tubes with

transverse sizes of inverse nuclear saturation scale 1/QS . Decay of these flux tubes leads to

correlated production of gluons. The Glasma gluon fileds are nearly boost invariant, which

evolve in time and eventually thermalise to form a strongly interacting QGP.
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The sQGP medium formed flows hydrodynamically, converting the initial spatial anisotropies

to momentum anisotropies at a later time of evolution. The fluid like medium is characterised

by quantities like the ratio η/s, the ratio of the shear viscosity to the entropy density, which for

a strongly interacting system has been conjectured to have a lower bound of 1/4π [41, 42].

The most important part of the evolution is the phase transition of the QGP to Hadronic

matter. The hadronic matter also flows hydrodynamically until the expansion rate overcomes

the scattering rate of its constituents. Finally the mater free stream in 4π directions.

1.4 Observables for HG to QGP transitions in relativistic heavy

ion collisions

Following are several experimental observables that have been used to study the properties of

matter formed in heavy ion collisions. Equivalent measurements of these observables in case of

hadronic collisions or hadron-nuclear collisions have been used as baseline studies since in such

cases one does not expect the formation of QGP like medium.

1.4.1 De-confinement transition of the medium

Measures that are sensitive to the color response function (Πab
µν) are direct probes of color de-

confinement transitions. Suppression of the quarkonia production is an observable that depends

on the screening length of the medium λD which is directly related to the color response function.

The bound states of a heavy quark and its anti-quark which are stable with respect to strong

decay into open charm or bottom hadrons are collectively called quarkonia [43]. The medium

like QGP, in contrast to hadronic matter, is capable of dissociating quarkonia through Debye

screening, so that quarkonium suppression may be taken as a signature of de-confined medium

or QGP formation in heavy ion collisions [44]. Furthermore, different quarkonia having different

binding energies, dissociate at different temperatures. Therefore, the dissociation pattern of

quarkonia can serve as a “thermometer” of the fireball. The dissociation points of different
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quarkonia states can be used to determine the temperature and the energy density ε of the QGP

medium [45].

There are two commonly used theoretical approaches to obtain precise predictions for these

dissociation points which are either based on potential models or lattice studies. In case of

potential model (heavy quarkonia states can be treated non-relativistically) studies one solves

the Schrödinger equation with a temperature-dependent potential V (r, T ). The form of the

potential can either be the Schwinger model [46] which is a modified form of Cornell potential [47]

with a temperature dependent “screening mass” µ(T ) that vanishes in the limit T → 0 or the

heavy quark potential from the lattice QCD calculations [48–52]. The alternative approach

to predict the dissociation points is to calculate the quarkonia (cc̄) spectrum directly on the

lattice [53–58]. The former approaches have the problem that the results are dependent on the

type of potential chosen, while the latter so far suffers from the fact that the lattice spacing and

statistics limit the resolution of peak widths in the spectrum. It is also not easy to identify the

continuum region of the spectrum on the lattice [43]. The potential model studies based on the

heavy quark internal energy, as well as direct lattice QCD calculations predict the dissociation

temperatures to be Td ' 1.1 Tc for ψ′ and χc and Td ≥ 1.5−2 Tc for J/ψ, where Tc is the critical

temperature of de-confinement.

Other than the QGP medium effects on the quarkonia production and dissociations, there

are substantial amount of nuclear effects that needs to be taken into account. For example the

nuclear modification of the initial state parton distribution functions affects the perturbative qq̄

production. The qq̄ pair during its evolution may get absorbed in the pre-resonance as well as

in the resonance stage, due to successive interactions with the target nucleons. Measurements

of dilepton, open charm and charmonium production in p-A or d-A collisions can be used to

understand these effects.

Another important effect on the final yields of quarkonia like J/ψ is the regeneration due

to the statistical recombination process by the charm quarks which are produced initially. One

such c quark formed in one NN collision can in principle also bind with a c̄ from another NN
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collision to create a J/ψ. At sufficiently high energies where charm is abundant this can lead to

an enhancement in J/ψ production in AA collisions compared to a scaled pp rates [59–61].

The first signature of J/ψ suppression was observed by NA50 collaboration at SPS in

√
sNN=17.3 GeV Pb+Pb collisions [62–64]. Results at LHC by the CMS collaboration showed

that the more massive states of the upsilon are relatively more suppressed in Pb+Pb collisions at

2.76 TeV than in controlled p+p collisions [65]. Another measurement of RAA at LHC indicates

that J/ψs in central Pb+Pb at 2.76 TeV collisions are relatively less suppressed than is the case

in central Au+Au collisions at 200 GeV [66, 67]. Recent reviews on quarkonia can be found in

ref [68, 69].

1.4.2 Fluid like property of the medium

The collective flow of the medium created in heavy ion collisions are probes to study the fluid like

property or the transport property of the medium. The collective flow pattern of the medium

is sensitive to the equation of state of the matter [70]. They are classified as radial flow and

anisotropic flow.

In non-central collisions the initial spatial anisotropy (pressure gradient) is transformed into

the anisotropies in transverse-momentum distributions. The measure of such correlation between

spatial positions and momenta of the emitted particles are characterised by the Fourier coefficient

vn of the harmonic decomposition of the azimuthal angle distribution relative to the reaction

plane of the collisions [71]. A strong radial flow in central collisions and elliptic flow (v2) in

non-central collisions have been observed in Pb+Pb collisions at SPS [72–74] and in Au+Au

collisions at RHIC [75]. Results from RHIC demonstrated, almost 50% larger value of flow

coefficient v2 compared to that at the SPS. A very large value of v2 was also recently measured

at LHC. In all the cases viscous relativistic hydrodynamic calculations did very good job in

explaining the data with very low values of shear viscosity to entropy density ratio [76, 77].

This particular feature of the data have lead to a conclusion that the matter created in heavy

ion collisions is strongly interacting and behaves like a nearly perfect fluid.
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It was found at RHIC that the second Fourier coefficient v2, when plotted as a function of

transverse kinetic energy ET for mesons and baryons merge into a universal curve if both v2 and

ET are scaled by the number of valance quark of the hadron [78, 79]. This indicates the medium

formed is composed of de-confined, thermalized and collectively flowing quarks that recombine

to form hadrons [80, 81].

The anisotropic flow and its higher order harmonics are sensitive to the details of the initial

anisotropy in heavy ion collisions. Due to fluctuation in the initial geometry, a lumpy distribution

of the initial energy density distribution leads to non-zero higher harmonic flow vn in both central

and non-central events [82, 83]. The dissipative effects on higher order vn are supposed to be

higher since they are sensitive to the smallest length scale fluctuations in the initial geometry.

Thus from the measurement of the vn coefficients one can learn about the transport coefficient

of the medium created as well as the initial state and its fluctuation which are driven by intrinsic

properties of QCD. More discussions can be found in recent reviews [84, 85]

1.4.3 Opacity of the medium

In the high momentum part (hard sector) of the spectrum of produced particles, the phe-

nomenon of jet quenching is considered as one of the most important observables that is

sensitive to the properties like opacity of the medium created in heavy ion collisions [86–

90]. The single inclusive particle spectra measured in heavy ion collisions are compared to

the baseline measurement from hadronic collisions where one doesn’t expect the formation

of a medium like QGP. The observable relevant to jet quenching called RAA is defined as

RAA =
(
dNAA/d2p⊥dy

)
/
(
〈TAA〉dNpp/d2p⊥dy

)
. The scaling factor 〈TAA〉 is called the nuclear

overlap function which is proportional to the number of binary collisions. In case no medium is

present one expects RAA to become unity. Any deviation from unity would either indicate modi-

fication of the partonic distribution in the colliding nuclei (initial state effect), or the interaction

of a probe with the medium formed after the collisions (medium modification) [90].

The former effect is mostly dominant at the soft part of the hadron spectra which can
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be studied in the proton(p)/deuteron(d)-nucleus(A) collisions, and can be constrained by global

(deeply inelastic scattering (DIS)) data [91]. Calculation based on color glass condensate (CGC)

approach [92, 93], which are constrained by the HERA DIS data, predicted that at very high

energy the nuclear modification factor of p+A collisions (RpA) at mid-rapidity is almost unity

for pT ≥ 2 GeV. Alternative explanations based on inputs from global DGLAP fits of nuclear

PDFs (EPS09 and EKS98) predicted similar behaviour of RpA [94]. These predictions were

confirmed by the measurements at LHC [95], suggesting the fact that initial state effects (cold

nuclear matter effects) on RAA would vanish at high pT .

The hard part of the hadron spectra is observed to be strongly suppressed in central heavy ion

collisions resulting in RAA being much less than unity for pT ≥ 2GeV. This phenomenon known

as jet-quenching, was first observed at RHIC in Au+Au collisions at
√
sNN = 130 GeV [96, 97].

Such an effect was found to be absent in d+Au collisions at
√
sNN=200 GeV [98, 99]. First

measurements at LHC also showed similar suppression in Pb+Pb collisions at
√
sNN = 2.76 TeV

[100, 101] as a further confirmation of a medium formed in Pb+Pb collisions. This phenomena is

attributed to the interaction of the energetic partons (that fragment into high pT hadrons or jets)

traversing a hot QCD medium (QGP) formed in heavy ion collisions. The amount of energy loss

is related to the hard partonic energy loss parameter q̂ which is defined as the typical momentum

transfer squared per unit length by the parton in the medium [102–104]. Theoretical models

that include different mechanisms of energy loss of a parton (radiative, collisional etc. [105]) can

be used to extract q̂ from experimental measurements (for a recent development see e.g. [106]).

A recent review on hard probes of QGP can be found in ref. [107].

1.4.4 Thermal property of the medium

Electromagnetic probes such as lepton pairs and photons are considered as the cleanest probe to

study the strongly interacting matter such as QGP [108–113]. These probes carry information of

the earliest phase of the evolution and remain un-effected by the final stage interactions. However

these probes suffer considerable background from the electromagnetic decays of hadrons. Yields
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of these probes are sensitive to the electromagnetic current response function (Wµν) which is

sensitive to the thermal state of the medium. A review can be found in ref. [114]

In a medium like QGP the leading logarithmic contribution (O(αs, αEM )) to the rate of

thermal photon production is calculated by including two-to-two particle hard collision processes

like qg → qγ [115, 116]. However several inelastic processes also contribute in the same order

leading to what is called the Landau-Pomeranchuk-Migdal (LPM) suppression, a full treatment

of which should be included to compute the photon emission rate in complete leading order [117].

There have been recent developments to calculate the thermal photon emission rate up to NLO

[118] that adds up to 20% correction at RHIC energies.

Along with the contribution from the QGP matter there will be significant amount of the

thermal photons production from the hot hadronic matter produced after the hadronization of

the QGP [115, 119–123]. The thermal photons from both QGP and hot hadronic matter dom-

inate the lower part of the transverse momentum (pT ) spectrum whereas the large momentum

part is dominated by the prompt photons due to direct hard production in primary parton-parton

collisions between the nuclei which can be calculated from the NLO pQCD approaches [124].

The intermediate momentum range is dominated by jet-induced photons from the medium due

to Compton scattering, annihilation or medium induced Bremsstrahlung [125, 126]. These inter-

mediate momentum photons also carry information about the temperature and other properties

of the medium related to jet energy loss. Direct photons from different sources can be separated

by choosing different regions of pT -spectra whereas the decay photons can be excluded from the

data sample either by invariant mass or mixed event analysis method [127–129].

Other than thermal photon spectra, the elliptic flow [130] and interferometry [131, 132] of

photons can be important probes to determine the collective properties of the system. Since

photons are emitted throughout the evolution including very early stage of the collisions, elliptic

flow of photons are also sensitive to early pre-equilibrium flow.

Observation of direct photon was first reported by the WA98 experiment in central 158 A

GeV Pb+Pb collisions at the CERN SPS. A more recent measurement of direct photon spectra
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at RHIC by the PHENIX collaboration have shown an excess yield in central (0-20%) Au+Au

collisions compared to p+p collisions at
√
sNN = 200GeV at low transverse momentum in the

range 1 < pT < 4 GeV/c [133]. A similar measurement at LHC in central (0 − 40%) Pb+Pb

collisions at
√
sNN = 2.76 TeV also indicates excess yields at low pT as compared to p+p

collisions [134]. Exponential fit to the pT -spectra at RHIC and LHC correspond to values of

slope parameters of 221 MeV and 304 MeV respectively. These measurements are indicative of

the formation of a medium with an initial temperature of order 300-600 MeV [133, 134] at which

matter is likely to be in the QGP phase.

Di-leptons produced from the virtual photons provide additional kinematic window of invari-

ant mass in addition to pT to study the different stages of the evolution of the medium created

in heavy ion collisions. Massive di-leptons (M > MJ/ψ) carry information of the early stages

of collision which come from Drell-Yan processes or decay of different quarkonia states. These

di-leptons can also be used to study suppression of quarkonia states which is discussed in the

next section. The intermediate window of di-lepton mass (MJ/ψ > M > Mφ) is dominated by

emission from the QGP state that carry information about the thermal property of the medium.

An enhanced yield of dileptons in this region has been suggested to be a signal of QGP for-

mation [10]. The low mass di-leptons (Mφ > M) are dominated by decays of vector mesons

and Dalitz decays. These di-leptons are sensitive to the medium modification of the spectral

functions of vector mesons and study of QCD chiral phase transitions [135].

Measurement at the SPS showed enhancement of di-lepton yields at both intermediate and

low mass region [136–138], which is consistent with the formation of QGP [135]. The measure-

ments by the NA45 collaboration at SPS [139] and a more recent measurement by the STAR

collaboration at RHIC [140] of the di-lepton invariant mass spectrum are found to be consistent

with the calculations of strongly broadened ρ spectral function plus a moderate QGP contribu-

tion.
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1.4.5 Correlation and fluctuations in the medium

Correlation and fluctuation of global observables such as multiplicity, transverse momentum of

particle, azimuthal anisotropy of particle distribution (flow harmonics vn), transverse energy

etc. can provide important information about different stages of heavy ion collisions. Further

discussions will be mainly focused on multiplicity fluctuation. There are three distinct sources

of multiplicity fluctuations. The dominant contribution to inclusive multiplicity fluctuations

comes from very early stages of collisions and throughout the pre-equilibrium evolution of the

system formed in heavy ion collisions. Such fluctuation and correlation that originate from the

early stage of collisions carry important information of the pre-equilibrium dynamics. In the

later stage of the evolution, the system is equilibrated and it is expected to be in the phase of

QGP. Such a medium eventually undergoes a phase transition to hadronic matter. This phase

transition is associated with the de-confinement transition and chiral phase transitions. In the

Grand Canonical Ensemble picture, one expects event-by-event fluctuations of conserved charges

(which is related to multiplicity of different particle species) from the medium created in heavy

ion collisions. Fluctuation of conserved charges are related to corresponding susceptibilities

which are thermodynamic response function of the medium created in heavy ion collisions. There

are a few other sources of multiplicity fluctuation that come from the late stages of evolution,

like decay of massive resonances. One of the other sources of measured multiplicity fluctuations

are attributed to artefacts related to the methods of detection. Since the process of detection

of a particles is probabilistic and carried out in a limited phase space, spurious fluctuations of

multiplicity are unavoidable in the context of experimental measurements.

1.5 Outline of this thesis work

This thesis work includes the study of fluctuations and correlation of inclusive multiplicity in

heavy ion collisions. Contributions to multiplicity fluctuation and correlation come form different

stages of collisions and can carry information of the evolution of the system as described in next
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subsections.

Figure 1.4: (Left) Lumpy initial parton density in a colliding Au nucleus. Only quantum
fluctuations at nucleonic scale are present. (Right) The transverse energy density after collision
of two Au nuclei at 200 GeV at zero impact parameter. Quantum fluctuations at both nucleonic
and sub-nucleonic scales are present, which will result in fluctuation of global observable such
as multiplicity and flow harmonics vn.

1.5.1 Modelling of fluctuations from the initial stages of heavy ion collisions.

There are two distinct sources of correlation and fluctuation from the initial stages of heavy

ion collision. The first is the geometric fluctuations due to shapes of nuclei and the impact

parameter of collision. The second source is due to the quantum fluctuations generic to the wave

function of nuclei and its constituents. The event-by-event geometric fluctuation of the overlap

zone of two nuclei due to fluctuation of impact parameter is the major source of multiplicity

fluctuation in heavy ion collisions. The quantum fluctuations of nucleon positions which are

distributed according to Fermi distribution is another dominant source of initial state fluctuation.

In addition to that, there are sub-nucleonic quantum fluctuations, the dynamics of which is

governed by the saturated nuclear wave function at low Bjorken x. The combined effect leads to

the fluctuation of inclusive multiplicity and transverse energy density. Fluctuation of transverse

energy density affects the anisotropic flow coefficients vn and its fluctuation. Experimental

measurements indicate that over a wide-range of energies and systems, the inclusive multiplicity

follows a negative binomial distribution. Origin of such distributions from first principle QCD

is not well understood.
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Experimental measurements have confirmed that the medium created in the subsequent

stages of evolution flows like a nearly perfect fluid. The measured anisotropic flow vn coefficients

have been used to determine the transport properties of the fluid like medium created in heavy-

ion collisions. A precise determination of such transport coefficients therefore requires a model

of initial condition that incorporates different sources of fluctuations and includes an ab initio

description of multi particle production, as an input to hydrodynamic or transport simulation.

In this thesis work we have developed a framework by including all sources of fluctuations

at the initial and the pre-equilibrium stage of heavy ion collisions. The goal is to naturally

describe the inclusive multiplicity and transverse energy density fluctuations (negative-binomial

fluctuations), develop a new model of initial condition that can serve as an input to the hy-

drodynamic simulations for the estimation of flow coefficients vn for the determination of the

transport coefficients of the medium created in heavy ion collisions.

1.5.2 Modelling of fluctuation from the final stages of evolution and detection

The final stage of the evolution of the fireball created in heavy ion collisions involves the decay

of massive resonances into lighter hadrons. Resonance decay introduces one specific kind of

correlation in the multiplicity of inclusive charged and neutral particles, known as decay cor-

relation. The decay correlations can dilute or enhance the signals of dynamical fluctuations

or correlations from the medium as discussed in the previous section. Qualitative estimations

of the decay correlation observables can be presented using moment generating function ap-

proach. Quantitative estimations are done using Monte Carlo models (event generators) that

include the processes of resonance decay. Spurious fluctuation and correlation are introduced

due the process of detection. Such effects must be eliminated by the construction of observ-

ables. Limited efficiency, acceptance and identification capability of the detector systems might

also induce multiplicity fluctuations and correlation. An approach based on moment generating

function can be used to study such effects. It can be shown that, for observables constructed

using proper combination of moments of multiplicity, certain detector related artefacts can be
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minimized. Detailed quantitative estimation of measurement related effects can also be studied

using a combination of Monte Carlo event generator coupled with detector geometry.

A part of this thesis includes the study of spurious fluctuation and correlation that affect

the measurement of dynamical multiplicity fluctuation and correlation using an approach based

on moment generating function and Monte Carlo methods.

1.5.3 Measurement of inclusive charged and neutral multiplicity fluctuation

in heavy ion collisions.

En#re	
  fireball	
  

Detector	
  acceptance	
  

Conserved	
  charges	
  

Figure 1.5: Cartoon of the fireball created in heavy ion collisions. Experimentally only a small
fraction of the fireball is probed, in which conserved charges can be exchanged, this way a GCE
picture is valid.

The subsequent stage after pre-equilibrium evolution is the formation of a equilibrated

medium of QCD matter, which undergoes a phase transition to Hadronic matter. Eventu-

ally the hadronic matter will expand faster than the scattering rate of its constituents and free

stream in 4π direction. Experimental measurements always probe a limited phase space out of

the 4π coverage. For a realistic detector acceptance in the Grand Canonical Ensemble picture,

the dynamical fluctuation of conserved charges can be a good probe to study the phase tran-

sition. For the phase transition from QCD matter to hadronic matter, change in fundamental

degrees of freedom associated with de-confinement transition would lead to distinct change in

the strength of fluctuations. Therefore measuring quantities like event-by-event h+/h− fluctu-

ations can provide a distinct signal of QGP formation [141, 142]. Similarly fluctuations of net

baryon number can also be an ideal probe for the de-confinement transition [143]. Event-by-
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Figure 1.6: Spontaneous breaking of chiral symmetry in linear sigma-model. The four com-
ponent condensate (σ, ~π) is misaligned with its vacuum direction in case of DCC domains.
Schematic from Ref. [149].

event fluctuation of conserved quantities has been argued to be an ideal probe to scan the phase

diagram of QCD and to locate the QCD critical point [144].

The transition from QGP to hadron gas is also associated with the QCD chiral phase transi-

tion. Although there are several fluctuation measures discussed in the literature [141–143] that

are sensitive to de-confinement transitions, very few of them directly probe the chiral phase

transition. When the system passes from a chirally symmetric phase to a broken phase, in a

scenario of rapid cooling, there could be formation of metastable domains in which the four com-

ponent chiral condensate (σ, ~π) is misaligned relative to its vacuum orientations. Such domains

of disoriented chiral condensates (DCC) leads to coherent emission of soft pions of a particular

isospin [145–148]. Such emission eventually leads to a distinct distribution of the neutral pion

fraction compared to what is expected from generic production of pions under isospin symmetry

[146, 148]. If f denotes the event wise neutral pion fraction (the ratio of the total number of

neutral pions over the total number of all pions produced in a single event) a generic production

of pions from a thermally equilibrated medium will lead a distribution peaked at 1/3. It can

be shown that, all the pions coming from the decay of a DCC domains exhibit a probability

function described by P (f) = 1/2
√
f . These two scenarios lead to a difference in event-by-event

correlation of charged and neutral pion multiplicity. In other words, the two scenarios would
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lead to difference in the dynamical fluctuation of event-by-event neutral pion fraction. Since

pions dominate the inclusive multiplicity in heavy ion collisions, the neutral pion fraction can

be shown to be closely related to inclusive charged particle and photon multiplicity ratio fγ−ch

(the ratio of the total number of inclusive photons over the total number of inclusive charged

particles produced in a single event). Therefore dynamical fluctuation of f is expected to affect

the dynamical fluctuation of fγ−ch.

The goal of this thesis work is the measurement of inclusive charge and photon multiplicity at

the STAR experiment at RHIC and the analysis of data by developing methods to study event-

by-event fluctuation (and correlation) of inclusive charged and photon multiplicity. The method

involves the construction of observables that are sensitive to DCC formation as a result of the

QCD chiral phase transition and at the same time robust against measurement related artefacts.

Observables have been constructed from the moments of multiplicities and their robustness and

sensitivity to signals have been tested using generating function approach and by Monte-carlo

simulations. Further studies include simulations using available hadronic transport and mini-jet

models for baseline studies. The fluctuations that originate from the initial stage of collisions as

discussed in previous section can also affect the dynamical fluctuations of multiplicity from the

medium. Such effects must be taken care of by the construction of suitable observables.
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Chapter 2

Observables for multiplicity

fluctuation and correlation

2.1 Introduction: selection of observables

In this chapter we discuss how the observed event-by-event multiplicity fluctuation and correla-

tion are affected by various artefacts related to detection of particles. We argue that spurious

fluctuations and correlations are unavoidable due to limitations of experimental measurements.

As mentioned previously, the binomial responses of particle detectors naturally introduces event-

by-event fluctuation of particle multiplicity. Additionally due to limited acceptance of the detec-

tor systems, spurious fluctuation can arise from decay of resonances. Mis-identification is also

one of the dominant effects that contribute to the spurious correlation. A suitable observable in

this case should be robust against detector effects and at the same time sensitive to signal of dy-

namical fluctuation and correlation in the data sample. It is necessary to quantify the detection

related artefacts and design robust observables suitable for studying event-by-event multiplicity

fluctuations. These effects can be studied using the moment generating function approach. We

discuss here the design and sensitivity of observables for dynamical charge-neutral multiplicity

fluctuations and correlations. Formation of the domains of Disoriented Chiral Condensate(DCC)

45



is one of the proposed sources of dynamical charge-neutral multiplicity correlation. A detailed

study of the sensitivity of the observables to DCC formation is studied in the generating function

approach. Decay of resonances, also studied in the same approach, has been shown to induce

opposing effects (correlation) on the observables in contrast to DCC (anti-correlation).

2.2 Factorial moments and generating function approach

We define efficiency of detection ε as the probability to detect a particle incident on a detector

under consideration. Let us assume that out of N particles produced in a given event only n

number of particles are detected by the detector of efficiency ε. If P (N) denotes the probability

distribution of produced particles then the distribution of detected particles can be given as

P (n) =
∑

B(n|N, ε)P (N). (2.1)

Here we have assumed the simplest implementation of detector efficiency in terms of a binomial

probability distribution function say of the form

B(n|N, ε) =NCn ε
n(1− ε)N−n, (2.2)

which gives

〈n〉 = ε 〈N〉 , (2.3)〈
n2
〉

= ε(1− ε) 〈N〉+ ε2
〈
N2
〉
, (2.4)〈

n3
〉

= ε(1− ε)(1− 2ε) 〈N〉+ 3ε2(1− ε)
〈
N2
〉

+ ε3
〈
N3
〉
. (2.5)

i.e. different higher order moments of observed multiplicity n is not proportional to the same

order of moments of produced multiplicity N . This way the efficiency term ε does not factorize

for variables like variance, skewness and kurtosis. However different order factorial moments of
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the detected particles come out to be proportional to the corresponding factorial moments of

the parent particles i.e.

〈n(n− 1)〉 = ε2〈N(N − 1)〉. (2.6)

It is evident that explicit efficiency dependence can be removed by taking ratios of these

factorial moments with powers of mean multiplicity.

The above relation can also be obtained in the generating function approach [150]. Along

with detection efficiency, various other effects like decay, mis-identification can be incorporated

in moments in a moment generating function defined as

G(z) =
∞∑
N=0

zN P (N) (2.7)

where P (N) denotes the distribution of the parent multiplicity N which subsequently produces

two different particles species with multiplicities N1 and N2. Production of these two species

may be correlated. Let us consider that P(α) denotes the event-by-event distribution of α =

N1/(N1 + N2) that includes the relevant physics of correlation which is independent of parent

distribution so that the modified generating function becomes

G(z1, z2) =

1∫
0

dαP(α)
∑
N

P (N) [αz1 + (1− α)z2]N , (2.8)

where z1 and z2 are dummy variables. Different moments of multiplicity are evaluated by first

taking the derivatives of G(z1, z2) with respect to z1 and z2 and then by setting z1 = z2 = 1.

P (N) could correspond to the multiplicity distribution of the initial partons (dominantly gluons)

from which all charged and neutral particles are produced. In the simplest picture without

considering any kind of decay one can think of N1 and N2 as produced charged and neutral

particles. In the context of multiplicity correlation for two different particle species (N1 and
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N2), the generalised factorial moment of order m,n is defined as

Fm,n =

〈
N1! N2!

(N1 −m)! (N2 − n)!

〉
=
∂m,nG(z1, z2)

∂zm1 ∂zn2

∣∣∣∣
z1=z2=1

(2.9)

= 〈αm(1− α)n〉
〈

N !

(N −m− n)!

〉
(2.10)

If ε1 and ε2 denotes the detection efficiencies for species N1 and N2 the generating function of

Eq. 2.8 is modified to,

Gobs(z1, z2) = G(g1(z1), g2(z2)) , g1,2(z1,2) = (1− ε1,2) + ε1,2 z1,2 (2.11)

The observed factorial moment of multiplicity can be shown to be

fm,n = εm1 ε
n
2 Fm,n. (2.12)

Since efficiency terms factorize, in the simplistic scenario, observables constructed out of ratios

of factorial moments would not have explicit efficiency dependence. However factorial moments

can be affected by decays and other complicated detector effects like mis-identification of one

species in the form of another.

In literature, factorial moments have been used to study fluctuation of particle ratios in case

of conserved quantities like net strangeness in terms of kaon-to-pion ratio and for net baryons

in terms of proton-to-pion ratios. Observables used in such cases were by design robust against

detector inefficiency. In this chapter relevant to the context of isospin, we would like to study

photon to charge particle multiplicity ratio. A detailed calculation in the context of charge and

neutral particle multiplicity correlation is done in the next section.
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2.3 Observable νdyn and rm,1

In hadronic and heavy ion collisions, the produced particles are mostly pions. They contribute to

bulk of the charged and neutral particles. The neutral pions are experimentally detected by decay

photons. Considering various other aspects of particle ratio-fluctuation in hadronic and heavy

ion collisions, two observables were introduced earlier as measures of dynamical fluctuations. An

observable νdyn was introduced in Ref [151] and used by STAR Collaboration [152, 153] to study

ratio fluctuation in heavy ion collision and rm,1 was introduced by Minimax collaboration[150]

for the search of DCC like signal in p + p collision. In this work of correlation and individual

fluctuation analysis of charged (mostly charged pions) and neutral (photons) particle both ob-

servables are studied extensively and used for analysis of data which is discussed in the next

chapter.

The observable νdyn in the context γ − ch can be defined as

νγ−ch
dyn =

〈Nch(Nch − 1)〉
〈Nch〉2

+
〈Nγ(Nγ − 1)〉
〈Nγ〉2

− 2
〈NchNγ〉
〈Nch〉 〈Nγ〉

(2.13)

= ωch + ωγ − 2 × corrγ−ch. (2.14)

Here 〈· · ·〉 refers to an average taken over all the events considered. The two terms, ωch and

ωγ , refer to individual charged particle and photon multiplicity fluctuations. The third term,

corrγ−ch, is the scaled correlation of charged particle and photon multiplicity. The observable

rm,1 is defined as

rγ−ch
m,1 =

〈Nch(Nch − 1).. (Nch −m+ 1) Nγ〉 〈Nch〉
〈Nch(Nch − 1)..(Nch −m)〉 〈Nγ〉

. (2.15)

It is designed such that for Poisson case, rm,1=0. Higher order(m) of rm,1 are expected to show

larger sensitivity to signals.
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2.3.1 Effect of efficiency

In this section we would like to discuss the applicability, robustness and sensitivity of these two

observables νdyn and rm,1 for studying γ − ch correlation. Since we are interested in fluctuation of

the ratio of multiplicities, let us consider f = Nπ0/(Nπ0 +Nπ±) to be the neutral pion fraction.

The idea is to choose proper combination of moments such that the efficiency dependence is

eliminated and observables are expressed in terms of the fluctuations of the fraction f . The

generating function in terms of parent multiplicity distribution P (N) is defined in Eq. 2.7, Here

, N = Nπ0 + Nπ+ + Nπ− denotes sum of multiplicities of neutral and charged pions. Different

moments are calculated by taking derivatives of G(z) with respect to the variable z evaluated at

z = 1. Considering the fact that the neutral pions are distributed according to the probability

P(f) the generating function has to be modified accordingly

G(zch, z0) =

1∫
0

df P(f)
∑
N

P (N) [fz0 + (1− f)zch]N . (2.16)

Here P(f) is the distribution of neutral pion fraction. For propagation of generating function

to include the decay of neutral pions to observed photons we apply the “cluster decay theo-

rem” [154]. We can express the overall generating function as

Gobs (zch, zγ) = G (gch (zch) , g0 (zγ)) (2.17)

where g0(zγ) = z2
γ and gch(zch) = zch considering the fact that every neutral cluster decays into

two photons and the charge particles do not decay. To make the scenario more realistic and

taking the advantage of same theorem, one can include detection efficiencies in the final form

of generating function. We consider the observing and non-observing as different decay modes
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with probability equal to the detection efficiency. So for charged and neutral clusters we redefine

gch(zch) = (1− εch) + εchzch (2.18)

g0(zγ) = ((1− εγ) + εγzγ)2

Here εch is the efficiency of charge particle detection and εγ is the efficiency of detecting a photon

coming from decay of a neutral pion. In g0(zγ) one can interpret (1−εγ)2 , 2εγ(1−εγ) and ε2
γ as

efficiencies of detecting none, single and both of the photons coming from the decay of neutral

pion.

Various factorial moments of multiplicity are expressed in terms of derivatives of final gen-

erating function. We can define a generalized factorial moment in terms of observed particle

multiplicity,

fm,n=
∂m,nGobs(zch, zγ)

∂zmch ∂z
n
γ

∣∣∣∣
zch=zγ=1

=

〈
Nch! Nγ !

(Nch −m)! (Nγ − n)!

〉
(2.19)

It is convenient to express our observables given in Eq. 2.14 and Eq. 2.15 in terms of fm,n as

νγ−ch
dyn =

f20

f2
10

+
f02

f2
01

− 2
f11

f10 f01
, rγ−ch

m,1 =
fm1 f10

f(m+1)0 f01
(2.20)

Using Eq. 2.16, Eq. 2.17 and Eq. 2.19 we can express different factorial moments in terms of

efficiency and moments of neutral pion fraction as

f10 = 〈1− f〉 εch 〈N〉

f01 = 〈f〉 2εγ 〈N〉

f11 = 〈f (1− f)〉 2εγ εch 〈N (N − 1)〉

f20 =
〈

(1− f)2
〉
ε2

ch 〈N (N − 1)〉

f02 =
〈
f2
〉

4ε2
γ 〈N (N − 1)〉+ 2ε2

γ 〈f〉 〈N〉 .

The generalised factorial moment for the incident particle distribution Fm,n would correspond

51



to g0(zγ) = z2
γ and gch(zch) = zch , given by

F10 = 〈1− f〉 〈N〉

F01 = 〈f〉 2 〈N〉

F11 = 〈f (1− f)〉 2 〈N (N − 1)〉

F20 =
〈

(1− f)2
〉
〈N (N − 1)〉

F02 =
〈
f2
〉

4 〈N (N − 1)〉+ 2 〈f〉 〈N〉 .

From which we can clearly see that Eq. 2.12 holds only for n ≤ 1,

fγ−ch
m,n = εmchε

n
γ Fγ−ch

m,n , n ≤ 1. (2.21)

which can be attributed to the decay of neutral pions carrying relevant physics information into

two photons. Since experimental observables are to be constructed of moments of decay photons

a robust observable should contain factorial moments with all m but n ≤ 1.

Substituting these in Eq. 2.14 we can express νdyn as

νγ−ch
dyn =

(〈
(1− f)2

〉
〈1− f〉2

+

〈
f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)
〈N(N − 1)〉
〈N〉2

+
1

2 〈f〉 〈N〉 . (2.22)

We note here that for the generic case(P(f) = δ(f − 1/3)) the term inside the bracket is zero

and we have

νγ−ch
dyn

∣∣∣
generic

=
1

2 〈f〉 〈N〉 . (2.23)

Using proper combination of factorial moments and doing a simple method of event mixing one

can extract the generic value of νγ−ch
dyn . Subtracting the generic value of νγ−ch

dyn , one can get rid of
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the last term in Eq. 2.22. So we propose a modified variable ∆νγ−ch
dyn = νdyn − νgenericdyn given by

∆νγ−ch
dyn =

(〈
(1− f)2

〉
〈1− f〉2

+

〈
f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)
〈N(N − 1)〉
〈N〉2

. (2.24)

In ideal scenarios when all the particles are detected one can approximate g0(zγ) = z2
γ and

gch(zch) = zch. In that case one can show using Eq. 2.17 and Eq. 2.19 that

νγ−ch
dyn

∣∣∣
generic

=
1

2 〈N〉 〈f〉 ≈
1√

〈Nch〉 〈Nγ〉
. (2.25)

So in that case the observable ∆νdyn is expressed as

∆νγ−ch
dyn = νγ−ch

dyn − 1√
〈Nch〉 〈Nγ〉

. (2.26)

This expression will be used to extract the value ∆νdyn from models as discussed in section

2.4.1. Following similar approach the variable rm,1 is expressed as

rγ−ch
m,1 =

〈f(1− f)m〉 〈1− f〉
〈(1− f)m+1〉 〈f〉 . (2.27)

In Fig. 2.1 we show the results of a Monte Carlo simulation to test the efficiency dependence of

factorial moments. We generate random numbers from two Poisson (and Gaussain) distributions

which represents the charged particles and photons in a given event. In the next step, we

implement the detector efficiency for the number of charged particles and photons according to

a Binomial distribution as follows. A random number is generated between zero and unity form

a uniform distribution corresponding to each charge particles and photons. The cases for which

the generated number is above a given fraction ε are counted as new multiplicities of photons and

charged particles. This naturally implements a detector efficiency of ε on the number of charge

particles and photons according to a Binomial distribution with probability ε. Observables are

calculated using the number of charge particles and photons before and after the implementation
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Figure 2.1: Effect of efficiency using Monte Carlo simulation. The effect of efficiency is in-
troduced by hand using two random Poisson and Gaussian numbers. It seems that all the
observable constructed out of factorial moments are insensitive to the variation of efficiency. A
small numerical noise of similar magnitude is observed for all the observables when the scaled
difference between the incident and the observed variable is considered. For Poisson distribution
the observable νdyn ∼ 0.

of efficiency. Fig. 2.1 shows the scaled difference of the observables before (Obsinc) and after

(Obsdet) efficiency implementation as a function of efficiency. We find that the scaled difference

is only a numerical noise (10−4−10−5), independent of the observables that dependents only on

the statistics. Which indicates that the factorial moments cancel the effects of efficiency.

2.3.2 Effect of mis-identification

There are additional complications in realistic scenarios that have not been taken care of in the

above prescriptions. The study of γ − ch correlation is often complicated by mis-identification

of charge particles as photons and vice versa. High value of energy loss of charged hadrons

can lead to the formation of clusters in the photon detector. Similarly, photon conversion can

show up as single or doubly detected tracks or clusters in charge particle detectors. In both the

cases, the measurements get affected. Following the approach of the application of cluster decay
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theorem discussed in previous section, we obtain the modified forms of the generating functions

gch(zch, zγ) = (1− εch − εch,γ) + εchzch + εch,γzγ

g0(zch, zγ) = ((1− εγ − εγ,ch − εγ,2ch) + εγzγ

+ εγ,ch zch + εγ,2ch z
2
ch

)2
, (2.28)

where we view neutral pions decay with 100% “efficiency” into two photons which themselves

“decay” with a few modes. εch and εγ are the efficiencies of detecting a charged particle and a

photon, respectively. εch,γ is the probability of a charged particle being identified as a photon.

εγ,ch, εγ,2ch are the probabilities of a photon being identified as one or two charged particles,

respectively. Substituting these in Eq. 2.17 one can calculate different factorial moments as,

f10 = 〈(1− f)εch + 2f (εγ,ch + 2εγ,2ch)〉 〈N〉

f01 = 〈(1− f)εch,γ + 2fεγ〉 〈N〉

f11 = 〈N(N − 1) ((1− f)εch + 2f (εγ,ch + 2εγ,2ch))

× ((1− f)εch,γ + 2fεγ) + 2Nfεγ (εγ,ch + 2εγ,2ch)〉

f20 =
〈
N(N − 1) ((1− f)εch + 2f(εγ,ch + 2εγ,2ch))2

+ 2Nf
(
2εγ,2ch + (εγ,ch + 2εγ,2ch)2

)〉
f02 =

〈
N(N − 1)((1− f)εch,γ + 2fεγ)2 + 2Nfε2

γ

〉
. (2.29)

This would lead to very complicated dependencies of ∆νdyn and rm,1 on various efficiency

factors. However simplified expressions can be achieved in the limit εγ,2ch → 0 and εγ,2ch as

follows
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∆νγ−ch
dyn =


〈
(1− f)2

〉
〈1− f〉2

+

〈(
(1− f)

εch,γ
εγ

+ 2f
)2
〉

〈
(1− f)

εch,γ
εγ

+ 2f
〉2

− 2

〈
(1− f)

(
(1− f)

εch,γ
εγ

+ 2f
)〉

〈1− f〉
〈

(1− f)
εch,γ
εγ

+ 2f
〉
 〈N(N − 1)〉

〈N〉2
(2.30)

where the generic value of νdyn will be given by

νγ−ch
dyn

∣∣∣
generic

=
1

2 〈f〉 〈N〉
(
εch,γ
εγ

+ 1
) . (2.31)

The robust variable rm,1 can be expressed as

rγ−ch
m,1 =

〈
(1− f)m

(
(1− f)

εch,γ
εγ

+ 2f
)〉
〈1− f〉

〈(1− f)m+1〉
〈

(1− f)
εch,γ
εγ

+ 2f
〉 . (2.32)

Unlike previous case it is not possible to eliminate the efficiency factors in Eq. 2.30 and Eq. 2.32.

2.3.3 Effect of resonance decay

Resonance decays like ω → π0 + π± or ρ → π±γ would give rise to correlation in the pions.

The effect of resonance decays can be implemented using generating function approach in the

following way. We consider event by event measurement of two particle species with efficiencies

ε1 and ε2 respectively. We assume fR as the fraction of neutral resonances out of total N number

of produced particles which fully decay into two species considered.

Similar to Eq. 2.8 we can write a generating function of the form,

G(z1, z2, zR) =
1∫

0

dfR P(fR)
∑
N

P (N)

[
(1− fR)

∫
[αz1 + (1− α)z2]P(α) dα+ fRzR

]N
. (2.33)
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Here P(fR) and P(α) are probability distributions related to event-by-event fluctuations of res-

onance fraction and particle ratio fluctuation. For simplicity we can assume P(fR) = δ(fR − f̄R)

and P(α) = δ(α − ᾱ). We can now replace z1,2,R by

g1(z1) = (1− ε1) + ε1 z1 (2.34)

g2(z2) = (1− ε2) + ε2 z2 (2.35)

gR(zR) = (1− εR1 − εR2 − εR3) + εR1z1 + εR2z2 + εR3z1z2. (2.36)

Here the efficiencies εR1,R2,R3 take care of the probability of observing single or double products

coming from resonance decay, a similar implementation was used for decay of neutral pions in

the previous sections (Eq. 2.18).

First few factorial moments are given as

fm0 =
[
[1− f̄R ]ᾱ ε1 + f̄R(εR1 + εR3)

]m 〈N(N − 1) · · · (N −m+ 1)〉 ,

f0n =
[
[1− f̄R ](1− ᾱ) ε2 + f̄R(εR2 + εR3)

]n 〈N(N − 1) · · · (N − n+ 1)〉 , (2.37)

f11 = f̄RεR3 〈N〉+
[
[1− f̄R ]ᾱ ε1 + f̄R(εR1 + εR3)

]
×
[
[1− f̄R ](1− ᾱ) ε2 + f̄R(εR2 + εR3)

]
.

For example the observable ν1,2
dyn in this case would be

ν1,2
dyn =

−f̄RεR3

〈N〉
[
[1− f̄R ]ᾱ ε1 + f̄R(εR1 + εR3)

] [
[1− f̄R ](1− ᾱ) ε2 + f̄R(εR2 + εR3)

] . (2.38)

Here since all the terms in the denominator are positive we can see that for generic production

(P(α) = δ(α − ᾱ)) with resonance decays νdyn < 0. This expression agrees with similar

expression derived in Ref. [155] in a different approach. Similarly for the observable r1,1 one

gets

r1,1 = 1 +
f̄RεR3 〈N〉

f10f01 〈N(N − 1)〉 / 〈N〉2
(2.39)
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which indicates that for correlated production due to resonance decay r1,1 > 1. So it turns out

that the decay of resonances gives rise to an effect that is opposite to the effect due to the DCC-

like signal. Although qualitatively we can study the affect of resonance decay on observables it

is difficult to get quantitative estimation from the above expressions without putting realistic

numbers for the efficiencies. To study the effect of resonances in a more detailed way (sec.2.4.1,

2.5.2) we have used Monte-Carlo models in which resonance productions are included.

2.3.4 Effect of rapidity gap

In this section we would like to discuss the effect of rapidity gap (∆η) in the study of multiplicity

correlation. According to reference [155], the rapidity dependence of correlation is given by

Corrpgv1,2 =
〈N1N2〉
〈N1〉 〈N2〉

≈ 1 +
C
x2

[
√
πx erf(x)− (1− e−x2

)] (2.40)

where x =
√

2∆η/σ, in which ∆η is the rapidity gap over which the correlation is studied. C and

σ are constants related to systems size, energy, centrality of collisions and species of particles

considered for the study of correlation. The above dependence can also be studied in hijing

simulation taking photons in a window of unit rapidity and charged particles with same window

at rapidity separated by a gap of ∆η. Fig. 2.2 shows the variation of the γ − ch correlation using

hijing model; the simulation points are fitted with Eq. 2.40 (shown by grey curve).

2.3.5 Effect of centrality selection

In heavy ion collision experiment, observables are commonly studied with respect to the cen-

trality that is related to the number of participating nucleons. It is therefore necessary that we

study the nominal effect of the superposition of nucleons on the observables. In this section we

would like to study the centrality dependence of the γ − ch correlation using an approach based

on the “Central Limit Theorem”(CLT). Importance and applicability of CLT in the context of

correlation analysis in heavy ion collision has previously been discussed in detail in ref.[156]. In
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Figure 2.2: Effect of multiplicity correlation with rapidity gap. The points indicates hijing
simulation. PGV (Pruneau-Gavin-Voloshin) refers to the functional fit of the simulation points
using Eq. 2.40 which is taken from Ref. [155].

a heavy ion collision, let us consider, that NS number of identical sources are responsible for

particle production. If Ni is the number of particles produced from i-th source, any variable

V (Ni) will have a distribution identical for all the sources. If we assume heavy-ion collision

to be a linear superposition of many identical nucleon-nucleon collisions, under identical source

approximation we can calculate the centrality dependence of the variable using CLT [157]. From

CLT it follows that mean and variance of multiplicity would be given by

M(N) = M

(
NS∑
i

Ni

)
=

NS∑
i

M(Ni) = NSM(Ni)

σ2(N) = σ2

(
NS∑
i

Ni

)
=

NS∑
i

σ2(Ni) = NS σ
2(Ni). (2.41)

Since we have already assumed a collection of identical sources we can take M(Ni) = α and

σ2(Ni) = β to be constant numbers same for all emission sources. So from CLT we have the

dependence M(N) = αNS and σ(N) = β
√
NS . In our case N could refer to total number

of produced pions, photons or charged particles. In that case similar argument also holds for

M(Nπ, Nch or Nγ) ∼ απ,ch,γNS and σ(Nπ, Nch or Nγ) ∼ βπ,ch,γ
√
NS where (απ, βπ), (αch, βch)

and (αγ , βγ) are sets of constants corresponding to pion, charged particle or photon multiplicities

for identical sources respectively.
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Let us assume N to be equal to the total number of produced pions where we have Nπ =

aNch + bNγ . Where a and b are the fraction of charged pions and decay photons respectively1.

Using Eq. 2.41 one gets the mean and variance of pions as

〈Nπ〉 = απNS

σ2(Nπ) =
(〈
N2
π

〉
− 〈Nπ〉2

)
∼ β2

πNS〈
N2
π

〉
=

〈
(aNch + bNγ)2

〉
∼ β2

πNS + α2
πN

2
S (2.42)

and if we express pion multiplicity in terms of charged and photons we get,

〈
N2

ch

〉
∼ β2

chNS + α2
chN

2
S〈

N2
γ

〉
∼ β2

γNS + α2
γN

2
S

〈NchNγ〉 ∼ β2
γ−chNS + α2

γ−chN
2
S (2.43)

where αγ−ch and βγ−ch are constants expressible2 in terms of a, b, απ,ch,γ and βπ,ch,γ . Using above

relations, Eq. 2.14 and Eq. 2.15 we can calculate the centrality dependence of the observables.

For νdyn we have

νγ−ch
dyn ∼ A +

B

NS
≡ A′ +

B′√
〈Nγ〉 〈Nch〉

. (2.44)

All three terms in Eq. 2.14 have similar centrality dependence . Here we note that the constants

A′ and B′ (or A and B) could be either positive or negative depending on which term in Eq. 2.14

is dominant. The variable ∆νdyn would have the similar centrality dependence which is evident

from the form of Eq. 2.26. In heavy ion collisions, the number of sources participating in particle

production can also be assumed to be proportional to number of participants (NS ∼ Npart) of

the collision. In that case νγ−ch
dyn is expected to show a scaling behavior of the form A + B/X

with X being either observed multiplicity or a Glauber variable Npart. However in case of

1Note that Nπ = Nπ+ +Nπ− +Nπ0 ≈ Nch + 0.5Nγ ; a ∼ 1, b ∼ 0.5.
2it can be shown that α2

γ−ch=
(
α2
π − a2α2

ch − b2α2
γ

)
/2ab, β2

γ−ch=
(
β2
π − a2β2

ch − b2β2
γ

)
/2ab
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experimental measurements it is more convenient to express fluctuation variables in terms of

measured multiplicities.

Based on similar approach one can extract the centrality dependence of rm,1. In the most

general case one has

rm,1 =

m∑
p=1

αp (NS)p

m∑
p=1

βp (NS)p
(2.45)

which shows that both numerator and denominator have identical dependence on NS . So ac-

cording to CLT, behavior of rm,1 with multiplicity depends on the coefficients αp and βp.

It must be noted that breakdown of scaling from CLT would have several implications. The

picture of identical source emission may not be valid in the case for formation of domains of

DCC where one might observe deviation from proposed scaling.

2.4 Application of the observables in heavy ion collisions : model

studies

In this section we study correlation and fluctuations of charged and neutral particle multiplicity

using various models widely discussed in the literature. A simple statistical model of particle

production from a system of Boltzmann gas of pions in the Grand Canonical Ensemble is dis-

cussed in the first section. In the subsequent sections we discuss the predictions from monte-carlo

mini-jets and transport models which includes various realistic effects such as decays, resonance,

flow etc. Finally we study the sensitivity of the observables in the context of DCC formation. A

simple approximation has been used to introduce DCC like (anti-correlation) in the generating

function approach and the effects on the observables are studied in analytical approach. None

of these conventional Monte Carlo event generator models include the physics of DCC. In this

section we implement a Mont-carlo DCC model using inputs from HIJING event generators.
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2.4.1 Statistical models for pion production.

Theoretical predictions of isospin fluctuation for a statistical system of pions can be found

in references [158, 159]. However the discussion is limited to only charged and neutral pion

fluctuations. In this section we use the result mentioned in above references and quantify in

terms of experimental observables of γ − ch correlation under some approximations.

It can be shown that a system of Boltzmann gas of pions in the grand canonical ensemble

(GCE), gives 〈Nπ0〉 = 〈Nπ±〉 = ζ, where ζ is the single particle partition function[158, 159]

ζ =
V

2π

∞∫
0

p2dp exp

(
−
√
p2 +m2

T

)
, (2.46)

Here V,m and T are volume, pion mass and temperature of the system. In that case the

mean-square of pion multiplicity and charge-to-neutral pion correlation are related to mean

multiplicities as

〈
N2
π0

〉
= 〈Nπ0〉+ 〈Nπ0〉2〈

N2
π±
〉

= 〈Nπ±〉+ 〈Nπ±〉2

〈Nπ0Nπ±〉 = 〈Nπ0〉 〈Nπ±〉 (2.47)

In ref[159] it was shown that for an ideal scenario where one assumes the total isospin of the

system to be zero, above mentioned relationships would become complicated. An ensemble of

the total isospin I=0 as shown in [159] would give

〈Nπ0〉 = 〈Nπ±〉 =
ζ2

3
+
ζ3

6
(2.48)
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and in that case the mean-square pions multiplicities are modified as

〈
N2
π0

〉
≈ 〈Nπ0〉+

ζ2

3
+
ζ4

15〈
N2
π±
〉
≈ 〈Nπ±〉+

ζ4

10
. (2.49)

We can generalize these results and apply in case of our observables of γ − ch correlation.

The dependence on ζ can be eliminated and final observables can be expressed in terms of

experimentally observed quantities like measured multiplicity (say
√
〈Nch〉 〈Nγ〉). In this case

one has 〈Nγ〉 = 2 〈Nπ0〉 and 〈Nch〉 = 〈Nπ+ +Nπ−〉 = 2 〈Nπ±〉 . Also for decay of neutral pions

we have used the relation σ2
γ ≈ Cσ2

π0 , and we have used C=2 for our calculation 3. Choice of C

mostly affects the observables at low multiplicity. With these assumptions we can express the

mean-square multiplicities to be

〈
N2
γ

〉
= 4

〈
N2
π0

〉
,
〈
N2

ch

〉
= 2

〈
N2
π±
〉

+ 2 〈Nπ+Nπ−〉 (2.50)

and the correlation term will be given by 〈NγNch〉 = 4 〈Nπ0Nπ±〉. Now we have

f20

f2
10

=
1

2

(〈Nπ±(Nπ± − 1)〉
〈Nπ±〉2

+
〈Nπ+Nπ−〉
〈Nπ±〉2

)
f02

f2
01

=
1

2

(〈Nπ0(Nπ0 − 1)〉
〈Nπ0〉2

+ 1

)
f11

f10 f01
=

〈Nπ0Nπ±〉
〈Nπ0〉 〈Nπ±〉

(2.51)

So using Eq. 2.47, Eq. 2.49 and Eq. 2.51 we can estimate νγ−ch
dyn and r1,1 for GCE and I=0

systems. For GCE we get from Eq. 2.47 and Eq. 2.51, νdyn = 1/
√
〈Nch〉 〈Nγ〉, which gives

correct multiplicity dependence as predicted from CLT. So from Eq. 2.26 we have ∆νγ−ch
dyn = 0

for GCE. The system of I=0 gives ∆νγ−ch
dyn ∼ −0.98/

√
〈Nch〉 〈Nγ〉 which also agrees with the CLT

3For Poissonian case σγ =
√
〈Nγ〉 =

√
2 〈Nπ0〉 =

√
2σπ0 gives C=2 ; incase one detects all photons from π0

one has a maximum value of C=4 which is not in accordance with CGE picture where limited phase space of a
system is probed.
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Figure 2.3: Multiplicity dependence of observables r1,1 and ∆νdyn as predicted from different
models. The curves represent the results for different ensembles of Boltzmann gas of pions from
Eq. 2.47 and Eq. 2.49 as described in the text. The markers are from different Monte-Carlo
models. The error-bars are statistical.

predictions as shown in Fig. 2.3(b). In case of GCE r1,1 is predicted to be 2/(1+1/
√
〈Nch〉 〈Nγ〉)

which becomes 1 for large values of multiplicity. For a system of I=0, r1,1 ∼ 1 for all values of√
〈Nch〉 〈Nγ〉 as shown in Fig. 2.3(a).

2.4.2 Transport and Mini-jet model predictions

We have also estimated various observables and their centrality dependences using different

monte-carlo event generators like HIJING[160], AMPT [161] and UrQMD[162] for top RHIC

energy. For our calculation we choose one unit of rapidity in forward direction 4 but no cut

off has been applied on transverse momentum. We do the centrality selection based on putting

cuts on impact parameter following Glauber model calculation. Fig. 2.3 shows the centrality

dependence of the observables. The variable r1,1 shows flat centrality dependence within error

bars. The results from different monte-carlo models are consistent with each other and the

values from the statistical model of Boltzman gas are consistent with other models towards

4both STAR and ALICE experiments has the setup of simultaneous measurements of charged and photon in
one unit of rapidity.
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higher multiplicity as shown in Fig. 2.3(a) and Fig. 2.3(b). At lower multiplicities they have

qualitatively different nature, probably due to presence of various other effects in the monte-carlo

models.

Fig. 2.7(a) shows the variation of rm,1 with its order m. Results from all the models are

consistent with the generic case of pion production. Fig. 2.7(b) shows the centrality dependence

of νdyn and ∆νdyn predicted for HIJING. For comparison of centrality dependence predicted

from CLT, we have fitted the points with functional form of A + B/
√
〈Nch〉 〈Nγ〉. This yields

a value of A ≈ 5 × 10−5 and B = −0.6 for ∆νdyn. We also note here that the sign of ∆νdyn is

negative for low multiplicity. This shows that HIJING includes some intrinsic γ− ch correlation

making the last term of Eq. 2.24 to dominate over individual fluctuation. This can be attributed

to the resonance decays present in HIJING model. For DCC like signal sign of ∆νdyn should

become positive for all centralities.

2.5 γ-charge correlation and DCC

Formation of domains of DCC is one of the possible sources of dynamical γ − ch correlation.

Isospin symmetry for a system pions corresponds to a generic case of pion productions for

which P(f) = δ(f − 1/3). In case of DCC like events[146, 148] this distribution is modified to

P(f) = 1/2
√
f . One can study the sensitivity of ∆νdyn and rm,1 to a given fraction of DCC like

signal. If x-fraction of events have DCC domain formation, in simplistic case one can assume

the distribution of neutral pion fraction to be a combination of generic and DCC probability

distributions given by

P(f) = x
1

2
√
f

+ (1− x) δ

(
f − 1

3

)
. (2.52)
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So for ∆νdyn we get

∆νγ−ch
dyn =

(〈
(1− f)2

〉
〈1− f〉2

+

〈
f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)∣∣∣∣∣
signal

〈N(N − 1)〉
〈N〉2

=
x

5/9

〈N(N − 1)〉
〈N〉2

, (2.53)

which is proportional to the fraction of DCC events. ∆νdyn shows very high sensitivity to DCC

like signal but it is dependent on the parent multiplicity and consequently to the collisions cen-

trality. In a later section we would discuss this issue in detail. In case the parent distribution is

Poisson, the fluctuation term 〈N(N − 1)〉 / 〈N〉2 would be equal to 1 giving ∆νγ−ch
dyn ∼ x/(5/9).

The observable rm,1 expressed in Eq. 2.27 would have a very particular x dependence given

by

rγ−ch
m,1 = 1− mx

(m+ 1)
F (m,x) (2.54)

where the function F (m,x) is given by

F (m,x) =
1

x + (1− x) 2√
π

(
2
3

)m+1 Γ(m+5/2)
Γ(m+2)

. (2.55)

For ideal DCC case (x=1), the function F (m,x)=1 for all values of m giving rm,1 = 1/(m+ 1).

For generic case(x = 0), rm,1=1 for all m. Fig.1 shows the sensitivity of rm,1 for small signals

of DCC. The functional form given in Eq. 2.54 can be used to extract x from a fit of rm,1 with

m. In the derivation of Eq. 2.53 and Eq. 2.54 we have assumed that the parent multiplicity

distribution are similar for both the generic and DCC cases. The efficiency factors are assumed

to be constant and independent of multiplicity and other kinematic parameters.
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Figure 2.4: Sensitivity of the observable rm,1 to DCC like signals. Higher orders of rm,1 show
more sensitivity to small signals of anti-correlation.

For x-fraction of DCC signals Eq. 2.53 and Eq. 2.54 will be modified to

∆νγ−ch
dyn =

x

5/9

1(
εch,γ
εγ

+ 1
)2

〈N(N − 1)〉
〈N〉2

rm,1 = 1− mx

m+ 1

1(
εch,γ
εγ

+ 1
) F (m,x) (2.56)

where F (m,x) is given by Eq. 2.55. We can see that mis identification of charged particles as

photons reduces the effective fraction of DCC events. The contamination factor in Eq. 2.56

appears as a ratio of εch,γ/εγ keeping the functional form of the observables (Eq. 2.53, Eq. 2.54)

unchanged. We also note here that ∆νγ−ch
dyn has a quadratic dependence on contamination factor

whereas r1,1 is affected only by a linear factor. This is because ∆νγ−ch
dyn contains an extra photon

fluctuation term which is absent in rm,1.
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2.5.1 Effect of mixture of pion sources

In this section we would like to discuss the effect on the observables when event-wise pion sources

are independent of each other. So far we have considered that in a DCC event, all the pions

detected in a given coverage are coming from the decay of the domains of DCC. This assumption

might be valid when the detector coverage is same as the combined size of DCC domains. The

realistic scenario is when the size of the domain of DCC is smaller than the detector coverage.

Also DCC pions are dominantly from lower part of the momentum distribution. In both the

cases of considering bulk multiplicity for correlation analysis, the candidates carrying actual

signal would be a fraction total pions considered. Let us consider a case when x-fraction of

events analyzed has DCC like fluctuation carried by y-fraction of total pions. So for DCC

pions we have 〈N〉D = y 〈N〉 and for generic pions we have 〈N〉G = (1− y) 〈N〉, N being the

total number of pions. The probability to find ND pions carrying DCC signal will be given by

P (ND, N, y) = NCND y
ND(1−y)N−ND , which would give 〈N(N − 1)〉D = y2 〈N(N − 1)〉. Now

in this case the generating function of Eq. 2.16 will be replaced by

Gobs = x′GDCC + xGDCCGgeneric + (1− x− x′)Ggeneric (2.57)

in which we view cases with 100% DCC production (x′ fraction of events), 100% generic pro-

duction and a mixture of two as three “decay modes” of a super cluster. Here GDCC includes

probability distribution P(f) = 1/2
√
f and Ggeneric includes P(f) = δ(f − 1/3). Since we

consider the case of 100% DCC production is the least realistic, in the following we simplify our

expression by taking x′ = 0. Now different factorial moments will become functions of x and y
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as

f10 = 〈1− f〉 εch 〈N〉

f01 = 〈f〉 2εγ 〈N〉

f11 =
(

2xy(1− y) 〈f〉 〈1− f〉 〈N〉2 + ((1− xy(2− y)) 〈f(1− f)〉G (2.58)

+xy2 〈f(1− f)〉D) 〈N (N − 1)〉
)

2εγ εch

f20 =
(

2xy(1− y) 〈1− f〉2 〈N〉2 + ((1− xy(2− y))
〈
(1− f)2

〉
G

(2.59)

+xy2
〈
(1− f)2

〉
D

) 〈N (N − 1)〉
)
ε2

ch

f02 =
(

2xy(1− y) 〈f〉2 〈N〉2 + ((1− xy(2− y))
〈
f2
〉
G

(2.60)

+xy2
〈
f2
〉
D

) 〈N (N − 1)〉
)

4ε2
γ + 2ε2

γ 〈f〉 〈N〉

(2.61)

In this case the observables are modified accordingly , for ∆νdyn Eq. 2.26 gives,

∆νdyn =
x

5/9
y2 〈N(N − 1)〉

〈N〉2
(2.62)

which consistent with the expression Eq. 2.53 for y = 1 case. For Poisson like parent distribution

∆νdyn can be expressed as

∆νdyn =
x

5/9
y2. (2.63)

We note here that ∆νdyn still shows the proportionality with the fraction of DCC events x. And

the interesting fact is that quadratic dependence on y means ∆νdyn is more sensitive to the

change of fraction of pions carrying DCC-like signals.

In similar approach we can express r1,1 to be

r1,1 =
5 − 2xy2

5 + xy2
. (2.64)

This expression is consistent with the approximate expression of r1,1 given in Ref.[163] for small
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values of x. The higher order moments will have corrections from higher powers of y which will

have smaller contributions like

r1,1 =
5− 2xy2

5 + xy2

r2,1 =
35 − xy2(21− 4y)

35 + xy2(21− 2y)
(2.65)

and so on. The general formula for rm,1 is given by

rm,1 = 1− mxy2

(m+ 1)
F (m,xy2) +O(xy3) · · · (2.66)

in which rm,1 will have contribution up to xym+1. Since y ≤ 1 higher order contribution of y

are smaller and the approximate form of the above expression would be given by

rm,1 ≈ 1− mxy2

(m+ 1)
F (m,xy2) (2.67)

where F (m,xy2) is given by Eq. 2.55.

So to the lowest order approximation, the expression given by Eq. 2.54 is still valid with

fraction x replaced by xy2. A functional fit of rm,1 with m to experimental data by the above

expression can restrict the contours of x and y.

2.5.2 A Monte-carlo model for DCC formation.

We have tried to implement DCC like anti-correlation signals in HIJING events. In a given

event we change the neutral pion fraction to follow 1/2
√
f distribution by flipping π0 to π±.

And finally we decay the neutral pions to photons. In the process of flipping we make sure

that the charge and isospin conservations are maintained. Fig. 2.5 shows the f -distribution

after the implementation of DCC in HIJING. For generic event the neutral pion fraction is

peaked at 1/3 and for DCC events it has a long tail. Since the variation of DCC like domain

formation with rapidity and azimuthal angle is not known, we perform this flipping for all the
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Figure 2.5: Histograms showing distribution of neutral pion fraction for generic and DCC events
from HIJING

particles. This produces uniform 1/2
√
f like distribution over all phase space. To make the

scenario more realistic we do the calculation of the final variables using total number of detected

photons and charged particles rather than considering only pions. Other dominant sources of

photons and charged particles include η, charged kaons and protons respectively. It is difficult

to extract the fraction of primordial pions on which the DCC-like probability distribution could

be implemented. HIJING has minijet like environment in which the production mechanism is

“string fragmentation” and the abundance of particles are weighted by the spin giving large

fraction of pions coming from decay of resonances. The primordial pions coming directly from

string fragmentation are much smaller. Alternative environment like hydro models where the

massive resonances are exponentially suppressed would give large fraction of soft pions. The

difference between the two models of string fragmentation is discussed in Ref.[164]. We therefore

randomly choose pions produced in HIJING events, treat them to be thermal and implement

1/2
√
f distribution. Fig. 2.6 shows the centrality dependence of the two observables and their

sensitivity to different fraction of DCC events. r1,1 shows almost flat dependence on multiplicity

and we also find similar dependence for all higher moments of rm,1. Absolute values of r1,1 are

consistent with the prediction (r1,1 = (5 − 2x)/(5 + x)) from Eq. 2.54. For higher fraction of

DCC events the centrality dependence has slight non-monotonic behavior. This is also seen in
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Figure 2.8: Sensitivity of rm,1 to DCC like signals.

∆νdyn. As expected from Eq. 2.53, the values of ∆νdyn show proportionality with the fraction

of DCC events. The absolute values of ∆νdyn are also very close to ≈ x/(5/9) as predicted in

Eq. 2.53. The centrality dependence causes ≈ 15% variation of the values of most central to

peripheral events for ∆νdyn. Fig. 2.8(a) shows the variation of rm,1 with m. The results from

DCC model match the theoretical curve (Eq. 2.54) when one considers only pions as source of

charged particles and photons, however when all other sources are considered the results are

slightly off towards Poissonian expectations. A more detailed study of the sensitivity to fraction

of DCC pions is shown in Fig. 2.8(b) where we have shown the sensitivity of rm,1 with the

fraction of detected pions carrying DCC-signals. In Fig. 2.8(b) we also plot the curves obtained

from Eq. 2.67. The effect of resonances present in HIJING seems to be resulting in reduced

sensitivity of rm,1 for lower fraction of DCC pions.
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2.6 Summary

In this chapter we have discussed the methods for studying inclusive charge-neutral multiplicity

fluctuations and correlations. The primary motivations is to study γ-charge correlation in heavy-

ion collisions and the search for DCC-like anti-correlation signals relevant to the ongoing heavy

ion program at RHIC and LHC. Two widely used measures in this context discussed in the

literatures are νdyn and rm,1. Using the method of moment generating functions we have studied

the robustness of two observables. The sensitivity of the variables has been studied with the

fraction of DCC type events(x). We propose a modification to the observable νdyn and extract

the functional form in terms of x and y. Higher orders of rm,1 show higher sensitivity to x and

can have contribution up to ym+1. A simplified form of the functional dependence of rm,1 with

m has been calculated in generating function approach for lowest order of y2. This would be

useful to restrict the signal strength xy2 by fitting the experimental data.

The centrality(multiplicity) dependence of the observables are extracted using Central Limit

Theorem assuming identical source approximation for particle production. For generic case of

particle production from CLT, it is predicted to be inversely proportional to multiplicity. The

variation of the observable rm,1 seem to be flat with centrality.

Scenarios ∆νγ−ch
dyn rγ−ch

m,1

Generic pion production 0. 1

GCE for Boltzman 0. ∼1 (m=1,
pion gas higher multiplicity)

System of total I = 0 −0.98√
〈Nch〉〈Nγ〉

1 (m=1)

HIJING, AMPT negative 1
UrQMD (resonances)

DCC (anti-correlation) ≈ x
5/9y

2 ≈ 1− mxy2

(m+1)F (m,xy2)

Table 2.1: Summary of our estimation of observables ∆νγ−ch
dyn and rγ−ch

m,1 under different scenarios

relevant to heavy-ion collisions. ∆νγ−ch
dyn is either 0 or negative except for DCC case which gives

positive value depending on the fraction x and y. rγ−ch
m,1 shows a particular functional dependence

on m for DCC case which is distinct from all other scenarios.

Observables have been estimated from different models relevant to heavy-ion collisions that
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do not include the physics of DCC. DCC-like anti-correlation signals are expected to be carried

by pions in limited kinematic range in both co-ordinate and momentum space. We summa-

rize our estimations for different scenarios in table 4.1. We have also developed a Monte-Carlo

model where DCC domains have been implemented using inputs from HIJING event generator

to study the sensitivity of those variables with DCC signals. Our results show that the model

predictions of the variables are consistent with the theoretical predictions using generating func-

tion approach. Various detector effects like efficiency of detection, mis-identification have been

implemented in this approach. We have shown that the mis-identification reduces the effective

signal strength for which an approximate expression has been derived in generating function

approach. The observable rm,1 has been found to be more robust towards mis-identification of

photons as compared to ∆νdyn. The resonance decay can induce correlation which can suppress

the anti-correlating DCC signal. A quantitative idea of resonance can be obtained from DCC

implemented Monte Carlo model. We have studied the sensitivity of rm,1 for varying fraction of

DCC candidates.
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Chapter 3

Measurement of charge and neutral

multiplicity fluctuation in Au+Au

collisions

3.1 Introduction

In this chapter we discuss the details of the measurement and analysis of event-by-event fluc-

tuation of the ratio of multiplicities of charged and neutral particles (photons) at the forward

rapidity in Au+Au collision at
√
sNN=200 GeV using STAR detector systems at RHIC. The

e-by-e measurement of the multiplicities of charged particles and photons is done using the

Forward Time Projection Chamber (FTPC) and the Photon Multiplicity Detector (PMD) re-

spectively. Observables, νγ−ch
dyn and rγ−ch

m,1 (m=1 - 3), have been used as measures of fluctuation

and the method discussed in previous chapter is employed for this analysis. Based on these

observables, the measured ratio fluctuations have been interpreted in terms of DCC-like phe-

nomenon. Details of the procedure of data analysis like, bin-width correction, event mixing have

been discussed in the following sections. geant simulations have been performed to study the

responses of the detector systems. The statistical bootstrap method has been implemented to
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perform error analysis of the moments.

3.2 Analysis Method

The event-by-event measurement of the charged particle and photon multiplicities within the

pseudo-rapidity interval of -3.7 < η < -2.8, has been presented here. In order to eliminate the

effect of the event-by-event variation of the common acceptance, the collision vertex position

along the beam axis from the center of TPC (Vz) is restricted over a narrow range of −5 < Vz < 5

cm. For similar reason, the mixed event analysis is also performed in a given centrality and with

collision vertex lying between ±5 cm around the collision point. All the simulations using

different event generators like ampt [161], UrQMD [162] and hijing [160], and for geant

implemented hijing are done using similar kinematic cuts as used for data.

Since we are interested in fluctuations of ratio of multiplicities, we consider the fraction,

f = Nπ0/(Nπ0 + Nπ±), which can be approximated as fγ−ch ≈ Nγ/(Nγ + 2Nch). hijing

simulation shows that these two ratios differ by only 6% at forward rapidity region considered

here. The idea is to choose proper combination of moments such that the efficiency dependence

is eliminated and observables are expressed in terms of the fluctuations of the fraction f . The

observables for charge-to-neutral fluctuation have to be robust against detector efficiencies and

at the same time sensitive to small signals of γ−ch correlation. As shown in Sec.2.3.1, using

proper combination of factorial moments of multiplicities of charged particles and photons, one

can express the observable in term of the moments of f .

The observable νγ−ch
dyn , introduced in Eq. 2.14 of Sec.2.3 is defined in this context as

νγ−ch
dyn =

〈Nch(Nch − 1)〉
〈Nch〉2

+
〈Nγ(Nγ − 1)〉
〈Nγ〉2

− 2
〈NchNγ〉
〈Nch〉 〈Nγ〉

= ωch + ωγ − 2 × corrγ−ch (3.1)

=

(〈
(1− f)2

〉
〈1− f〉2

+

〈
f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)
〈N(N − 1)〉
〈N〉2

+
1

2 〈f〉 〈N〉 . (3.2)

The first two terms ωch and ωγ are measures of individual charge and photon number fluctu-
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ations and the thirds term corrγ−ch corresponds to scaled γ − ch correlation. For Poissonian

fluctuations each of these terms individually becomes unity. So νdyn would become zero for

purely statistical (Poisson) fluctuation and non-zero only in the presence of dynamical fluctua-

tion of any form of origin [151–153]. The advantage of this variable is that it is robust against

detector efficiency and involves only lowest orders of factorial moments which reduces statistical

uncertainties [165]. νγ−ch
dyn has dependence on the parent (initial gluons) multiplicity N [166],

which will lead to a strong centrality dependence of the observable. In Sec.2.3.5, it was shown

that an application of the “Central Limit Theorem (CLT)” [156, 157] for generic case of pion

production, νγ−ch
dyn leads to A + B/

√
〈Nch〉〈Nγ〉 dependence on multiplicity [166]. This behav-

ior is also consistent with system of Boltzmann gas of pions in the grand canonical ensemble

(GCE) [158, 159]. Throughout this analysis we have studied the centrality dependence of the

observables in terms of the experimental quantity
√
〈NchNγ〉 which is the average multiplicity

in the acceptance of interest.

Another variable called rm,1, introduced in Eq. 2.15 is defined as

rγ−ch
m,1 =

〈Nch(Nch − 1) · · · (Nch −m+ 1) Nγ〉 〈Nch〉
〈Nch(Nch − 1) · · · (Nch −m)〉 〈Nγ〉

=
〈f(1− f)m〉 〈1− f〉
〈(1− f)m+1〉 〈f〉 . (3.3)

It is designed such that for all the moments it gives a value equal to unity for the Poisson

case and the higher order moments show higher sensitivity to (anti-)correlated signals. The

advantage of this variable is that it is robust against detector efficiency and also independent

of the parent multiplicity distribution [150, 166, 167]. It follows from Eq.(2.14) and Eq.(2.15),

that the lowest order of this observable can be expressed as r1,1 = corrγ−ch/ωch. The functional

dependence of rm,1 with its order m is given by Eq. 2.54

rγ−ch
m,1 = 1− mξ

(m+ 1)
F (m, ξ) (3.4)
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where the function F (m, ξ) is given by

F (m, ξ) =
1

ξ + (1− ξ) 2√
π

(
2
3

)m+1 Γ(m+5/2)
Γ(m+2)

. (3.5)

where ξ is a parameter related to the strength of γ − ch (anti-)correlation. Approximately,

positive values of ξ would correspond to anti-correlation and negative ξ would correspond to

correlation. For m > 0, the value ξ = 0 corresponds to Poisson like fluctuation. The generic

production of pions under isospin symmetry would also correspond to ξ = 0 making (rgenm,1 =

1) [150, 166, 167]. In case all the charged and neutral particles coming from the decay of

DCC domains, ξ becomes unity so that the observable rdccm,n = 1/(m + 1) [150, 166, 167]. It

should be noted both νγ−ch
dyn and rγ−ch

m,n are not immune to any form of contamination effect

that introduces spurious correlation between charge and photons. Using an approach based

on generating function [150, 166, 167] it can be shown that rm,1 is relatively more robust to

contamination effects compared to νdyn. In this analysis to reduce contamination effects we

have put strict criteria on photon-hadron discrimination and also compared our results with

geant simulation which includes such detector effects.

In this analysis we have studied the centrality and charge dependence of the observables

νdyn and rm,1 and compared with the expectation from the “Central Limit Theorem”. We have

compared these observables with geant simulation, mixed events, different models like hijing,

ampt, UrQMD and their respective Poissonian limits.

3.3 The STAR detector systems

One of the major goal of the STAR experiment at RHIC is to investigate the behaviour of

strongly interacting systems and to search for the QGP in ultra-relativistic heavy ion collisions.

STAR focuses on the measurement of hadron production over a large solid angle, featuring

detector systems for high precision tracking, momentum analysis, and particle identification. In

this section we briefly discuss about some of the major component of the STAR experiment, a
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Figure 3.1: Layout of the STAR detector system.

schematic of which is shown in Fig. 3.1.

3.3.1 Time Projection Chamber

Time projection chamber (TPC) is the main tracking detector of STAR. It surrounds the beam-

beam interaction region of RHIC in such a way that the collisions take place near the centre of

TPC. The gas volume (10% CH4, 90% Ar at 2 mbar [169]) of TPC is of cylindrical in shape

with inner and out diameter of 1m and 4 m respectively. It has a length of 4.2 m and sits inside

the large soelnoidal STAR magnet which produces 0.5 T magnetic field [170]. The electric filed

of ≈ 135 V/cm is applied in the active medium of TPC by a high voltage vertical membrane

that sits at the centre along the length of TPC. The read out pads of TPC are made of Multi-

Wire Proportional Chambers (MWPC) and placed at end cap of the chamber on both sides.

The primary ionizing particles passing through the gas volume of TPC are reconstructed from

the secondary electrons drifting to these readouts. TPC has been used to identify charged

particles by measuring the ionization energy loss dE/dx and to measure their momenta in its

acceptance. It covers the pseudo-rapidity range of ±1.8 and has full azimuthal angle coverage.

TPC can measure the momentum of inclusive charged particles over a charge of 100 MeV/c to

30 GeV/c, however the particle identification is done over a range of 100 MeV/c to 1 GeV/c. A
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full description of TPC can be found in Ref.[168].

3.3.2 Electromagnetic Calorimeter

Barrel Electromagnetic Calorimeter

The goal of the STAR Barrel Electromagnetic Calorimeter (BEMC) is to trigger on and study

rare, high transverse momentum processes like jets, direct photons and heavy quarks. It also

provides a wide acceptance for the measurement of photons, electrons, neutral pions and η

mesons. BEMC has an acceptance equal to that of the TPC. Details of BEMC can be found in

Ref. [171].

Endcap Electromagnetic Calorimeter

The goal of STAR Endcap Electromagnetic Calorimeter (EEMC) is to trigger higher energy

electromagnetic probes at forward rapidity. It has the capability to detect photons and elec-

tromagnetically decaying mesons like π0 and η and to identify electrons and positrons in the

pseudo-rapidity range of 1< η <2. It includes a scintillator shower-max detector of 5 radiation

length and has two pre-shower and post-shower layers. The details of EEMC can be found in

Ref. [172].

3.3.3 Time of Flight Detector

The Time of flight (TOF) detector system at STAR is made of two subsystems, one called the

pseudo-vertex position detector (pVPD) and Time of Flight Patch (TOFp). pVPD provides

the start time and TOFp provides the stop time for the particle time of flight measurements.

There are two pVPDs which are positioned very close to the beam pipe on both side of the

collision point outside the STAR magnet. Along with the start time of TOF, the two VPDs

also provide the z-component of the vertex position of a collision. The TOFp is placed inside

the STAR magnet and surrounds the STAR TPC. It therefore covers approximately one unit of

pseudo-rapidity (|η| < 1) and azimuthal angle of 2π. TOFp consists of 120 trays of Multigap
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Resistive Plate Chamber (MRPC). The time resolution of TOF is about 87ps. The combination

of STAR TPC and TOF provides an improved particle identification by allowing pion, kaon and

proton discrimination up to a momentum range of 1.8GeV. A detailed description of TOF can

be found in Ref. [173].

3.3.4 Forward Time Projection Chambers

The two cylindrical forward TPCs (FTPC) extend the phase space coverage of the STAR ex-

periment for charged particle detection. They are located on both sides of the collision point in

the pseudorapidity range of 2.5 < |η| < 4.0 and measure charge state and momentum of tracks.

Each FTPC has a diameter of 75 cm and is 120 cm in length. FTPC has 10 rows of readout

pads, called pad-rows, which are further subdivided into six sectors. Each sector has 160 pads.

The first pad-row is located at about 163 cm away from the collision point. Ar and CO2 in

the ratio of 50:50 by weight form the sensitive medium of the FTPC. In order to optimize the

available space and to cope with high particle density the drift field in the FTPC is radial and

hence perpendicular to the solenoidal magnetic field of the STAR magnet. This leads to the

achievement of two track resolution up to 2 mm. It was shown in Ref. [174] using model studies

that about 6–7% of the total charged particles produced fall within the acceptance of each of

the FTPCs. The detailed descriptions of FTPC can be found in Ref. [175].

3.3.5 Photon Multiplicity Detector

Photon Multiplicity Detector (PMD) is a pre-shower detector designed to measure event-by-

event photon multiplicity in the pseudorapidity region of -3.7 ≤ η ≤ -2.3. It is located 5.4 meter

away from the collision point along the beam axis outside the STAR magnet. PMD consists of

a highly granular (41,472 cells in each plane) pre-shower plane placed behind a lead converter

of 3 radiation length thickness. A second detector plane called the charged particle veto (CPV)

identical in granularity and dimension with the pre-shower is placed before the lead plate. They

work on the principle of gas proportional counters with a sensitive medium of Ar and CO2 in a
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Figure 3.2: Experimental setup for this analysis

weight ratio of 70:30. The photons falling on the lead converter produce electromagnetic shower

which spread over several cells on the pre-shower plane leading to a larger cluster compared to

a charged particle. Both the CPV and pre-shower planes share common electronics and data

acquisition system. Since photon clusters are identified from the hits in the pre-shower plane,

relevant to the present analysis, only the data from the pre-shower plane has been used. The

charged particle veto plane has been used for data cleanup.

Based on studies shown in Ref. [174, 176] it is known that ∼ 10% of the total photons produce

fall within the acceptance of PMD. Photon production in the kinematic region considered is

dominantly (93-96%) from the decay of neutral pions. Detailed description of the PMD can be

found in Ref. [176].

3.3.6 Detector setup for this measurement

Fig. 3.2 shows a schematic of the experimental setup used for this measurement. Two detectors

PMD and FTPC covering a common acceptance in the forward rapidity region have been used

for simultaneous measurement of photons and charged particles. A combination of detectors

such as the Zero Degree Calorimeter (ZDC) and the Vertex Position Detector (VPD) have been

used for minimum bias trigger selection. The Time Projection Chamber (TPC) [168] has been
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used to determine the collision centrality.
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Figure 3.3: Global quality assurance (QA) plots relevant to data analysis.

3.4 Data Cleanup

3.4.1 Event selection

This analysis is performed within a pseudo rapidity range of -3.7 < η < -2.8, and the centrality

selection is done using the distribution of uncorrected charged multiplicity (called as Reference

multiplicity in the STAR collaboration) within the pseudo-rapidity range of -0.5 < η < 0.5 (see

Fig. 3.3). This method of centrality selection ensures that no biasing is introduced due to the

same coverage of charged particles for centrality and correlation measurement. Table-3.1 shows

different centrality cuts used in this analysis. For this analysis we have used z-vertex cut of -5

< Vz < 5 (cm) for final results. We have studied the effect of the variation of this cut over the

range of -15 < Vz < 15 (cm). The distribution of Vz is shown in Fig. 3.3. In the transverse plane

a vertex cut of Vr < 1 cm has been used. Same cut has been used also for geant simulation

and mixed event analysis.
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Table 3.1: Centrality cuts used in this analysis in terms of reference multiplicity described in
the text and corresponding Npart obtained from Monte Carlo Glauber model.

Centrality Npart Reference Multiplicity

0-5 % 352.4 +3.4 -4.0 520
5-10 % 299.3 +6.6 -6.7 441
10-20 % 234.6 +8.3 -9.3 319
20-30 % 166.7 +9.0 -10.6 222
30-40 % 115.5 +8.7 -11.2 150
40-50 % 76.6 +8.5 -10.4 96
50-60 % 47.8 +7.6 -9.5 57
60-70 % 27.4 +5.5 -7.5 31
70-80 % 14.1 +3.6 -5.0 14

3.4.2 Data sets and particle identification

For this analysis we have used data from Au+Au collisions at
√
s = 200 GeV (STAR Run 7

data set with production id P08ic). This data set includes approximately 1M minimum bias

events. After choosing the best common working zone of the two detectors (FTPC and PMD)

and applying data cleanup cuts, the statistics reduces to 0.5 M. For mixed event analysis 10

times higher statistics has been used to reduce the statistical error bars. geant simulation using

standard STAR Monte Carlo package (STAR MC production dataset P08if) that uses the same

detector geometry as data has been performed.

Different cuts used for Charged particle and photon identification using FTPC and PMD

are shown in table-3.2. The standard kinematic cuts were used for charged track selection in

FTPC. For selection of photon clusters using PMD, a method in which contiguous hit cells are

joined to form a cluster has been used. The photon-hadron discrimination cuts are mentioned

in table-3.2. For clean-up of pile-up events a cut on cluster ADC per number of cluster of

Charge-Particle-Veto (CPV) plane have been used. These steps are explained in detail in the

next section.
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Table 3.2: Summary of data sets and different kinematic cuts used in this analysis.

Data set used: Run 7 (Au+Au) ( total 1 M events, 0.5M after correction) P08ic

FTPC: Primary track : number of fit points > 5
−3.7 < η < −2.8 (Common η − φ with PMD)
0.15 < pT < 1.5 GeV/c
dca < 3 cm

PMD: Cluster ADC cut > n× MIP (with n = 6− 8)
−3.7 < η < −2.8 (Common η − φ with FTPC)
number of cells in a cluster > 1
ADC per cluster on CPV plane ≥1.8 ×102

3.4.3 Quality Assurance studies

Fig. 3.4 shows some of the QA plots specific to FTPC relevant to this analysis. One of the main

motivation for this analysis is to search for DCC-like signal which are carried by soft pions.

Therefore, only charged tracks which are below 1.5 GeV have been used for the analysis. FTPC

doesn’t provide particle identification, so we have included all charged tracks in this analysis,

although our primary interests are pions with lower momentum.

Fig. 3.5 shows some of the QA plots for PMD relevant to this analysis. For PMD, cell wise

gain normalization has been performed by the gain factors obtained by fitting the MIP(minimum

ionizing particle) ADC distribution. Cell-wise MIP ADC follows a Landau distribution. Mean

values of individual cells give rise to a Gaussian distribution and the overall mean of that

Gaussian distribution has been used for gain normalization. The value of this mean (referred

as MIP cut) in terms of cluster ADC of PMD is 100, for photon hadron discrimination the

minimum value of cluster ADC used is 3× MIP mean[174].

For the measurement of inclusive multiplicity and pseudo-rapidity distribution one uses a cut

of 3×MIP. However, to obtain considerably higher purity of the photon data sample for fluctu-

ation and correlation analysis, one can put stricter cuts on PMD cluster ADC. For this analysis

we have used 8 times MIP cut on cluster ADC to obtain more than 70% purity. Fig. 3.5(a)

shows the variation of PMD purity and efficiency with the MIP cuts. Beyond a cut of 6×MIP

the purity becomes almost flat and doesn’t change final results. Application of higher MIP cuts

86



Entries  140707

No of Tracks (FTPCE)
10 20 30 40 50 60 70 80

E
n
tr

ie
s

1

10

210

310
Entries  140707

FTPC uncorrected tracks

 < ­2.5η­4.0 < 

(a) No. of charge tracks from FTPCE.

RMS     8.203

No. of Tracks (FTPCW)

0 10 20 30 40 50

E
n

tr
ie

s

1

10

210

310

410
RMS     8.203

FTPC uncorrected tracks

 < 4.0η2.5 < 

(b) No. of total clusters from FTPCW.

Entries    2.225783e+07

No. of fit pts
4 5 6 7 8 9 10 11

E
n

tr
ie

s

610

710

Entries    2.225783e+07FTPC

(c) No of fit points of raw FTPC tracks.

Entries    2.225783e+07

DCA [cm]
0 5 10 15 20 25 30 35 40 45 50

E
n
tr

ie
s

1

210

410

6
10

710

Entries    2.225783e+07

FTPC

(d) DCA distribution of raw FTPC tracks

Figure 3.4: Quality assurance plot for the FTPCs relevant to this analysis.

reduces efficiency further.Photon counting efficiency may further decrease when clusters due to

two incident photons merge to produce a single cluster. Figure.3.5(b) shows that the cluster

merging effect has 9% effect on photon counting efficiency, which does not change with incident

multiplicity or centrality.

The average number of cells (nCell) in a cluster from charged hadron is ∼ 1, so we have used

criterion of nCell > 1 for reducing the contamination(Fig. 3.5(c)). The pile-up affects both the

planes of PMD (the pre-shower plane and the CPV plane) equally. We use a cut on the ratio

of total ADC of the CPV cluster and total number of CPV cluster (see Fig. 3.5(e)) to clean

up the pile-up events since the use of other detector plane CPV for cleanup doesn’t bias the
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data sample. Fig. 3.5(f) shows the correlation of total ADC and total clusters from PMD plane,

the two bands (shown in red and black) demonstrate how the clean-up cut removes the pile-up

events from the data sample without biasing it.

3.4.4 Run-by-Run QA for removal of bad runs.

The run-by-run QA is carried out by studying the run-wise variation of the common η − φ

acceptance. The run-by-run η − φ acceptance plot of PMD and FTPC is shown in Fig. 3.6

by orange and green points respectively. The common coverage is shown by black points.

This analysis is performed over the range of run numbers 8096500-8100500 where the common

acceptance of the two detectors are stable. The second step of run-by-run QA is performed as

follows. Various quantities related to photon and charge multiplicities are plotted with respect

to the run numbers as shown in Fig 3.7 and a 2σ-cut is applied to extract bad runs. The

variation of different quantities like 〈ηγ,ch〉, 〈φγ,ch〉, 〈pT,ch〉, 〈DCAch〉, 〈nCellγ〉 are evaluated for

each run number by averaging over all the events in that particular run. Bad runs are identified

by their values exceeding 2σ away from the overall mean values of the range of run numbers

considered. Fig. 3.7 also shows the variation of 〈Nγ〉 and 〈Nch〉 but those quantities are not

used for determination of bad runs to avoid biasing the data sample. Fig. 3.8 shows the effect

of the application of bad run cuts on final observables. We see the difference is negligible from

the reference value without any cut.

3.5 Events mixing

Mixed event analysis provides a good baseline for this correlation analysis. By mixing tracks from

different events one can get rid of any form of (anti-)correlation, although many other detector

effects like overall gain, efficiency, acceptance etc. will still be present in the mixed event. Since

the physics signal we are looking for in this analysis are correlation(or anti-correlation), we need

to make sure that by construction event mixing should get rid of any form of such correlations.

We also note that any form of mis-identification ( in this case the FTPC tracks giving clusters
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Figure 3.6: Run-by-run QA of common acceptance. The run-by-run η − φ acceptance plot
of PMD is shown by orange and FTPC by green points respectively. The common coverage
is shown by black points. The range of run numbers for which the common coverage remains
unchanged has been used for analysis
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Figure 3.7: Run-by-run variation of various quantities averaged over most central (0-10%)
events in a given run. For clarity of the plot, the quantity plotted on x-axis is the index of the
run number. The solid line represents the mean value over all the range of runs. The dashed
line shown for ±σ variation from the mean values to guide the eye. All the quantities except
〈Nγ〉 and 〈Nch〉 have been used to extract bad runs.
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Figure 3.8: Effect of run-by-run QA on final observables. The variation is shown for two
different cases of run number cuts along with the case of no cut.

in the PMD) that leads to spurious correlation will also be absent in the mixed events. By

picking up random raw tracks or a clusters from random events one can get rid of any form of

correlation. The main criteria for construction of a mixed event that is followed in this analysis

is to construct an event which has same multiplicity of raw tracks and of clusters as the real

event. The steps used for event mixing were as follows.

• Raw tracks and clusters are mixed between events of same centrality and of narrow range

of z-vertex.

• Total number of raw tracks and clusters are kept same as of a particular real event.

• Finally kinematic and other cuts are applied for calculation of Nch and Nγ .

This mixed event analysis is done with z-vertex bins of ±5 cm. There are two ways of dealing

with z-vertex. In case of asymmetric mixing the whole range of Vz is divided into bins of 5 cm

and the mixed event procedure is done for every bins separately. Finally all events are merged

together with equal weight for analysis.

The other way is to do mixing without making any subgroups. If a particular real event has

z-vertex value of Vz, tracks and cluster are picked up from any events within the range Vz = ±5

cm. We’ve found that both the methods give identical results. Fig. 3.9 shows the multiplicity
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distribution of γ-like clusters for different centralities for real and mixed events. These plots

show that the real and mixed event multiplicity distributions on an average looks alike.

(a) 0-5% (b) 5-10% (c) 10-20%

(d) 20-30% (e) 30-40% (f) 40-50%

(g) 50-60% (h) 60-70% (i) Correlation of total no. of
clusters and total ADC

Figure 3.9: (a-h) Centrality wise Nγ (we also refer as N like
γ ) distributions for real and mixed

events. (i) Correlation plot between photon clusters and their total ADC.

Fig. 3.9 (i) shows the correlation plot of the total number of raw clusters vs. the total ADC of

all raw clusters from PMD for real and mixed events. For quality assurance of the mixed events,

one needs to ensure that they overlap with each other. Individual centrality wise multiplicity

distributions also look alike for data and mixed events. In every case we observe that although
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the means of the multiplicity distributions(peak) are very close (agree within 2%) for real and

mixed events, the widths are slightly higher for real events. This can be attributed to the

presence of non-Poissonian signals present in actual data compared to the Poisson(statistical)

expectations from mixed events.

(a) 0-5% (b) 5-10% (c) 10-20%

(d) 20-30% (e) 30-40% (f) 40-50%

(g) 50-60% (h) 60-70% (i) Correlation plot of Nch

and Nγ for real(red) and
mixed(black) events.

Figure 3.10: (a-h) Centrality wise Nch distributions for real and mixed events. (i) Correlation
between event-by-event charged particle and photon multiplicity.
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Fig. 3.10 shows the multiplicity distributions of charged tracks for different centralities. The

real and mixed event distributions overlap reasonably well with each other. The last plot,

Fig. 3.10(i) shows the correlation plot of photon and charged multiplicity for real and mixed

events. We see they almost fall on each other. Once the multiplicity distributions are reproduced

we can proceed with calculation of different moments for mixed events and compare with data.
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3.6 Bin-width effect

Bin-width effect is one of the most important corrections that needs to be considered for any

centrality-dependent event-by-event multiplicity fluctuation analysis [177–179]. This effect is a

consequence of the fact that the centrality selection uses a distribution which is not flat.

So while doing event-by-event average of any quantity such as photon or charge multiplicity

one should take a weighted average with the reference multiplicity distribution. Let us consider

that P (N ref ) is the reference multiplicity distribution from which we are doing the centrality

selection. Let P (N ref
i ) = ωi corresponds to the weight for the i′th bin of the distribution. A

given centrality bin is generally defined by the cut of reference multiplicity between N ref
min and

N ref
max. For this centrality bin we calculate any observables Xi for each bin separately. The bin

width corrected observable is then given by

X =

i=max∑
i=min

ωiXi

i=max∑
i=min

ωi

(3.6)

If the reference multiplicity distribution is not normalized the weight factors would simply

be the number of events in each bin. Here note that if the reference multiplicity distribution

was flat then all the weight factors would be same and there would be no need of bin width

correction. Due to rapid falling shape of any min-bias multiplicity distribution the central events

would require larger bin-width correction compared to the mid-central events. The correction

factor would be larger for a wider centrality bin that includes a wide variation of the shape of

the reference multiplicity distribution. This correction is however independent of the nature of

the distribution for which the observable under consideration (in this analysis for example the

photon or the charge particle multiplicity distribution) and solely depends on the nature of the

distribution from which the centrality selection is being done.

This effect was demonstrated using urqmd model calculation in Ref.[177]. The Fig. 3.11

shows the centrality dependence of the observable νdyn and r1,1 for different bin size of centrality
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classes before bin-width correction. The centrality classes are divided in 5%, 10% and 20% bins.

For a given value of multiplicity (on the x-axis), calculated observables for different centrality bins

vary significantly. The plots in Fig. 3.12 show that with the application of binwidth correction,

observables are independent of the chosen centrality bin width and lie on top of each other.

This correction has been included throughout our analysis and all the discussion made in the

previously can be demonstrated for the observables used in this analysis.
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Figure 3.11: Bin width effect for observables νdyn and rm,1.
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Figure 3.12: Bin width correction for observables νdyn and rm,1.

97



3.7 Error analysis

3.7.1 Statistical uncertainty

Calculations of statistical uncertainty have been done using both the analytical and the bootstrap

method. The bootstrap method is a Monte Carlo method which can be summarized as follows.

• Identical n samples of minimum bias dataset are created by shuffling the event number.

• Bin width corrected observables νdyn and rm,1 have been calculated for each centrality

separately for every sample.

• Estimated observables for these n different samples would give an approximate Gaussian

distribution. The variance of this distribution is the statistical uncertainty from bootstrap

method.

We note here that these identical samples are not independent, n is varied till the estimated

uncertainty converges. For this analysis we found that 100 samples provide good convergence.

0 20 40 60 80 100

0.012

0.013

0.014

0.015

0.016

0.017

0.018

Ν_8dyn<

Figure 3.13: Statistical uncertainty of νdyn. The mean and variance of the 100 samples are
shown by 3 solid lines (Black line is the mean and blue lines are ±σ) which gives the statistical
uncertainty from the bootstrap method. Error for individual points are obtained by using the
published analytical formula of Ref. [165].
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Figure 3.14: Statistical uncertainty of r1,1. The mean and variance of the 100 samples are
shown by 3 solid lines (Black line is the mean and blue lines are ±σ) which gives the statistical
uncertainty from the bootstrap method.

Application of delta-theorem is probably the most efficient method to incorporate all covari-

ance terms that appear in the analytical error formula. It is a straightforward method when the

quantity of interest includes only one variable. For observable involving multiple variables, for

e.g. this analysis, which involves two variables Nch and Nγ , one needs to work out the bi-variate

expression of the delta-theorem. An analytical expression for the statistical uncertainty of the

observable νdyn can be found in Ref. [165].We have used this published expression for statistical

uncertainty estimation of the variable νdyn. We have found that the estimated uncertainties

from bootstrap method is consistent with that form the published expression of Ref.[165]. For

the other observable rm,1, we have used the bootstrap method for uncertainty estimation as

no analytic expression exists for statistical uncertainty estimation, in the literature and it re-

quires bi-variate form of delta-theorem. Possible reason could be the analytical complexity of

the bi-variate delta-theorem approach. We therefore have not used any analytical approach for

the estimation of statistical uncertainty of rm,1. We argue that since the observables involved

in this analysis do not include higher order moments of multiplicity the uncertainty estimated

in bootstrap method is expected to be consistent with the delta-theorem method. Fig. 3.13

and Fig. 3.14 shows that the individual samples (points) are having uncertainties which are
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Figure 3.15: Sources of the systematic uncertainties of νdyn and r1,1. The effect on the observ-
ables are shown for variation of different cuts applied.

estimated from published error formula are very close to the uncertainty estimated from the

bootstrap method shown by two parallel blue lines (±σ) on both side of the black line (mean).

Also the blue lines contain more than 68% of all the points.

3.7.2 Systematic uncertainty

Systematic uncertainties are obtained by varying different quality cuts on charged tracks and

photon clusters.

About ∼ 8% variation in the value of the observables have been found when the maximal

distance of closest approach of a track to the primary vertex is varied by 0.5 cm. The effect

of possible charge contamination effect present in the photon sample has been included in the

systematic uncertainties. The systematic uncertainty from contamination is obtained by varying

the cut for photon-hadron discrimination. Variation of this cut by one unit of the average

response of all isolated cells (also called MIP cut, standard cut is 8 MIP) causes ∼6% variation of

the value of νdyn. A significant fraction of systematic the systematic uncertainty can arise due to

the variation of the position of primary vertex in the z-direction (Vz). For example, 5 cm variation

of Vz introduces approximately 8% variation of the observable νdyn. The overall systematic

uncertainty is estimated to be ∼ 15% within the centrality range of 0 − 60%. Similar cuts

applied to evaluate the systematic uncertainties of the quantity
√
〈Nch〉 × 〈Nγ〉 is estimated to be

100



∼ 7%. The total systematic uncertainty is obtained by adding different sources of uncertainties

in quadrature. If νstddyn denotes the value of νdyn with standard cuts the systematic uncertainty

is evaluated as

sysErr(νdyn)total =

√(
νstddyn − (νdyn)∆Vz

)2
+
(
νstddyn − (νdyn)∆mip

)2
+
(
νstddyn − (νdyn)∆DCA

)2

(3.7)

and similarly for rm,1

sysErr(rm,1)total =

√(
rstdm,1 − (rm,1)∆Vz

)2
+
(
rstdm,1 − (rm,1)∆mip

)2
+
(
rstdm,1 − (rm,1)∆DCA

)2

(3.8)

Variation of cuts changes the total multiplicity of charged tracks and photons. The variation of

quality cuts are chosen in a way that multiplicity variation in a given centrality (
√
〈Nch〉 × 〈Nγ〉)

does not exceed > 10% of actual value. Lists of systematic uncertainties for different quantities

are listed in Table. 3.3. The variation of quality cuts on the observable νdyn and r1,1 is shown

in Fig. 3.15.

3.8 GEANT simulation for detector response

Events from hijing monte-carlo event generator is passed through geant to simulate the detec-

tor response. geant events are simulated with exactly similar detector geometry of data taking

(which is set by the software libraries under STAR production run P08if). During analysis for

both Raw and geant implemented hijing, similar common acceptance as shown in Fig. 3.6

has been used. For GEANT simulation, detector cuts equivalent to that of data analysis has

been used and the centrality selection is done using the uncorrected number of tracks in a way

similar to that of data analysis. GEANT simulation shows effective decrease of multiplicity for

both charged particles and photons due to detector efficiencies as shown by the multiplicity dis-

tributions in different centralities in Fig. 3.8 and Fig. 3.17. These results would serve important

baseline for studying the observables as discussed in the next section.
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Table 3.3: List of total systematic uncertainties due to different cuts are listed below.√〈Nch〉〈Nγ〉 Err(
√〈Nch〉〈Nγ〉) νrealdyn Err(νrealdyn)

50.43 3.52 0.0119 0.0016
41.76 2.95 0.0148 0.0017
31.75 2.27 0.0160 0.0016
23.08 1.68 0.0196 0.0014
16.15 1.18 0.0294 0.0030
10.65 0.79 0.0453 0.0077
√〈Nch〉〈Nγ〉 Err(

√〈Nch〉〈Nγ〉) νmixed
dyn Err(νmixed

dyn )

49.73 3.49 0.00028 0.00018
41.23 2.92 0.00038 0.00026
31.29 2.24 0.00043 0.00028
22.7 1.65 0.00058 0.00028
15.85 1.17 -8.4e-05 0.00062
10.45 0.783 -0.00094 0.00120
√〈Nch〉〈Nγ〉 Err(

√〈Nch〉〈Nγ〉) rreal1,1 Err(rreal1,1 )

50.43 3.52 0.9965 0.001053
41.76 2.95 0.9967 0.001342
31.75 2.27 0.9989 0.001084
23.08 1.68 1.001 0.0008891
16.15 1.18 1.004 0.0009978
10.65 0.789 1.012 0.001574
√〈Nch〉〈Nγ〉 Err(

√〈Nch〉〈Nγ〉) rmixed
1,1 Err(rmixed

1,1 )

49.73 3.49 0.999968 0.00011
41.23 2.92 0.999906 0.00021
31.29 2.24 0.999889 0.0003
22.7 1.65 0.999673 0.00037
15.85 1.17 1.00005 0.00029
10.45 0.783 1.00253 0.00046

√〈Nch〉〈Nγ〉 Err(
√〈Nch〉〈Nγ〉) νch±dyn Err(νch±dyn )

50.43 3.52 -0.003667 0.0005637
41.76 2.95 -0.00483 0.001404
31.75 2.27 -0.005901 0.002031
23.08 1.68 -0.008079 0.0009888
16.15 1.18 -0.009648 0.0008874
10.65 0.789 -0.02846 0.002168

m Err(m) rrealm,1 Err(rrealm,1)

1 0 0.9965 0.001053
2 0 0.9942 0.001958
3 0 0.9927 0.002825
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Figure 3.16: Centrality wise multiplicity distributions for charged tracks using hijing and
geant+hijing simulations in the FTPCE coverage.
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Figure 3.17: Centrality wise multiplicity distributions for photons for hijing and geant+hijing
simulation in the PMD coverage.
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3.9 Results for charge-neutral correlations

In this section we discuss the results of the measurement of charge-neutral correlations using the

observables and method described in previous sections. The measured values of the observables

are compared with various models, mixed events and respective Poissonian limits. νdyn results

indicate the presence of non-zero dynamical signal when compared to mixed events, raw and

geant implemented hijing. νdyn also shows approximate multiplicity scaling as predicted from

the “Central Limit Theorem”. Variation of rm,1 with its order “m” shows a trend opposite when

compared to that from different models and hijing simulated through geant.

3.10 Individual charge and neutral fluctuations
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Figure 3.18: Individual fluctuation of charge and photon multiplicities.

Figure 3.18 and Fig. 3.19 show multiplicity (centrality) dependence of different terms of the

variable νdyn for real and mixed events. We see that all three terms approach their respective

Poisson limits (=1) for higher values of multiplicity. The individual scaled fluctuation terms

ωch and ωγ shown in Fig. 3.18 are higher for real events compared to mixed events showing

presence of additional non-statistical fluctuation in the data. This is also visible from Fig. 3.9
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Figure 3.19: Scaled correlation and νdyn for charge and photons.

and Fig. 3.10. The fluctuation term for photon is higher compared to the charge fluctuation

term when compared to the mixed event. This can be attributed to the fact that the dominant

contribution to charged fluctuation comes only from the charged pion fluctuation whereas the

photon fluctuation is dominantly from neutral pions combined with the decay effects which is

responsible for broadening the width of photon multiplicity distribution.

3.11 charge-neutral correlation and νdyn

The scaled correlation term is shown in Fig. 3.19(a), the term corrγ−ch for real events is higher

compared to mixed events at peripheral bins, becomes comparable for the mid-central events

and finally becomes lower compared to that of the mixed event, this might indicate the presence

of anti-correlation in the data towards higher centralities. We see similar trends with multi-

plicity (
√
〈Nch〉 × 〈Nγ〉) for all the three terms. Fig. 3.19(b) shows the variation of νγ−ch

dyn with√
〈Nch〉 × 〈Nγ〉 for real and mixed events. It can be seen that the mixed event result is consis-

tent with the Poissonian expectation at all centralities. We have fitted the data points for real

events with a function of the form A+B/
√
〈Nch〉 × 〈Nγ〉 as predicted from CLT, the fit yields

χ2/dof ∼ 2. In the same plot we show the raw hijing and hijing + geant results for compar-
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ison. The value of νdyn is very close to the Poisson limit for hijing in more central events, with

a positive value that shows a similar trend as the data. Results from hijing events simulated

through geant are also close to the Poisson expectation within statistical uncertainties. We

argue that this small difference between the hijing and the hijing+geant curves is due to the

spurious correlation coming from mis-identification of photons that can not be eliminated even

by the construction of the observable νdyn. The difference between the hijing curve and the

hijing+geant curve serves as a reference to how much this detector effect is still present in

the data sample that can not be excluded from the presented analysis. It must be noted that

this detector effect does not change the conclusion that the observed value of νγ−ch
dyn is positive,

since the contamination has the opposite effect to the deviation seen in data. For the present

measurement it is evident that the model curve shows very small deviations from the Poisson

curve compared to data. Data show non-zero positive values for all centrality bins, indicating

the presence of dynamical fluctuation for all centralities.

3.12 Robust observables

The nature and strength of the γ − ch correlation are further explored using the observable rm,1.

This observable was designed to study its deviation from generic pion production scenario which

would correspond to a value of unity. Fig. 3.20(a) shows the variation of the variable r1,1 with

〈NchNγ〉 for real and mixed events. The Raw and geant implemented hijing curves are also

shown in the same plot. r1,1 is nearly constant with 〈NchNγ〉 for both hijing and mixed-event.

Multiplicity dependence (with 〈NchNγ〉) of r1,1 shows that data points are lower than mixed-

event, Raw hijing and geant+hijing towards higher centrality. We see that the mixed event

results are consistent with the generic limit of the observable. The Raw hijing values are also

very close to the generic limit. This could indicate that the correlated production of pions in

hijing is very similar to that of generic production phenomenon, which is also consistent for

the observable νdyn. However for data we see a deviation from such a trend. A similar trend

is also observed in geant implemented hijing but the values of r1,1 is always above unity.
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Figure 3.20: (a) rm,1 vs multiplicity for STAR data (Au+Au 200 GeV real events). (b) Robust
observable rm,1 and its higher moments for Real & Mixed events. Model calculations are shown
by bands. Statistical error bars are shown by vertical lines and the systematic error bars are
shown by boxes (real events), bars (mixed events) and bands (models).

Inclusion of geant with hijing changes r1,1 in a direction opposite to that seen in the data.

For data r1,1 goes slightly below unity for higher multiplicities showing small deviation from

generic case. This would correspond to ξ ≤ 0.01 in Eq. 3.4 above a value of 〈NchNγ〉 ∼ 40 .

Since we expect higher orders of rm,1 to be more sensitive to any form of deviation from generic

limit, we plot in Fig. 3.20(b), the variation of rm,1 with its higher order moments for 0−10%

centrality. Higher moments of rm,1 with m show opposite trend (slope) compared to different

models, geant simulation and mixed event. However for each order the deviation from generic

case is very small and lie within a range of 0.99− 1.

3.13 Comparison to net charge correlation

Fig. 3.21 shows the charge dependence of νdyn. Results for combinations of photon with individ-

ual positive and negative charges are very close to that of photon and total charge. The positive-
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Figure 3.21: (left) Charge dependence of the observable νdyn showing different behaviour for
different combinations of γ − ch compared to that of opposite charge combination. Data points
plotted are for real events. The statistical error bars are shown by lines. For positive-negative
charge correlation the systematic uncertainties are shown by caps. For different combinations
of γ − ch correlation, the systematic uncertainties in 〈NchNγ〉 are shown by caps whereas the
systematic uncertainties in νdyn are shown by the yellow band. (right) Variation of rm,1 with m
for γ − ch (real and mixed events) and for opposite charge combination. The results are shown
for 0− 10% centrality only.

negative charge correlation is very different from the γ − ch correlation. νdyn for positive-negative

charge which is negative is dominated by the large correlation term since the charged particles

are produced in pairs. This result is consistent with the previous measurement by STAR at mid-

rapidity [180] in Au+Au collision at
√
sNN = 200 GeV. However, data indicated a completely

different behaviour of γ − ch correlation from the correlation of oppositely charged particles.

This indicates that a different mechanism of particle production is responsible for correlated

production of neutral and charged particles.

3.14 Effect of rapidity gap on γ − ch correlation

The observables estimated using charge tracks from east (same side) and west (away side) FTPC

with photons from PMD (located in the east side) is shown in Fig. 3.22 and Fig. 3.23. Because
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Figure 3.22: Correlation of PMD with east FTPC.
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Figure 3.23: Correlation of PMD with west FTPC.

of gain difference between east and west FTPC, the average multiplicity
√
〈Nγ〉 〈Nch〉 is smaller

for PMD-west FTPC combination. The same η − φ acceptance as shown in Fig. 3.6 (coverage

contour) has been used for all the three detectors and the models. The Raw HIJING and

GEANT implemented HIJING are shown by bands.

HIJING does not include any physics of dynamical γ − ch correlation. We see that for same

side (PMD-FTPCE) correlation, data is above the models with a clear separation but for the

away side (PMD-FTPCW) correlation data falls on top of models. A similar study was done for

the observable rm,1 as shown in Fig. 3.24. For the same side correlation the data deviates from
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both the model calculations using Raw hijing and geant+hijing. For the away side data lie

between Raw hijing and geant+hijing results. This might indicate a presence of non-zero

dynamical localised signal when overlapping acceptance is considered for γ-charge correlation.

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 10  20  30  40  50  60

r 1
,1

γ-
c
h

√〈Nch〉 〈Nγ〉

PMD-FTPCE

PMD-FTPCW

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 10  20  30  40  50  60

r 2
,1

γ-
c
h

√〈Nch〉 〈Nγ〉

PMD-FTPCE

PMD-FTPCW

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 10  20  30  40  50  60

r 3
,1

γ-
c
h

√〈Nch〉 〈Nγ〉

PMD-FTPCE

PMD-FTPCW

Figure 3.24: Robust observable using photons from PMD and charged particles using east and
west FTPCs. Yellow bands are simulation results for PMD and West FTPC; the purple bands
are simulation results for PMD and East FTPC. In both the cases, the light color solid bands
are for geant+hijing calculations and the dark bands are for Raw hijing.

3.15 Npart dependence of γ − ch correlation.

In Fig. 3.25, the Npart dependence of all terms of νdyn for PMD-FTPC (East) i.e. for same-side

correlation. The similar plot for PMD-FTPC(West) or away-side, which are separated by a

rapidity gap of about unit size is shown in Fig. 3.26. Fig.3.25 shows individual terms of νdyn

for which one can see slightly different trend compared to the earlier plots shown in Fig. 3.18

and Fig.3.19. However the question comes which quantity controls the physics of fluctuation, is

it the geometry (Glauber observables are measure of that) or the multiplicity that goes in the

calculation of fluctuation observables. Choice of this would affect the physics message one is

trying to highlight.
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Figure 3.25: Npart dependence of all terms of νdyn for PMD-FTPC (East) (same-side)

3.16 Effect of flow on γ − ch correlation.

In order to investigate the effect of flow in this analysis with non-uniform acceptance we have

used a toy model to introduce flow in hijing. As mentioned in Ref.[181], event-by-event flow

can be introduced by changing the azimuthal angle of each particle

φ→ φ′ = φ+ ∆φ (3.9)

where

∆φ =
∑
n

−2

n
ṽn sin[n(φ− ψ0)], (3.10)
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Figure 3.26: Npart dependence of all terms of νdyn for PMD-FTPC (West) (opposite-side)
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central events.

ṽn are the n different coefficients of flow and ψ0 is the direction of the added flow. For hijing

simulations we choose ψ0 = 0 and consider n = 2 to study this effect. We have introduced v2

for all pions and charged hadrons in the range of 0 − 5% and calculated the final observables

νdyn and rm,1 for different centralities. For neutral pions we first introduce v2 on every π0 in a

given event and then decay them to photons, uniformly in their rest frame. In this simple toy

model v2 is assumed to be a constant parameter independent of rapidity, transverse momentum

and centrality. We have used the same η−φ acceptance contour we have used for data. Results

for observables νdyn and rm,1 for different values of v2 are shown in Fig. 3.27. We see that our

observable are insensitive to v2 in the range 0 − 5% introduced using the toy model described

above. This result is consistent with previous results obtained using ampt event generator

shown in previous section using same acceptance as has been used here. ampt includes flow

effect in realistic proportion and is known to describe RHIC data even at forward rapidity (the

region of interest for this analysis and flow is less compared to mid-rapidity). One of the possible

explanation of the fact that γ − ch correlation is insensitive to flow could be due to the fact the

both charged and neutral pions are expected to have same flow. Flow although modifies the

azimuthal density of pions it doesn’t modify the relative abundance of pions of different isospin.
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3.17 An upper limit of DCC like signals from data
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Figure 3.28: (left) Fit the data points for rm,1 as a function of m using the functional form of
Eq. 2.67 for two most central events. (right) Parameters of DCC model extracted from data,
the shaded region shows the upper limit of DCC formation.

As shown in Fig. 3.20, rm,1 < 1 for two centralities corresponding to
√
〈NchNγ〉 = 50.4 and√

〈NchNγ〉 = 41.8. As discussed in Sec.2.3.3 and Eq. 2.39, for these two centralities, one can

unambiguously conclude that the correlation between charged particles and photons are not

dominated by decay correlations, which mostly comes from the decays of resonances. As a next

step we have tried to interpret the results in terms of predictions based on DCC model. In order

to estimate an upper limit of DCC like signal we fit the data for rm,1 vs m with the Eq. 2.67

rm,1 ≈ 1− mxy2

(m+ 1)
F (m,xy2) (3.11)

where F (m,xy2) is given by Eq. 2.55. The two free parameters in DCC model are x and y

which correspond to the fraction of DCC events in the data sample and fraction of DCC pions

in such events respectively in the coverage considered. Results of fitting is shown in Fig. 3.17

(left). Due to the functional form of Eq. 3.11, the parameters x and y can not be determined

independently. The fitting yields values of xy2 = 0.005 and xy2 = 0.004 for the centralities

corresponding to
√
〈NchNγ〉 = 50.4 and

√
〈NchNγ〉 = 41.8 respectively. In Fig. 3.17 we show

the possible region allowed for DCC like signals in terms of the parameters x and y.
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3.18 Summary

Correlation between photon & charged particle multiplicities have been measured at −3.7 <

η < −2.8 in a limited but overlapping azimuthal coverage of PMD and FTPC at
√
sNN=200

GeV. νdyn and rm,1 have been used as measures of correlation. νdyn shows an approximate

∼ 1/
√
〈NchNγ〉 dependence as expected from the Central Limit Theorem (CLT). νdyn shows

dynamical fluctuation in excess to hijing, mixed event and geant+hijing. A detailed analy-

sis of systematic uncertainties have been quantified. Model studies show that other collective

effects such as flow doesn’t seem to affect the γ − ch correlation. The charge dependence of

the νdyn shows that different combination of γ − ch correlation are alike but show a very differ-

ent behaviour from positive-negative charge correlation measured in the same acceptance. The

result is indicative of the fact that a different mechanism of particle production is responsible

for correlated production of neutral and charged particles which is not present in convensional

models.

A second measure rm,1 has been used to extract deviation of γ − ch correlation from expec-

tation of genetic pion production. The centrality dependence of the lowest order moment of

the observable rm,1 shows different trend compared to mixed event and hijing. r1,1 goes below

the generic limit at higher multiplicity. For central events, rm,1 shows a trend opposite to that

from the models, thereby suggesting deviation from generic expectation of the observable in the

data. The deviation quantified by fits to the functional form of Eq. 2.67 and upper limit of DCC

formation has been estimated in terms of contours of the fraction of DCC events and fraction

of DCC candidates (pions).
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Chapter 4

Modelling fluctuations from the

initial stages of collisions

4.1 Introduction

In this chapter, we discuss how different sources of initial state fluctuations contribute to the

fluctuations of global observables such as charged and neutral particle multiplicities in hadronic

and heavy ion collisions. At very high energies the early stages of hadronic or heavy ion collisions

are dominated by fluctuation of coherent gluon fields which evolves over a pre-equilibrium phase

that can be described by Yang-Mills evolution. The sources of initial state fluctuations of gluon

numbers are due to geometric and quantum fluctuations. A first principle approach to solve this

problem in conventional perturbation theory is extremely difficult since the dominant fraction of

initial gluons that produces the bulk multiplicity comes from soft modes (Q ∼ ΛQCD) for which

the effective coupling (αS(Q)) is quite large. The Color Glass Condensate (CGC) is a framework,

that includes various possible sources of initial state fluctuations, and hence can provide an ab

initio approach to such problems [39]. The details of the framework and the approach to calculate

inclusive multiplicity and its fluctuation in CGC approach will be discussed in this chapter.
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Why small-x?

 • x: fraction of longitudinal momentum carried by a parton inside a hadron. x =
kz

Pz

proton pdf’s extracted from HERA DIS data

 • At small-x the wave function of hadrons (nucleon/nuclei) is dominated by gluons. Really
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the plot, corresponding to the left moving hadron in a collision in the center
of mass frame.

We shall later argue that there is in fact a relationship between the
structure functions as measured in deep inelastic scattering and the rapidity
distributions for particle production. We will argue that the gluon distribu-
tion function is in fact proportional to the pion rapidity distribution.

The small x problem is that in experiments at Hera, the rapidity dis-
tribution function for quarks grows as the rapidity difference between the
quark and the hadron grows. This growth appears to be more rapid than
simply | yproj − y | or (yproj − y)2, and various theoretical models based on
the original considerations of Lipatov and colleagues suggest it may grow as
an exponential in | yproj − y |.[1] (Consistency of the BFKL approach with
the more established DGLAP evolution equations remains an outstanding
theoretical problem.[2]) If the rapidity distribution grew at most as y2, then
there would be no small x problem. We shall try to explain the reasons for
this later in this lecture.
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Fig. 9. The Zeus data for the gluon structure functions.

In Fig. 9, the Zeus data for the gluon structure function is shown.[3] I
have plotted the structure function for Q2 = 5 GeV 2, 20 GeV 2 and 200 GeV 2.
The structure function depends upon the resolution of the probe, that is Q2.
Note the rise of xg(x) at small x, this is the small x problem. If one had plotted
the total multiplicity of produced particles in pp and pp collisions on the
same plot, one would have found rough agreement in the shape of the curves.
Here I would use y = log(Ecm/1 GeV ) for the pion production data. This
is approximately the maximal value of rapidity difference between centrally
produced pions and the projectile rapidity. The total multiplicity would be
rescaled so that at small x, it matches the gluon structure functions. This
demonstrates the qualitative similarity between the gluon structure function
and the total multiplicity.
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Figure 4.1: (left)HERA data on structure parton distribution function measured in DIS processes
from Ref. [182]. (right) Energy dependence of measured cross sections for pp collision from
Ref. [183].

4.2 The phenomenon of gluon saturation

Deeply inelastic scattering (DIS) results from HERA on structure functions demonstrate a rapid

bremsstrahlung growth of the gluon density at small x [184] (Fig. 4.1(left)). Here x denotes the

momentum fraction of hadron carried by a parton. Such a linear growth in gluon density would

correspond to a rapid increase in the total cross section for pp or pp̄ collisions with energy 1.

However experimental measurement shows only a logarithmic growth of the total cross section

with collisions energy (Fig.4.1(right)). This indicates that the gluon density inside a hadron

must saturate by the underlying dynamics of QCD in the limit of high energy or small x.

When interpreted in the framework of the parton model, the bremsstrahlung growth of gluon is

predicted to saturate because the gluon occupation number in hadron wave functions saturate

at a value maximally of order 1/αS ; dynamically, nonlinear effects such as gluon recombination

and screening by other gluons deplete the growth of the gluon distribution [185]. As a result the

gluon modes with kT < QS(� ΛQCD) are maximally occupied, where Q2
S(x) is a dynamically

generated semi-hard scale called the saturation scale.

1It can be shown that x ∼ 1/Ecms, Ecms is the centre of mass energy of collision.
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4.3 The small-x problem of QCD

The small-x limit of QCD (also called the Regge-Gribov limit, x → 0) is important for the

description of multi particle production in hadronic and heavy ion collisions at high energies.

We define the momentum fraction of hadron carried by a parton as x = k+/P+. At high energy

x is closely related to the kinematic variable introduced [186] by Bjorken xbj ∼ Q2/s (Q2, the

resolution scale at which the parton is probed and s is the Mandelstam variable). Here k+

and P+ are the light front (LF) momenta of the parton and the hadron respectively. This

definition is a direct consequence of the parton model [186] which is formulated in the “infinite

momentum frame” (IMF) in which hadrons are collection of “quasi-free” partons. It turns out

that introduction of light front (LF) co-ordinates [187] is equivalent to considering IMF (also

called limiting reference frame [189] or light cone frame) 2. The idea is to approach the small-x

problem in QCD by developing a many body effective field theory on the light front [190]. This

would require an assumption that there is a Born-Oppenheimer (BO) separation between the

large-x and the small-x modes of the quantum fields on the LF. Born-Oppenheimer separation

is useful approximation in the study of molecular dynamics. It enables one to treat the motion

of the slow moving heavy nuclei and the fast moving light electrons separately. Over the time

scales of the motion of slow nuclei, the light electrons can almost instantaneously adjust to

its most stable configurations. The electronic degrees of freedom can be integrated out of the

problem to contribute to the effective potential for the motion of the nuclei. Similarly inside

a hadron or nuclei at high energies, one can separate the large-x and the small-x degrees of

freedom since, on the time scales of the small-x wee partons (slow), the distribution of large-x

partons (fast) can be viewed as static distribution of charges due to time dilation. Thus one

can develop an effective theory with the static sources of color charges ρ (large-x modes) with

momenta k+ > Λ+ which couples to the dynamical wee gluon fields Aµ with momenta k+ < Λ+.

2Introduction of LF co-ordinate has many other advantages such as some of the complicated problems of
Quantum Field Theory like vacuum effects disappear on LF [188]. It can be shown that a Poincare group on the
LF is isomorphic to a Galilean sub-group of 2D quantum mechanics [189]. Thus a relativistic system of particles
boosted in z-direction to infinite momentum, the dynamics on the transverse plane (x-y) would simplify to a two
dimensional system of non-relativistic particles.
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Where Λ+ is the separation scale between fast and slow modes. The statistical distribution of

the static color sources ρ are given by universal density matricesWΛ+ [ρ] defined at the scale Λ+.

Finally in this framework expectation value of any operator O [ρ] that is related to a physical

observable is obtained by averaging over all possible configuration of color sources as

〈O〉Λ+ ≡
∫

[Dρ]WΛ+ [ρ]O [ρ] . (4.1)

However any physical observable has to be independent of the separation scale Λ+ between

the slow and the fast modes, which give rise to renormalisation group (RG) equations. The RG

equations evolves the distributionWΛ+ [ρ] to the distributionWΛ′+ [ρ′] of charge density ρ′ = ρ+

δρ defined at a new scale Λ′+ by integrating out the modes between Λ′+ < k+ < Λ+. The change

of the weight functional W[ρ] with x(= k+/P+) is described by the well known Jalilian Marian-

Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) nonlinear RG equation [191] expressed

as

∂〈O〉Y
∂Y

= 〈HO〉Y , (4.2)

where Y = ln(x/x0), x0 being the initial scale for x evolution. A simpler form (mean-field

approximation) of the JIMWLK equation in the limit of large number of colors Nc → ∞ is

the Balistky-Kovchegov (BK) equation which will be discussed in the later sections. It should

be noted that in this framework the initial distribution of W[ρ] at the starting scale (at x0)

is unknown which is generally set by a model. A physically motivated model in case of the

ρ distribution in a large nucleus is the McLerran-Venugopalan (MV) model [192]. In this

model the W[ρ] is a Gaussian distribution, the variance of which provides a semihard scale

(µ2) in the theory, which at small x or for large nucleus is large enough to make weak coupling

(αS(µ) << αS(ΛQCD)) computations feasible. This weak coupling effective field theory to treat

the dynamics of small-x degrees of freedom in QCD is universal in nature and known as the

framework of Color Glass Condensate (CGC). The word “Color” indicates that the degrees of

freedom in this theory are colored. The word “Glass” is derived from the analogy of glass which
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is a disordered system and liquid like on long time scales but behaves like a solid on a short

time scale. In a similar way the stochastic distribution of static sources appears to be frozen

due to time dilation compared to the natural time scale of strong interaction. It is called a

“Condensate” due to high occupancy of states (O(1/αs(µ))) of gluons with momenta peaked

around the saturation momenta Q2
s which is proportional to scale µ2 in this theory.

4.4 Saturation models of HERA DIS

One of the motivation to study saturation models that parametrize the Deeply Inelastic Scatter-

ing (DIS) is to set the initial distribution of color charge density W[ρ] which is an input to the

framework of CGC. These models are implemented with realistic assumptions by incorporating

the essence of saturation physics. The e+ p DIS in the CGC framework is treated by assuming

that the virtual photon coming from the electron form a color dipole which then scatters off the

dense saturated gluon field inside the proton. At leading order in αs [192] in the dipole picture,

the inclusive virtual photon hadron cross section is expressed as [193]

σγ
∗p
L,T =

∫
d2r⊥

∫ 1

0
dz
∣∣∣Ψγ∗

L,T

∣∣∣2 ∫ d2b⊥
dσp

dip

d2b⊥
. (4.3)

Here
∣∣∣Ψγ∗

L,T (r⊥, z,Q)
∣∣∣2 represents the probability for a virtual photon to produce a quark–anti-

quark pair of size r = |r⊥| and
dσp

dip

d2b⊥
(r⊥, x,b⊥) denotes the dipole cross section for this pair

to scatter off the target at an impact parameter b⊥. The former is well known from QED,

while the latter represents the dynamics of QCD scattering at small x. One of the simplest

example of a saturation model is the Golec-Biernat–Wusthoff (GBW) model [194]. It implements

saturation in the dipole cross-section through the parametrization
dσp

dip

d2b⊥
= 2(1 − e−r2Q2

s,p(x)/4),

where Q2
s,p(x) = (x0/x)λ GeV2, gives a good qualitative fit to the HERA inclusive and diffractive

cross section data for x0 = 3 · 10−4 and λ = 0.288. GBW model explained very simply the key

features of the HERA data and was suggestive of the possible role of a semi-hard saturation

scale in the hadron. This model was refined in more sophisticated models that treat the impact
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parameter dependence of the dipole cross-section more accurately. As we shall discuss further

in the next section, these models give excellent fits to small x inclusive, diffractive and exclusive

HERA data. The common ingredient in these combined fits is the dipole cross-section.

The dipole cross-section, to leading logarithmic accuracy, is a universal quantity which can

be applied to compute inclusive quantities in hadron-hadron collisions. It is defined in terms of

the real part of the forward scattering amplitude N (r⊥, x,b⊥) as

dσp
dip

d2b⊥
(r⊥, x,b⊥) = 2 N (r⊥, x,b⊥) ≡ 2

(
1− 1

Nc

〈
tr
(
Ũ(b⊥ +

r⊥
2

)Ũ †(b⊥ −
r⊥
2

)
)〉

x

)
, (4.4)

where Ũ(b⊥± r⊥
2 ) is a Wilson line in the fundamental representation representing the interaction

between a quark and the color fields of the target. The expression inside the 〈· · · 〉x is an average

over these color fields; the energy dependence of the correlator as a function of x (or the rapidity

Y = ln(1/x)) is given by the JIMWLK equation [195]. In the large Nc limit, the equation for

the energy evolution of this correlator is the Balitsky-Kovchegov (BK) equation [196]. We note

however that neither JIMWLK nor BK is equipped to deal well with the impact parameter

dependence of the dipole cross-section; the dipole cross-section in this formalism expressed in

Eq. (4.4) is independent of the impact parameter. To address the impact parameter dependence

of this equation, one resorts to models which parametrize both saturation effects and the impact

parameter dependence.

4.4.1 The IP-Sat Model

The impact parameter dependent dipole saturation model (IP-Sat) [197] is a refinement of the

Golec-Biernat–Wusthoff dipole model [194] to give the right perturbative limit when r⊥ →

0 [198]. It is equivalent to the expression derived in the classical effective theory of the CGC, to

leading logarithmic accuracy [192]. The proton dipole cross-section in this model is expressed
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Figure 4.2: Left: Dipole cross-section in DIS. Right: Overlap of unintegrated gluon distributions
in proton-proton collisions.

as

dσp
dip

d2b⊥
(r⊥, x,b⊥) = 2

[
1− exp

(
− π2

2Nc
r⊥

2αS(µ2)xg(x, µ2)Tp(b⊥)

)]
. (4.5)

Here the scale µ2 is related to dipole radius r⊥ (see Fig. 4.2) as

µ2 =
4

r⊥2
+ µ2

0 , (4.6)

where the leading order expression for the running coupling is

αS(µ2) =
12π

(33− 2nf ) log(µ2/Λ2
QCD)

(4.7)

with nf=3, ΛQCD=0.2 GeV. The model includes saturation as eikonalized power corrections

to the DGLAP leading twist expression and may be valid in the regime where logs in Q2

dominate logs in x. The saturation scale for a fixed impact parameter is determined self–

consistently by requiring that the dipole amplitude (within brackets in Eq. 4.5) have the mag-

nitude N (x, rS ,b⊥) = 1− e−1/2, with Q2
s,p = 2/r2

S . We note that there is an overall logarithmic

uncertainty in the determination of Q2
s,p(x,b⊥).
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For each value of the dipole radius, the gluon density xg(x, µ2) is evolved from µ2
0 to µ2 using

LO DGLAP evolution equation without quarks,

∂xg(x, µ2)

∂ logµ2
=
αS(µ2)

2π

1∫
x

dzPgg(z)
x

z
g
(x
z
, µ2
)

(4.8)

Here the gluon splitting function with nf flavor and CA=3 & TR=1 is

Pgg(z) = 6

[
z

(1− z)+ +
1− z
z

+ z(1− z)
]

+

(
11

2
− nf

3

)
δ(1− z) (4.9)

The initial gluon density at the scale µ2
0 is taken to be of the form

xg(x, µ2
0) = Agx

−λg(1− x)5.6 (4.10)

An important feature of the IP-Sat model is the b-dependence of the dipole cross-section, which

is introduced through a gluon density profile function T (b). This profile function is normalized

to unity and is chosen to have the Gaussian form

Tp(b⊥) =
1

2πBG
exp

(−b⊥
2

2BG

)
, (4.11)

where BG is a parameter fit to the HERA diffractive data. This corresponds to 〈b2〉 = 2BG, the

average squared gluonic radius of the proton.

Sets of parameters obtained from optimal fits of the IP-Sat model to HERA data [199] are

listed in table 4.1. All data sets except the last use mu,d,s = 0.14 GeV; the last set corresponds to

mc BG(GeV−2) µ0(GeV2) Ag λg
1.4 4.0 1.17 2.55 0.020
1.35 4.0 1.20 2.51 0.024
1.5 4.0 0.77 2.64 0.011
1.4 4.0 1.50 3.61 -0.118

Table 4.1: Parameters of the IP-Sat model obtained from the fit to HERA data [199].
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mu,d,s = 0.05 GeV. The parameters of the initial gluon distribution are determined from fits to

the HERA F2 data [200, 201] with a χ2 ∼ 1. For charm quarks, x = xbj(1+4m2
c/Q

2). The value

of BG is determined primarily from the t-distributions of J/ψ mesons measured by ZEUS [202]

and H1 [203]. With these parameters, excellent agreement is obtained with the HERA exclusive

vector meson and DVCS data. For a detailed comparison of this model to the HERA data, we

refer the reader to Ref. [199].

4.4.2 The b-CGC Model

At very small x, quantum evolution in the CGC describing both the bremsstrahlung limit of

linear small x evolution as well as nonlinear RG evolution at high parton densities, combined

with a realistic b-dependence, is very well captured in the bCGC model [199, 204, 205]. The

proton dipole cross-section in this case is expressed as

dσp
dip

d2b⊥
(r⊥, x,b⊥) = 2×

 N0

(
r⊥Q̄s

2

)2
(
γs+

1
κλY

ln
(

2
r⊥Q̄s

))
: r⊥Q̄s ≤ 2;

1− exp
(
−A ln2(B r⊥Q̄s)

)
: r⊥Q̄s > 2;

(4.12)

In this model, in contrast to the IP-sat model, the impact parameter dependence is introduced

though the quantity Q̄s(x,b⊥), defined as

Q̄s(x,b⊥) =
(x0

x

)λ/2 [
exp

(
− b⊥

2

2BCGC

)] 1
2 γS

(4.13)

As previously, for comparison of scales among different saturation models, the relevant saturation

scale for a fixed impact parameter is determined self–consistently by requiring that the dipole

amplitude (the expression to the right of the curly bracket in Eq. 4.12) have the magnitude

N (x, rS ,b⊥) = 1 − e−1/2, with the saturation scale defined as Q2
s,p = 2/r2

S . The coefficients A

and B are obtained by requiring the two asymptotic forms of the dipole cross-section and their
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first derivatives are continuous at r⊥Q̄s = 2:

A =
N 2

0 γ
2
S

(1−N0)2 ln(1−N0)
& B =

1

2
(1−N0)

− (1−N0)
N0γS (4.14)

The parameter κ = 9.9 is fixed from the leading order BFKL value for this quantity.

Table 4.2 presents the parameters of the model that are fitted to the HERA data [204]. The

parameter BCGC is determined from the t-dependence of exclusive J/ψ photo-production. For

the b-CGC model, this parameter however cannot be easily interpreted as giving the square

mean gluonic radius of the proton. The parameters presented in the table in the first and fourth

lines do not give good fits to the data. The fit corresponding to the second line of the table

gives the best fit to the data with χ2 ∼ 1. The third line of the table corresponds to a fit where

no saturation form is employed (namely, the perturbative expression, without the diffusion term

proportional to Y = ln(x0/x), is extended to r⊥Q̄s ≥ 2); it gives equally good fits to the data.

However, it should be noted that this choice of parameters will violate perturbative unitarity

for large dipole sizes r⊥ > 1/Q̄s.

In section 4.5.4 we discuss the dependence of the saturation scale Q2
s,p(x,b⊥) as a function

of x for different b⊥ (and vice versa) in the IP-Sat and b-CGC (see Fig. 4.17). In both cases,

the fits to the HERA data result in a semi-hard scale (Q2
S � Λ2

QCD) with decreasing x and b

values probed in the collisions. The existence of such scales and their increase with energy is

what validates the whole approach of treating high parton densities in weak coupling. It would

of course be naive to interpret the extracted numerical value of QS as being precisely the scale

that controls the running of the coupling. As is well known, the scale that controls the running

of the coupling can differ considerably from this “bare” scale in a given scheme for any given

process.
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γs BCGC(GeV−2) N0 x0 λ

0.63 5.5 0.417 5.95·10−4 0.159
0.46 7.5 0.558 1.84·10−6 0.119
0.43 7.5 0.565 1.34·10−6 0.109
0.54 6.5 0.484 3.42·10−5 0.149

Table 4.2: Parameters of the b-CGC model obtained from fits to HERA data [204].The second
row of parameters gives the best fit to HERA data.

4.4.3 The rc-BK Model

The forward scattering amplitude N = 1
2

dσp
dip

d2b⊥
, in the rc-BK model [206] satisfies the equation,

∂N (r⊥, Y )

∂Y
=

∫
dr1 Krc(r⊥, r1, r2)×

[
N (r1, Y ) +N (r2, Y )−N (r⊥, Y )−N (r1, Y )N (r2, Y )

]
,

(4.15)

where r2 ≡ r⊥−r1 and the rc-kernel (where running coupling corrections are taken into account)

is given by

Krc(r⊥, r1, r2) =
αS(r⊥)Nc

π

[
r⊥

2

r2
1r

2
2

+
1

r2
1

(
αS(r2

1)

αS(r2
2)
− 1

)
+

1

r2
2

(
αS(r2

2)

αS(r2
1)
− 1

)]
. (4.16)

This expression is based on considerable recent work to include running coupling corrections

to the BK equation [207, 208]. It should be noted that the expression does not include other

next-to-leading log contributions to the kernel that have been computed recently [209]. Also of

relevance to us is the assumption in the evolution equation in Eq. 4.15 that the dependence on

the impact parameter and the dipole size factorize in the dipole amplitude as

N (r⊥, x,b⊥) = 2 T (b⊥)N (r⊥, x) . (4.17)

The factorization here of impact parameter dependence and dipole size is very problematic

conceptually and is an important limitation in applying these approaches to comparisons with

data, except perhaps for final states that have limited sensitivity to the impact parameter
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dependence. How to include the impact pararmeter dependence in the BK/JIMWLK equations

is an open question of great interest [210].

The rc-BK model was applied in refs. [211] to a phenomenological study of the HERA data

on the proton structure function F2. In this model, the impact parameter dependence of the

dipole amplitude is taken to be a step function. The initial condition for the dipole amplitude

is given by the MV model [190] as

N(r, Y = 0) = 1− exp

[
−
(
Q2
s0r

2

4

)γ
ln

(
1

rΛQCD
+ e

)]
(4.18)

This parametrization for protons was determined from a global fit of F2 data in the work of

[211]. In this work, we use Q2
s0,p = 0.15 GeV2 and γ = 1.13, as mentioned in [211].

4.5 Particle production : Perturbative approach

In the collision of two dilute systems or a dilute and a dense system, one can derive at leading

order the expression [215]

dNg(b⊥)

dy d2p⊥
=

4αS
πCF

1

p2
⊥

∫
d2k⊥
(2π)5

∫
d2s⊥

dφA(x1,k⊥|s⊥)

d2s⊥

dφB(x2,p⊥ − k⊥|s⊥ − b⊥)

d2s⊥
(4.19)

This equation is a generalization of the well known k⊥ factorization expression for inclusive

gluon production [216] to include the impact parameter dependence of the unintegrated gluon

distributions. Here CF = (N2
c − 1)/2Nc is the Casimir for the fundamental representation.

Using a relation between quark and gluon dipole amplitudes strictly valid in the large Nc limit,

the unintegrated gluon distribution in the target/projectile can be expressed in terms of the

corresponding dipole cross-section measured in DIS as [217]

dφ(x,k⊥|s⊥)

d2s⊥
=

k2
⊥Nc

4αS

+∞∫
0

d2r⊥e
ik⊥.r⊥

[
1− 1

2

dσp
dip

d2s⊥
(r⊥, x, s⊥)

]2

(4.20)
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Thus the impact parameter dependent dipole cross-section determined from HERA e−p data

can be used to compute the single inclusive gluon distribution in proton-proton collisions with

no additional parameters. This assumption is strictly valid to leading log accuracy for momenta

k2
⊥ > Q2

s,p. Since this is a leading order computation, the overall normalization is not constrained

and is determined from data as described later. For the integrated multiplicities, there is a

logarithmic infrared divergence that can be regulated by introducing a mass term. The solutions

of Yang-Mills equations that treat the infrared behavior properly give infrared finite distributions

which will be discussed in the next section.

It must be noted that, the dipole cross-sections are fit to HERA data for x ≤ 0.01. One

therefore needs to make an assumption for φ(x, k⊥, b⊥) for larger x > x0 = 0.01 values that

kinematic regions of the proton-proton data are sensitive to. We use the parametrization [217]

φ(x, k⊥, b⊥) =

(
1− x
1− x0

)β (x0

x

)λ0

φ(x0, k⊥, b⊥), x > x0. (4.21)

This parametrization of the large x unintegrated gluon distribution is motivated by quark count-

ing rules with fixed β = 4 and the parameter λ0 which ranges from 0–0.2 in fits to the data.

The single inclusive gluon distribution in Eq. 4.19 has a logarithmic infrared divergence

which can be regulated either by putting a cutoff on lower limit of p⊥ or replacing p⊥ by

m⊥ =
√
p2
⊥ +m2 where the mass is a free parameter. The single inclusive p⊥ distribution is

sensitive to the choice of m, which is fixed to be the same for data at all energy ranges.

Eq. 4.19 corresponds to the rapidity distribution of inclusive gluons at a fixed impact pa-

rameter. However, what is measured is the pseudo-rapidity distribution; the rapidity can be

expressed in terms of the pseudo-rapidity most generally as

y(η, p⊥,m) =
1

2


√
m2 + p2

⊥ch
2η + p⊥shη√

m2 + p2
⊥ch

2η − p⊥shη

 . (4.22)

The single inclusive distribution with respect to the pseudo-rapidity therefore contains a Jaco-
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bian from the conversion of the expression with respect to the rapidity. We choose for economy

of parameters the mass term in Eq. 4.22 to be the same as the one that regulates the infrared

divergence.

The minimum-bias single inclusive gluon distribution is obtained from the expression

dN̄g

d2p⊥dy
=

∫
d2b⊥

dNg
d2p⊥dy

(b⊥)∫
d2b⊥

(4.23)

In the IP-Sat model, the proton profile does not change with energy. The transverse diffusion

of the proton, often termed Gribov diffusion [218], is not fully accounted for by the diffusion of

the unintegrated single inclusive gluon distribution because this growth does not automatically

ensure the proper growth of the inelastic cross-section. To implement such effect, we parametrize

the maximum limit of b-integration to take the form bmax. = b0 +C ln(s). Fitting the available

data on average dN/dη as a function of energy we can extract b0 and C.

For first set of parameters in table 4.1, the IP-Sat model gives b0=5.17 GeV−1 and C=0.19

with a choice of the mass term=0.4 GeV used in the Jacobian. This value of b0 is close to

2 brms. in the IP-Sat model, where brms. is the root mean square gluonic radius of the proton.

The quantity πb2max, which is the denominator of Eq. 4.23 can be interpreted as being closely

related to the inelastic cross section contributing to particle production. A similar form of bmax

when used to fit average dN/dη for b-CGC model gives C ∼ 0. This suggests that because

the impact parameter dependence of the dipole cross-section in the b-CGC model is tied in

with its x dependence (see Eq. 4.12), the non-trivial relation of the two in this model may well

approximate the physics of Gribov diffusion.

The single inclusive hadron distribution is obtained by convolving Eq. 4.23 with the frag-

mentation function for gluons into charged hadrons,

dN̄h

d2p⊥dy
=

∫ 1

zmin.

dz

z2

dN̄g

d2q⊥dy
Dg→h

(
z =

p⊥
q⊥
, µ2

)
, (4.24)

where Dg→h(z, µ2) is chosen to be 6.05 z−0.714(1 − z)2.92, corresponding to the LO parameter
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set of [219]. The lower limit of the integral is determined from the kinematic requirement that

x1,2 ≤ 1.

4.5.1 Results for p+p collisions

In this section we present the results on rapidity and transverse momentum distributions for a

wide range of collider energies up to the presently available highest at the LHC energy of
√
s = 7

TeV. We compare our results from different models to available data and make predictions for

√
s = 10, 14 TeV.
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Figure 4.3: dN/dη obtained from comparing IP-Sat and b-CGC models to data from UA5 [220],
ALICE [221] and CMS [222]. The solid green band corresponds to uncertainties from different
parameters; the dashed band is due to the variation of the choice of mass term in the Jacobian
relating y to η. The two curves at the top in both panels correspond to projections in the two
models for

√
s = 14 and 10 TeV respectively.

Fig. 4.3 shows the pseudo-rapidity distribution obtained by integrating Eq. 4.19 over p⊥ for

different mass terms in the Jacobian and parameters given in the tables 4.1 and 4.2 for the

IP-Sat and b-CGC dipole models respectively. The uncertainties corresponding to the choices

of parametrizations and the infrared mass scale are shown in bands. In the IP-Sat model, the

normalization is performed to the
√
s dependence of dN/dη at η = 0 as shown in Fig. 4.5–this
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fixes the two parameters in bmax. we discussed previously. In the b-CGC model, because there is

one less parameter (the coefficient of ln s in bmax. is zero), the normalization can be performed

to the rapidity distribution at one fixed energy. In Fig. 4.3(left), the normalization is performed

for
√
s = 900 GeV; choosing a lower energy corresponds to a < 10% uncertainty in the overall

normalization.

We do not use a fragmentation function in computing the pseudo-rapidity distributions

because the rapidity distribution is vastly dominated by contributions below p⊥ = 1 GeV,

where fragmentation functions are likely not reliable. We have varied the mass term in the

Jacobian corresponding to Eq. 4.22 in the range 0.2–0.4 GeV, corresponding to an infrared scale

of order ΛQCD. (In each case we chose this mass term to be equal to the one we use to regulate

the infrared divergence of the unintegrated gluon distribution in Eq. 4.20). The effect of the

extrapolation parameter λ0 in Eq. 4.21 is significant only at lower energies and at higher values

of η. The agreement with data of both models is quite good with the IP-Sat model providing a

somewhat better agreement at the highest energies.

In Fig. 4.4 we present the corresponding p⊥ distributions with the previously specified frag-

mentation prescription. The IP-Sat model shows a poor agreement with data for the lower

energies at high p⊥, as does the b-CGC model with some of the HERA parameter sets. At

higher p⊥, the results are sensitive to physics at x ≥ 0.01, which is an approximation in this

approach. Also, one should anticipate a better agreement in the same p⊥ window at higher

energies. Indeed, a systematically better agreement is seen in both models with the data at the

higher energies for all parameter sets.

Fig. 4.5 shows the average value of dN/dη calculated at η=0. The left plot of Fig. 4.5 shows

a fit of dN/dη using different functional forms for the saturation scales. We considered both Q2
S

and Q2
S/αS(QS). In the CGC framework, one would expect the latter to be more appropriate.

However, if the running is not significant in the energy range of interest, the former form can

also be applied. A good fit to the CMS data was obtained in Ref. [225] with a simple form of

the saturation scale using the Golec-Biernat model [194]. In our case, the comparison is made
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Figure 4.4: dN/d2p⊥dη in the IP-Sat and b-CGC models. The solid (green) band corresponds
to uncertainties from different parameters and the dashed (blue) band is due variation of the
mass term in the Jacobian relating η to y. The p⊥ distribution is averaged over the η range of
±2.4. The experimental data points are from CMS [222], STAR [223] and ATLAS [224]

within the framework of the IP-Sat and b-CGC models both of which give better fits to the

HERA data and are sensitive to the impact parameter profile of the gluon distribution in the

proton. For the comparison with the LHC data in the left panel of Fig. 4.5, we use the value of

QS at the median value of s⊥=2 GeV−1. The dependence of dN/dη on the purely Q2
S functional

form is not very good, while the Q2
S/αS(QS) form does much better for the IP-Sat model. For

the running of αS , we chose Q2
S(s⊥) at s⊥=0 to restrict its running to αS below 0.5. Fig. 4.5

(right panel) shows by way of comparison, a comparison of dN/dη at η = 0 as a function of
√
s

to IP-Sat and b-CGC models. In the IP-Sat model, a good fit is ensured because a fit to this

energy dependence is what determines the parameters of bmax. as discussed previously. In the

b-CGC model, the curve is a prediction and is seen to be a very good fit to the data.

The energy dependence of 〈p⊥〉 is shown in Fig. 4.6. In the left panel, it is shown that in

this case one obtains a good linear dependence of 〈p⊥〉 on QS in both the IP-Sat and b-CGC

models as the c.m energy is varied. This is as seen previously [225]. The right plot shows 〈p⊥〉

versus
√
s computed in the IP-Sat and b-CGC models. Here one sees that the results are quite
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Figure 4.5: Average dN/dη|η≈0 in the IP-Sat and b-CGC models. Left: Data plotted as a

function of saturation scales QS (at median impact parameter bmed = 2 GeV−1) for both the
models determined from the HERA data. Right: Average dN/dη at η = 0 from the k⊥-factorized
expression in Eq. 4.24 from IP-Sat (solid green) and b-CGC (dashed) models. Experimental data
points are from Ref. [222, 223, 226–228]

sensitive to choice of the infrared cut-off.

Fig. 4.7 shows the η and p⊥ distributions computed in the rc-BK model. Only MV initial

conditions are considered. In this model, the impact parameter dependence of the inclusive

gluon multiplicity is given by

T (b) =
1

πb2max.

Θ (bmax. − b) .

Therefore dN̄g(b)/dη = dN̄g/dη T (b), where bmax. is a parameter that can be absorbed in the

normalization. If no dependence of bmax. on
√
s is assumed, the model considerably overestimates

the single inclusive data at LHC energies. This is likely a consequence of the fact that the rc-BK

doesn’t take into account the impact parameter dependence of the saturation scale. In this

case, the values for the inclusive gluon multiplicity correspond to the values for the zero impact

parameter, which is considerably higher than the minimum bias values. The agreement with

data is improved considerably by allowing bmax. to depend on
√
s. The denominator πb2max.
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therefore provides an energy dependent normalization. The same approach discussed previously

for the IP-Sat model is employed to extract the
√
s dependence of bmax. chosen to be of the

form bmax. = b0 +C ln(s). From a fit to the average dN/dη as a function of energy, one obtains

b0 ∼ 5.6− 7.55 GeV−1 and C ∼ 0.23− 0.46 depending on the choice of infrared cut-off.

In Fig. (4.8), we show the results of the rc BK and IP-Sat models for forward rapidities for

RHIC p+p collision at 200 GeV. For both IP-Sat and rcBK we have used an overall normalization

extracted from energy dependence of the single inclusive multiplicity of the form: A/(πb2max)

with bmax = b0 + C ln(
√
s). This form absorbs the uncertainties in the inelastic cross-section

and higher order effects (K-factors). For the IP-Sat (rcBK) model, one finds A = 0.23(6.15),

b0 = 5.77(5.14) and C = 0.32(0.76) using mass term m = 0.4 GeV by fitting data points at

η = 0 over the range of energy shown in Fig. 4.14. For rc-BK model the constant term A

absorbs the prefactors of Eq. 4.19 which includes unknown overlap area and other terms that

cannot be separated from the “ K factor ”. The results are rather insensitive to the infrared
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Figure 4.7: Pseudo-rapidity and p⊥ distribution in the rc-BK model compared to data. The
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√
s = 14, 10 TeV with m = 0.4

GeV. The p⊥ distribution is averaged over the η range of ±2.4. The band corresponds to the
variation m = 0.2–0.4 GeV in the Jacobian relating η to y.

cut-off m. However, one finds a ∼ 10% variation of the normalization when the constants are

extracted by a) fitting the full pseudo rapidity at RHIC energy, b) considering data points from

different experiments. This variation, along with the numerical uncertainties, contributes to the

gray bands shown in Fig. 4.8. We see that the agreement at forward rapidities is significantly

better than our previous comparison to the mid-rapidity distribution; this result provides a good

benchmark for computing RpA at RHIC and in predictions of the same for p+Pb collisions at

the LHC.

4.5.2 Results for p+A/d+A collisions

In this section we present the results for the min-bias average multiplicity at mid-rapidity using

the IP-Sat and rc-BK models for p+A collisions. The result is normalized to the PHOBOS 200

GeV d+Au data [233]. The energy dependence of the average multiplicity is shown in Fig. (4.9),

the band corresponds to the variation of m in the range of 0.2-0.4 GeV. Both the models give

a comparable energy dependence, with the IP-Sat model giving a slightly higher multiplicity at

137



 (GeV)
T

p

0.5 1 1.5 2 2.5 3 3.5 4 4.5

)2
 (

G
eV

η
d

T
p2

d
N

/d

­910

­710

­510

­310

­110

10

310

Entries  0Entries  0

NLO BK

 200×=2.2 η , 
­

h

 50×=3.2 η , 
­

h

 20×=3.3 η , 0π

 10×=3.8 η , 0π

=4η , 0π

p+p 200 GeV

rcBK

 (GeV)
T

p

0.5 1 1.5 2 2.5 3 3.5 4 4.5

)2
 (

G
eV

η
d

T
p2

d
N

/d

­910

­710

­510

­310

­110

10

310

Entries  0Entries  0

NLO BK

 200×=2.2 η , 
­

h

 50×=3.2 η , 
­

h

 20×=3.3 η , 0π

 10×=3.8 η , 0π

=4η , 0π

p+p 200 GeV

IP­Sat

Figure 4.8: Transverse momentum distributions at forward rapidities in rcBK and IP-Sat models
compared to STAR [231] and BRAHMS [232] data. The gray bands show the uncertainty in the
determination of the normalization constant.

the highest energies. The rapidity distributions at the RHIC energies in the two models and

predictions for LHC energies are shown in Fig. 4.10. The models agree with the RHIC data

with an accuracy of ≈ 10%, which is within the theoretical systematic uncertainty.

Fig. 4.11 shows the transverse momentum distribution using two models as compared to

BRAHMS [232] and STAR [231] data at 200 GeV for h− and π0 at forward rapidities. For the

h− case, we have included 15% isospin correction in the normalization constant. Predictions for

the p + A transverse momentum distributions for charged hadrons at η = 0 for LHC energies

with this fixed normalization are shown in Fig. 4.12.

We show the nuclear modification factor anticipated in p + A collisions at the LHC in the

IP-Sat and rcBK models in Fig. 4.13. RpA in both the models, at
√
s = 4.4 TeV/nucleon,

approaches unity at p⊥ ∼ 5 GeV. For
√
s = 8.8 TeV/nucleon, the suppression persists to higher

p⊥. The slope of RpA however appears quite different in the two models.

For the IP-Sat model in case of p+A collisions, the form of the normalization used is

A/(πb2max) where, A = 0.25 with mass term m = 0.4 GeV. Unlike p + p, here bmax = 9.5 fm is

a fixed number which is the maximum value of the impact parameter to obtain the minimum
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Figure 4.9: Energy dependence of the minimum bias single inclusive multiplicity at η = 0 in
p+A collisions from k⊥-factorized unintegrated distributions determined in the rcBK and IP-Sat
models. The distribution is normalized with respect to the PHOBOS d+Au data [233] at 200
GeV. The band represents the uncertainty in the calculation due to the variation of the mass
term in the range of 0.2-0.4 GeV.

bias distribution and does not change with energy. For the rc-BK model, a single normalization

constant A = 0.032 (with m = 0.4 GeV) absorbs 3 all the constant pre factors of Eq. 4.19. These

normalization constants are obtained from a fit to the PHOBOS pseudo rapidity distribution;

one obtains an ∼ 8% higher value of A when the fit is performed only to the data points at η = 0.

The BRAHMS data for normalization also gives higher values for A which, along with other nu-

merical uncertainties, contributes to the bands shown in Fig. 4.11. The significant difference in A

for IP-Sat and rcBK for d+Au collisions is because the area of overlap and other terms in the pre-

factor of kt-factorization are absorbed in A for the rc-BK model and cannot be separated from

the “K factor”. For the IP-Sat model, Eq. (4.20) includes those factors and A is of the order of 1.

This apparent difference in the two models does not affect any of our final results since same nor-

malization is consistently used everywhere. In conversion from d+Au to p+A numbers we have

used an additional factor of 1.6/2 in the normalization, which is standard in such conversions in

3Eq. 4.19 for min-bias p+A collision the rc-BK model normalization constant includes the pre factor
( 4αS
πCF (2π)5

Sp,A

(πR2
p)(πR2

A
)
); here Rp, RA corresponds to the radii of the proton and nucleus and Sp,A is the over-

lap area.
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Figure 4.10: Pseudo-rapidity distribution for minimum-bias p+A collision at RHIC and LHC
energies. Prediction from rcBK shown for mass term m=0.2 and 0.4 GeV. Data points are from
ref. [233, 234]

the literature. In computing RpA, the result depends on Ncoll, which is sensitive to the proton in-

elastic cross-section. Since bmax,proton grows with energy, one finds for the energies
√
s = 4.4, 8.8

TeV that ratio b2max,proton(8.8TeV)/b2max,proton(4.4TeV) ∼ Ncoll(8.8TeV)/Ncoll(4.4TeV), a result

consistent with expectations of Ncoll from Glauber approaches [235]; numbers quoted are in

agreement with our ratio to 5%.

4.5.3 Results for A+A collisions

For a large nucleus, in the IP-Sat model, we can approximate the dipole-nucleus cross section

to be
dσA

dip

d2s⊥
≈ 2

[
1− exp

{
−ATA(s⊥)

2
σpdip(r⊥, x)

}]
(4.25)

where σdip(r⊥, x)p is obtained from integrating the dipole-proton cross section in Eq. (4.4) over

the impact parameter distribution in the proton. This form of the dipole-nucleus cross-section

was shown previously [236] to give reasonable fits to the limited available fixed target e+A

inclusive data. The initial conditions for rcBK evolution for a nucleus were similarly fixed by
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Figure 4.11: Transverse momentum distribution at forward rapidity at the highest RHIC energy
and compared to STAR [231] and BRAHMS [232] data. The gray bands show the uncertainty
in determination of normalization constant from various sources.

comparisons to the e+A data [237].

Substituting the expression for the dipole-nucleus cross-section in eqs. (4.19), and likewise the

latter in (4.20), one can compute the nuclear multiplicity distributions. The infrared divergence

in the multiplicity distribution is regulated in exactly the same way as was the case for the

p+p multiplicity distribution, by replacing p⊥ by m⊥ =
√
p2
⊥ +m2, with m varied between

0.2-0.4 GeV. Wherever we have considered fixed coupling, we have used αS=0.2; for the running

coupling case, we run αS with the scale QS = max. {QS(x1, s⊥), QS(x2, s⊥ − b⊥)}.

Fig. (4.14) shows the energy dependence of average multiplicity for most central Au+Au

collision for fixed and running coupling in the IP-Sat model. The number of participants4 at a

given impact parameter is determined from the Glauber relation [238]

Npart(b⊥) = A

∫
TA(s⊥)

{
1− [1− TB(s⊥− b⊥)σNN]B

}
d2s⊥ (4.26)

+B

∫
TB(s⊥)

{
1− [1− TA(s⊥− b⊥)σNN]A

}
d2s⊥

The results shown in Fig. (4.14) are for 0-6% centrality, which corresponds to a median b⊥ ≈ 12.2

4In this expression, σNN ∼ 62 mb for 2.76 TeV and σNN ∼ 41 mb at 200 GeV.

141



 (GeV)
T

p

1 2 3 4 5 6

)
­2

 (
G

eV
η

d
T

p2
d
N

/d

­410

­310

­210

­110

1

10

210

310

410

Entries  0Entries  0

rcBK

p+p

p+A

(TeV)s

 100×8.8 TeV 

 10×4.4 TeV 

rcBK

 = 0η

 (GeV)
T

p

1 2 3 4 5 6

)
­2

 (
G

eV
η

d
T

p2
d
N

/d

­410

­310

­210

­110

1

10

210

310

410

Entries  0Entries  0

NLO BK

p+p

p+A

(TeV)s

 100×8.8 TeV 

 10×4.4 TeV 

IP­Sat

 = 0η

Figure 4.12: Transverse momentum distribution at mid-rapidity for minimum-bias p+p and
p+A collisions..

GeV−1; we compute dNch.(b⊥)
dη and Npart(b⊥) for this median value. We observe that a fairly

good agreement with data is obtained for the infrared cut-off given by m = 0.4 GeV. The

prescription for the running coupling gives a variation that corresponds to a 20% uncertainty at

lower energies, which decreases significantly at higher energies.

We calculate the centrality dependence of the multiplicity at RHIC (
√
s = 200 GeV) and

LHC (
√
s = 2.76 TeV) in the IP-Sat model. While the agreement of the model with data shown

in Fig. (4.15) is reasonably good for the most central collisions, a systematic deviation is seen

for lower centralities, and the model underpredicts the data. While within the range of the

theoretical uncertainties outlined thus far, this systematic discrepancy leaves significant room

for final state entropy production, which is expected to be more significant for more peripheral

collisions. See for instance Refs. [245, 246] that estimate the amount of entropy production.

As the right plot of Fig. (4.15) shows, running coupling effects are less important for the most

central collisions but introduce significant uncertainties relative to the fixed coupling results for

more peripheral collisions.

Fig. (4.16) shows the pseudo-rapidity distributions in the IP-Sat model compared to data for

Au+Au collisions at 200 GeV (PHOBOS) and Pb+Pb collisions at 2.76 TeV (ALICE and CMS).
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mass frame for p+A collisions at LHC energies.

Firstly, one sees that the results are sensitive to the infrared cut-off, with improved agreement

seen for m = 0.4 GeV. Further, the rapidity distributions are sensitive to the extrapolation of

the model to larger x ≥ 0.01 values. We also note that a significantly better fit to the data at

higher energies is obtained by including running coupling effects.

4.5.4 Multiplicity fluctuation in the perturbative framework

There are several sources of multiplicity fluctuations in high energy hadronic collisions. These

can arise from fluctuations in the number of wee partons, in their distribution with impact

parameter and their distribution in rapidity [251]. For further discussion we will consider par-

ticle production in a relatively small rapidity window (parametrically of order ∆η ≤ 1/αS), so

fluctuations in rapidity will not be an important source of fluctuations. Let us first consider fluc-

tuations in multiplicity for a fixed impact parameter. In this case, the CGC framework allows

for a systematic treatment of inclusive multi-particle production [252] in the Glasma [253]. The

largest contribution to multi-particle production comes from diagrams that appear superficially

disconnected, but are connected by averaging over color correlations in an event and over all

events. This is the formal basis of the Glasma flux tube picture [254], and was previously used
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to compute backward-forward correlations [255, 256], two particle correlations [212, 254], three

particle correlations [257], and n-particle correlations [40]. The n-particle correlations is rele-

vant for the description of multiplicity fluctuations. It can be shown that, in LO the n-particle

correlations obtained by averaging over color sources in the CGC picture are those that would

be generated by a negative binomial distribution [40].

The negative binomial distribution (NBD) is given by

PNB
n (n̄, k) =

Γ(k + n)

Γ(k)Γ(n+ 1)

n̄nkk

(n̄+ k)n+k
. (4.27)

NBD is characterized by two parameters, the mean multiplicity n̄ and the parameter k. As is

well known, in the limit k → ∞, this distribution reduces to the Poisson distribution. In the

limit k → 1, one obtains the Bose-Einstein distribution. The variance of the distribution is given

by σ2 = n̄2− n̄2 = n̄+ n̄2/k. In the Glasma flux tube approach, k is not an arbitrary parameter;
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instead, it is computed to be

k = ζ
(N2

c − 1)Q2
SS⊥

2π
, (4.28)

where ζ is a dimensionless non-perturbative parameter which will be discussed in detail in the

next sections. S⊥ is the overlap area of the two hadrons.

As we mentioned previously, the negative binomial distribution is obtained at a fixed impact

parameter, so n̄ ≡ n̄(b) and k ≡ k(b). In particular, the latter parameter must be interpreted as

being proportional to the number of flux tubes (or interacting “hot spots”) S⊥/1/Q
2
S at a given

impact parameter. Because Q2
S grows with energy, k has a very particular energy dependence.

Here, the parameter k in Eq. 4.28 is determined as follows. For a given impact parameter, we

define

Q2
S S⊥ =

∫
d2x⊥Q

2
S(x⊥) ,

where the integral on the r.h.s is performed over the overlap area of the two protons at a given

parameter. At each given transverse position x⊥ in the overlap area, we choose QS(x⊥) =
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min. {QAS , QBS }, where QAS and QBS are respectively the saturation scales of the two colliding

protons at that x⊥. This choice is motivated by the fact that the inclusive multiplicity of

produced gluons is much more sensitive to the smaller of the two saturation scales [260]. In

Fig. 4.17 (left) we plot the saturation scale as a function of
√
s for different impact parameters.

The right plot has on the y-axis the quantity that appears in Eq. 4.28 determined by the

procedure we described. We observe that a stronger dependence of this quantity is seen for the

b-CGC model. With the exception of the parameter ζ, we have everything necessary to compute

Eq. 4.27 at a given impact parameter.

Fluctuations in impact parameter are treated as follows. The overlap function for two protons

at a given impact parameter (see Fig. 4.2 (right)) can be expressed as

Tpp(b⊥) =

∫
d2s⊥Tp(s⊥)Tp(s⊥ − b⊥) (4.29)

where Tp is given for instance in the IP-Sat model by Eq. 4.11. Our knowledge of the HERA
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diffractive data therefore allows one to compute Tpp in the saturation models. The probability

distribution for an inelastic collision at a given impact parameter is given in impact parameter

eikonal models as [261–263]

dP eik.
inel.

d2b⊥
=

1− exp (−σggTpp)∫
d2b⊥ (1− exp (−σggTpp))

. (4.30)

In general, σgg is an energy dependent quantity estimated to be the elementary cross-section

for gluon-gluon scattering. Alternately, in the k⊥-factorization framework, an estimate for this

quantity without involving any additional parameters is

dP dip.
inel.

d2b⊥
=

dNg
dy (b⊥)∫

d2b⊥
dNg
dy (b⊥)

. (4.31)

This expression becomes unity when both sides are integrated over impact parameter. The

result for 2πb dP dip.
inel./d

2b⊥ at a fixed
√
s = 900 GeV is shown in Fig. 4.18 and is a sharply

peaked distribution at ∼ 3 GeV−1. The distribution plotted is insensitive to
√
s and to the

infrared scale m.
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With the stated assumptions we compute the probability distribution as a function of mul-

tiplicity. By convolving the probability distribution for producing n particles at a given impact

parameter (Eq. 4.27) with the probability for an inelastic collision at that impact parameter

(from Eq. 4.31), one obtains the expression

P (n) =

∫
d2b⊥

dPinel.

d2b⊥
PNB
n (n̄(b⊥), k(b⊥)) (4.32)

The results for this quantity are shown in Fig. 4.29(a). Note that since the input here is the

average inclusive multiplicity at a given impact parameter (as opposed to the minimum bias

inclusive multiplicity that was compared to data), this quantity needs to be normalized as well.

We do so by fitting the multiplicity distribution corresponding to the lowest energy UA5 data

set at
√
s = 200 GeV for the normalization of n̄. In the b-CGC model, a fit of the overall

normalization to the single inclusive minimum bias distribution at a given energy gives the

same value ( to an accuracy of < 5 %) as that obtained for the same quantity if fit to the

multiplicity distribution instead. In the IP-Sat model, one obtains the same normalization

constant if bmax. = 2 brms.. If one chooses the form bmax. = b0 +C ln(s) we described previously,

there is a 60% discrepancy between the two choices of fixing the normalization. The agreement
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between data and model is remarkably good for IP-Sat distribution for all energies and rapidity

cutsFor the b-CGC model, the agreement with data for |η| < 0.5 is quite good for the 2.36 TeV

ALICE data [226] but shows deviations at other energies at the highest multiplicities.

An important point regarding the comparison of the models to data in Fig. 4.29(a) concerns

the magnitude of the parameter ζ in Eq. 4.28 which is fit to the data. In the b-CGC model,

it is extracted to be 0.25 and it is 0.35 in the IP-Sat model. Estimation of this quantity in

non-perturbative framework will be discussed in the next section.

We employ Eq. (4.32) to compute the multiplicity distribution in A+A collisions. While

Eq. (4.27) is computed identically to the p+p case, we need to determine the impact parameter

distribution differently from the prescription used for the p+p case in Eq. (4.31). The expression

dPinel.

d2b⊥
=

1− (1− σNNTAB)AB∫
d2b⊥

(
1− (1− σNNTAB)AB

) , (4.33)

gives a better description of the impact parameter distribution in A+A collisions. As in the
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computation of Npart, σNN ∼ 62 (41) mb for 2.76 (0.2) TeV, is standard and not varied. The

saturation scale in this computation is determined at the median value of the impact parameter

b⊥
med. = 15 GeV−1. With these assumptions, the only parameters in computing P (n) are m

and ζ, the parameter controlling the width of the multiplicity distributions. In Fig. (4.20) (left)

we see that the multiplicity distributions are insensitive to variations in m. Fig. (4.20) (right)

shows the result of varying ζ = 0.01-1. Interestingly, we find that the best fit is found for the

value of ζ = 0.155 that also gives the best fit to the p+ p data.
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Figure 4.20: Left:Multiplicity distribution for Au+Au collisions in the IP-Sat model compared
to uncorrected data(histogram [243]) for different values of m. Both data and model plots are
normalized for better comparison. Right:Multiplicity distribution for Au+Au collisions at 200
GeV and its sensitivity to the non perturbative constant ζ.

4.6 Particle production : Non-perturbative approach

In this section we discuss the computation of multiplicity in a non-perturbative approach by

combining the IP-Sat (Impact Parameter Saturation Model) model [266, 267] of high energy nu-

cleon (and nuclear) wavefunctions with the classical Yang-Mills (CYM) dynamics of the Glasma

fields produced after the heavy-ion collision [268–270, 272, 274, 275]. We call this newly devel-

oped framework as the IP-Glasma (Impact Parameter Dependent Glasma) model. A detailed

description of the IP-Glasma model can be found in [276–278]. Parameters of IP-Glasma model

are constrained by global fits to the HERA data.
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In the IP-Glasma model we use the impact parameter dependent dipole saturation model (IP-

Sat) to extract the nuclear saturation scale in the colliding nuclei. The proton-dipole scattering

matrix of Eq. 4.5 is

Spdip(r⊥, x,b⊥) = exp

(
− π2

2Nc
r⊥

2αS(µ̃2)xg(x, µ̃2)Tp(b⊥)

)
(4.34)

Here the gluon density at the transverse distance b⊥ from the centre of the proton is parametrized

using the Gaussian thickness profile Tp(b⊥). The momentum scale µ̃ is related to dipole size r⊥

as µ̃2 = 4/r⊥
2 + µ2

0. The parameters µ0 and the width of the Gaussian profile Tp(b⊥) and the

gluon distribution xg(x, µ̃2) at scale µ0 are obtained from the fits to HERA data. xg(x, µ̃2) is

evolved from µ0 to µ̃ using LO DGLAP evolution. The dipole-nucleus scattering matrix can be

expressed in terms of the product of individual dipole-nucleon scattering matrices as

SAdip(r⊥, x,b⊥) =
A∏
i=0

Spdip(r⊥, x,b⊥ − bi) (4.35)

Here bi denotes the positions of individual nucleons which are distributed according to the

Fermi distribution (Woods-Saxon) inside a nucleus [279] given by

ρ(r, θ) =
ρ0

1 + exp ([r −R′(θ)]/a)
,with R′(θ) = R

[
1 + β2Y

0
2 (θ) + β4Y

0
4 (θ)

]
,

where ρ0 denotes the nucleon density at the center of the nucleus. The spherical harmonic

functions Y m
l (θ) and the parameters β2 and β4 account for the deformation from the spherical

shape. For a perfectly spherical nucleus β2 = β4 = 0. The nuclear saturation scale at a

given transverse position b⊥ inside the nucleus QS(b⊥, x) is determined using the condition

SAdip(r⊥ = rS , x,b⊥) = exp(−1/2) with Q2
S = 2/r2

S . The saturation scale at a given
√
s and

at transverse position b⊥ is obtained by self-consistently solving x = QS(b⊥, x)/
√
s. The

transverse distribution of QS(b⊥,
√
s) generates the lumpy distribution of color charge density

g2µ(b⊥,
√
s) in the colliding nuclei as shown in Fig. 4.21(a). The factor relating QS and g2µ has
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(a) The incoming color charge densities gµA(B)

for two gold nuclei at
√
s = 200 GeV. Increasing

density from yellow to red.

(b) The correlator
1/NcRe(Tr(V †A(B)(0, 0)VA(B)(x, y))) show-
ing the degree of correlations in the gluon fields
for lead ions at

√
s = 2760 GeV. Increasing

degree of correlation from blue to red.

Figure 4.21: Initial state geometry and correlation in the colliding nuclei.

been computed numerically [280], in our model it is tuned to adjust the normalization between

data and the calculated multiplicity at τ = 0.4. An average ratio QS/g
2µ = 0.65 provides good

fit to the centrality dependence of average multiplicity in Au+ Au collisions at 200 GeV [278].

For smaller sized systems, additional fluctuation leading to event-by-event variation of this ratio

has to be included [278]. To avoid numerical noise the value of g2µ(b⊥,
√
s) is set to zero at

a distance rmax ≈ 1.2 fm from the center of a nucleon. The sensitivity due to the variation of

rmax on the final state observables are discussed in [278].

Random distribution of color charge ρa(x⊥) on the transverse plane of the colliding nuclei is

sampled from the Gaussian distribution

〈ρaA(B)(x⊥)ρbA(B)(y⊥)〉 = g2µ2
A(B)(

√
s,x⊥)δabδ(2)(x⊥ − y⊥) . (4.36)

The sampled color charge distribution generates the color current Jν = δν±ρA(B)(x
∓,x⊥) which

5 according to the MV model [192] acts as the source for classical Glasma gluon fields. The

5here we assume a gauge A∓ = 0
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classical gluon fields in each nucleus are obtained by solving the Yang-Mills equations

[Dµ, F
µν ] = Jν . (4.37)

Solution of Eq. (4.37) in Lorentz gauge ∂µA
µ = 0 can be written as

A±A(B) = −
ρA(B)(x

∓,x⊥)

∇2
⊥ +m2

, (4.38)

where the infra-red regulator m ∼ ΛQCD is introduced to incorporate color confinement at the

nucleon level. m = 0.1 GeV provides the best fit to RHIC Au+Au data. Variation of m affects

the centrality dependence of multiplicity, a detailed study can be found in ref.[278]. The

solution of Eq. 4.38 can be transformed to light-cone gauge A+(A−) = 0 as, [191, 192, 281]

AiA(B)(x⊥) = θ(x−(x+))
i

g
VA(B)(x⊥)∂iV

†
A(B)(x⊥) , (4.39)

A−(A+) = 0 . (4.40)

where VA(B) are path-ordered Wilson lines in the fundamental representation. Fig. 4.21(b)

shows the quantity 1/NcRe(Tr(V †A(B)(0, 0)VA(B)(x, y))) (for a given configuration of two colliding

nuclei) which is the measure of the correlation in the gluon fields between two points ((0,0) and

(x,y)), which is again related to the dipole-nucleus amplitude defined in Eq. 4.4. The Glasma

fields at time τ = 0 is given by the solution of classical Yang-Mills equations in Fock–Schwinger

gauge Aτ = (x+A− + x−A+)/τ = 0. In this gauge, the fields after collision are expressed in
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terms of the fields of the colliding nuclei as

Ai = Ai(A) +Ai(B) , (4.41)

Aη =
ig

2

[
Ai(A), A

i
(B)

]
, (4.42)

∂τA
i = 0 , (4.43)

∂τA
η = 0 (4.44)

The Glasma fields are evolved in time τ according to Eq. 4.37.

We follow the numerical implementation of [272, 274, 275] for solving Eq. 4.37 on a 2+1

dimensional lattice. The details of this implementation in our model can be found in Ref. [277].

The path ordered integral of Eq. 4.39 is estimated by discretizing the longitudinal direction (x∓)

in Ny = 100 steps as

VA(B)(x⊥) =

Ny∏
k=1

exp

(
−ig ρ

A(B)
k (x⊥)

∇2
⊥ +m2

)
(4.45)

Choosing a value of Ny ≤ 50 would affect the absolute normalization of multiplicity [278].

Since in Fock–Schwinger gauge (Aτ = 0) the gauge links in temporal direction become unit

matrices, the evolution of the Glasma fields in τ are performed by solving discretized Hamilton’s

equations. Once the filed tensor is known the stress energy tensor Tµν at each transverse position

is calculated at a given τ from the relation

Tµν = −gµαgνβgγδFαγFβδ +
1

4
gµνgαγgβδFαβFγδ (4.46)

The transverse distribution of energy density ε(x⊥, τ) in the fluid’s rest frame and the flow

velocity are obtained by solving uµT
µν = εuν .

Gluon multiplicity per unit rapidity is calculated at a time τ by fixing transverse Coulomb
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gauge (∂iA
i = 0, with i summed over 1,2). The lattice expression of dNg/dy is given by [275, 282]

dNg

dy
=

2

N2

∫
d2kT

k̃T

[g2

τ
tr (Ei(k⊥)Ei(−k⊥))

+ τ tr (π(k⊥)π(−k⊥))
]
, (4.47)

where

k2
T = 4

[
sin2 kx

2
+ sin2 ky

2

]
, (4.48)

denotes the effective lattice momentum squared and N is the number of lattice sites in each

direction of the 2D lattice. We use a multiplicative factor 2/3 to convert the gluon multiplicity

dNg/dy to charge particle multiplicity dNch/dy. The coupling constant appears as a multiplica-

tive factor in the final multiplicity. There are several schemes to introduce running coupling

effects in the calculation of multiplicity. In Ref. [278] it was shown that running the coupling

with a scale kT /2 provides good description of rapidity and centrality dependence of multiplicity

for a wide range of systems. The running coupling is introduced by multiplying the terms inside

the parenthesis of Eq. 4.47 with a factor g2/(4παs(µ)) where

αs(µ = kT /2) =
4π

β ln
[
(µ0/ΛQCD)2/c + (µ/ΛQCD)2/c

]c . (4.49)

The parameters used here are µ0 = 0.5GeV, c = 0.2, Nc = 3, β = 11 − 2NF /3 with number of

flavours NF = 3 and ΛQCD = 0.2GeV.

For conversion between rapidity and pseudo-rapidity density of multiplicity we use a Jacobian

factor,

dNch

dη
=

cosh η√
cosh2 η +m2

eff/P
2

dNch

dy
, (4.50)

where the effective mass term meff = 0.35 GeV and momentum P = 0.13 GeV

+ 0.32 GeV(
√
s/(1 TeV))0.115 are obtained from the paramaterization given in ref [93].

155



 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4

d
N

/d
η

η

IP-Glasma pp collisions  7 TeV
 2.36 TeV
 900 GeV
 200 GeV
 CMS 7 TeV
 CMS 2.36 TeV
 CMS 900 GeV
 UA5 200 GeV

Figure 4.22: Charged particle multiplicity as a function of pseudo-rapidity compared to ex-
perimental data from the UA5 [283] and the CMS collaboration [284]. Thick (colored) lines
correspond to the best parameter set for AA collisions. Thin (gray) lines use meff = 200 GeV
which makes the dip around η = 0 less prominent, and Ny = 10, τ = 0.5 fm, and Qs/g

2µ = 0.75.

4.6.1 Results for p+p collisions

The overlap function of a proton+proton collision at impact parameter b is a convolution of the

corresponding thickness functions

Tpp(b) =

∫
dx dy TAp (x+ b/2, y)TBp (x− b/2, y) . (4.51)

With this quantity in hand, we can define the probability density for an inelastic parton-parton

interaction as a function of the impact parameter. This is parametrized as

d2P

d2b
(b) =

1− e−σggN2
gTpp(b)∫

d2b
(

1− e−σggN2
gTpp(b)

) , (4.52)

with an effective parton number Ng and effective parton-parton cross section σgg [235]. The

denominator of Eq.(4.52) is the inelastic proton+proton cross section σinel
pp , and we fix the value

of σggN
2
g to reproduce its experimentally determined value σinel

pp = 68 mb for
√
s = 7 TeV
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(σinel
pp = 42 mb for

√
s = 0.2 TeV) [285]. In practice, we sample b from a uniform distribution

between bmin = 0 fm and bmax = 4 fm and weight each event with the factor b
(

1− e−σggN2
gTpp(b)

)
.

The expression in Eq. (4.52) describes the likelihood of an inelastic proton-proton collision.

Given such a collision, we next follow the procedure described earlier to compute the configura-

tion of gauge fields created in the collision, and from these gauge fields, the gluon multiplicity

using Eq. (4.47).

Results for dNch/dη are shown in Fig. 4.22, with statistical errors indicated by bands. We

see that the IP-Glasma model gives a good description of the energy and rapidity distribution.

Thick (colored) lines are for the parameters that gave the best description in A+A collisions.

Thin (gray) lines are for a different set, using meff = 200 GeV, Ny = 10, τ = 0.5 fm, and

Qs/g
2µ = 0.75. The main difference is caused by the smaller meff in the Jacobian, which makes

the dip around η = 0 weaker. We are able to determine the multiplicity as a function of rapidity

only on average because the result in a single event is strictly boost-invariant. However, varying

the rapidity y in x = (Qs(x⊥, x)/
√
s) exp(±y) will vary the magnitude of Qs in both protons

in opposite ways–this feature of the model leads to the observed rapidity dependence of the

multiplicity.

To check whether we can also reproduce the experimentally determined charged particle

multiplicities as a function of transverse momentum, we compute the charged hadron distribution

from the gluon distribution using the next-to-leading order (NLO) KKP [286] fragmentation

functions:

dNh

dyd2pT
=

∫ 1

0.05

dz

z2
Dh
g

(
z =

pT
kT
, Q = kT

)
dNg

dyd2kT
, (4.53)

where Dh
g (z,Q) is the probability to produce a charged hadron with momentum pT = zkT from

a gluon with momentum kT at the scale Q. We have restricted the integral to z ≥ 0.05 so that

the fragmentation function parametrizations are not used too far outside the x range selected

for the fits [286].

The result is presented in Fig. 4.23. Here we employ a lattice spacing of a = 0.015 fm to

increase the momentum range on the lattice to higher momenta. We show both the gluon
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distribution and the charged hadron distribution after fragmentation. The agreement with

experimental data from the ATLAS collaboration [287] is very good at low momenta. At higher

transverse momentum (& 3 GeV), we see a similar overestimation of the experimental data as

found in calculations using the McLerran-Venugopalan (MV) model [288]. Since we have not

attempted to introduce an anomalous dimension, or similar modification [289, 290], or higher

order ρa-correlators [291], we anticipated the somewhat harder spectra at large momentum.

Furthermore, the quark contribution is ignored completely. It is well known that quark-gluon

scattering can provide a significant contribution to the multiplicity as x→ 0.01 and above [292].

Note that the normalization factor is now somewhat different from the previous result for dN/dη,

because the conversion from gluons to hadrons is taken care of by the fragmentation function.

Given these limitations, the overall agreement with the data is in fact surprisingly good. The

shape of the spectrum in the range 0.5 GeV < pT < 2 GeV is well reproduced.
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Figure 4.23: Charged particle multiplicity obtained using Eq. (4.53) as a function of transverse
momentum compared to experimental data from the ATLAS collaboration [287].

4.6.2 Results for p+A/d+A collisions

In this section, we present results for Proton-lead collisions at center of mass energies of
√
s =

5020 GeV at the LHC and d+A collisions at
√
s = 200 GeV at RHIC using IP-Glasma model.

We follow the same procedure for computing the multiplicity in p+A as in p+p collisions, using
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the weight in Eq. (4.52). We then compute the configuration of gauge fields created in the

collision and from those the gluon multiplicity according to Eq. (4.47).

First, we show the unintegrated distribution dNg/dyd
2kT in transverse Coulomb gauge for

a single event in Fig. 4.24(a).
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Figure 4.24: Transverse momentum distribution in p+Pb collisions.

We see that at large kT & 5 GeV we recover the standard perturbative behavior ∼ 1/k4
T up

to possible logarithmic corrections. Within the MV model, this limiting behavior was shown

analytically in [293, 294]. In the saturation regime at small kT . QPb
s , we find the expected

∼ 1/k2
T behavior for a system with two differing saturation scales, with a flatter distribution at

very low kT . Qproton
s . This behavior was discussed in detail in [295, 296] and was previously

observed numerically in [272].

In Fig. 4.24(b) we show the pT distribution of charged hadrons after fragmentation with

the KKP fragmentation function, as in the p+p case. The result is similar to the one in p+p

collisions, with a good description for pT . 3 GeV but an overestimate in the high pT region.

The pT integrated distribution has the functional form (Qmin
s )2 ln(Qmax

s /Qmin
s )/αS , where

{Qmin
s , Qmax

s } denote respectively the smaller and larger saturation scales at a given rapid-

ity. It was shown previously to give good agreement with RHIC deuteron-gold data [297]. A
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compilation of predictions in various saturation models–all computed with the kT factorization

approximation–agree with the LHC p+Pb rapidity distribution to within 20% [298].

In Fig. 4.25 we present results in the IP-Glasma framework for rapidity distributions in d+Au

and p+Pb collisions.We have approximated the shift of the rapidity to the laboratory frame, in

which the data is presented, by a shift of the same amount in pseudo-rapidity. In d+Au the

shift is 0.11 units of rapidity in the proton going direction, in p+Pb it is 0.465 units.

It is important to note that all but one parameter are the same as in p+p collisions (thick

lines in Fig. 4.22). The only exception is the energy dependent normalization used in the plot.

We find N ≈ 0.14 ln(
√
s/1 GeV), so that at a given energy the normalization constant N

is approximately 15% smaller than that for p+p collisions. However, this is well within the

systematic uncertainties of our framework. The rapidity dependence is somewhat flatter than

the data in d+Au collisions and slightly steeper in the higher energy p+Pb collisions. At large

absolute values of η either target or projectile are probed in the large-x region that we have little

theoretical control over. We thus do not expect a very good description in the very forward and

backward directions.
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Figure 4.25: Charged particle multiplicity as a function of pseudo-rapidity in d+Au collisions
at 200 GeV and p+Pb collisions at 5.02 TeV compared to experimental data from the PHOBOS
and BRAHMS collaborations [233, 299] and the ALICE collaboration [300].

160



 2

 2.5

 3

 3.5

 4

 4.5

 0  100  200  300  400  500

(2
/N

pa
rt)

 d
N

ch
/d
d

Npart

 Au+Au 200 GeV
 U+U (Min-bias) 193 GeV
 U+U (Tip-Tip) 193 GeV
 Cu+Au 200 GeV

PHENIX U+U 193 GeV
PHENIX Au+Au 200 GeV

IP-Glasma

(a) Centrality dependence of mean multiplicity per par-
ticipants for different systems. Plotted data points are
from Ref. [301, 302].

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300  350  400

d
N

/d
η

/(
N

p
a
rt
/2

)

Npart

 Au+Au 200 GeV 

 Pb+Pb 2.76 TeV 

 PHENIX 200 GeV 

 ALICE 2.76 TeV 

(b) Charged particle multiplicity divided by Npart/2
as a function of Npart compared to experimental data
from the PHENIX [302] and the ALICE [303] col-
laborations. The bands are a collection of the mul-
tiplicities for individual events, with the solid lines
representing the average multiplicity.

Figure 4.26: Centrality dependence of multiplicity in A+A collisions for different systems.

4.6.3 Results for A+A

To study A+A collisions in the the IP-Glasma model, Yang-Mills equations are solved up to time

τ = 0.4 fm/c, and the transverse Coulomb gauge is fixed, to compute the gluon multiplicity per

unit rapidity. A multiplicative factor of 2/3 then converts the gluon multiplicity to the charged

particle multiplicity. The systems studied here are Au+Au, Cu+Au and U+U at RHIC and

Pb+Pb collisions at LHC.

Experimental results for multiplicities are typically presented as a function of Npart, the

number of participant nucleons. In the IP-Glasma framework, Npart does not enter in any of the

computations. However, to make comparisons to the experimental data plotted as a function of

Npart, the value of Npart is determined geometrically as follows. Two nucleons have an inelastic

collision whenever their geometric distance is less than σNN = 42 mb, the nucleon-nucleon

inelastic cross section at the top energy of the Relativistic Heavy Ion Collider (RHIC). We

define the total number of nucleons that undergo at least one such inelastic collision to be Npart.

The centrality dependence of the mean produced multiplicity density per participant pair
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(2/Npart) dNch/dη at η = 0 for various systems is shown in Fig. 4.26(a). Computations of multi-

plicities in the IP-Glasma model are compared to the available Au+Au data at 200 GeV/nucleon

and preliminary results for U+U 193 GeV/nucleon collisions from the PHENIX collabora-

tion [301]. Fig. 4.26(a) also presents the result for Cu+Au collisions, for which no data are

as yet available. For Cu+Au there will be a shift of the rapidity distribution in the laboratory

frame by about 0.07 units in the Cu going direction which is negligible and ignored in our cal-

culation. The results are very similar for different systems. A weak system size dependence is

observed showing that the smaller sized systems Cu+Au and Au+Au produce slightly higher

multiplicities per participant compared to U+U collisions. Tip-tip U+U collisions produce fewer

particles per participant than random collisions for most values of Npart. Only for the most cen-

tral events, does the tip-tip configuration produce as many particles per participant as in the

random case.

For Cu+Au collisions we see an interesting centrality dependence of multiplicity which is

not seen in case of other systems. As shown in Fig. 4.26(a), the centrality dependence of

(2/Npart) dNch/dη for Cu+Au flattens out above Npart > 180. One possible interpretation could

be that the Cu nucleus is completely surrounded by the Au nucleus for most central Cu+Au

collisions. In this case, the minimum saturation scale among the two nuclei that controls the

multiplicity does not grow fast enough with further increase of Npart.

Fig. 4.26(b) shows the new results for the charged particle multiplicity as a function of Npart

in Au+Au collisions at RHIC and Pb+Pb collisions at the LHC. We underestimate the Pb+Pb

data at the higher
√
s after fixing the normalization for Au+Au at

√
s = 200 GeV. At low

Npart the result is about 30% too low, at large Npart only 15%. Note however that additional

entropy can be generated at the end of the Glasma stage. In particular, increased entropy

production at higher energy (larger effective η/s) and in more peripheral events could provide

a natural explanation for this difference. In [304], the IP-Glasma Yang-Mills dynamics was

matched event-by-event to the music relativistic hydrodynamical model [85, 305, 306].
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4.6.4 Multiplicity fluctuation in the non-perturbative framework
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Figure 4.27: Multiplicity fluctuation in p+p and p+Pb collisions in the IP-Glasma model.

One of the most striking result from this approach is that the IP-Glasma naturally produces

Negative-Binomial fluctuation of multiplicity and energy density.

In Fig. 4.27(a) we show the multiplicity distribution of p+p collisions at 7 TeV scaled by

the mean multiplicity. We find that when fixing the ratio of Qs to the color charge density

g2µ, the distribution is too narrow, missing fluctuations in the tail of the distribution. One

possible reason for this could be that there are additional sources of fluctuations in QCD that

go beyond those included in our framework (see [308]). If we allow g2µ to fluctuate around

its mean value with a Gaussian distribution whose width is 9% of that mean value, the result

is closer to the experimental data. The choice of a Gaussian distribution is merely an ansatz

chosen for simplicity. As detailed discussion on this context can be found in Ref. [278]. The

discrepancy between our result and the experimental data suggests that the exact form of these

fluctuations is non-Gaussian. In Fig. 4.27(b) we present the same distribution for p+Pb collisions
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√
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at
√
s = 5020 GeV.

In Fig. 4.28 we present the probability distribution of dNg/dy at RHIC energies. An essential

ingredient is the probability distribution of impact parameters, which is determined by the

Glauber model to be

dPinel

d2b⊥
=

1− (1− σNNTAB)AB∫
d2b⊥ (1− (1− σNNTAB)AB)

, (4.54)

with the overlap function TAB. One could in principle compute this distribution in the Glasma

framework, but a first principles computation is extremely difficult. The probability for no

inelastic interaction (an essential ingredient in the above equation) at a given impact parameter

requires an understanding of diffractive/elastic interactions which is incomplete at present in

all QCD based frameworks. The Glauber model, with parameters tuned to data, is therefore a

good effective model for this aspect of our computation.

We compute the n-particle multiplicity distribution by first sampling the impact parameter

b from a uniform distribution, computing the resulting dNg/dy from the IP-Glasma model, and

when binning these values into the histogram shown in Fig. 4.28, weight the result with a factor

2π b dPinel/d
2b⊥ depending on the b value used in a given event. The STAR data shown is

uncorrected, which makes a direct comparison difficult. We therefore scale dN/dy by a factor
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of 0.8 and achieve good agreement with the data. This factor is very close to the ratio of the

un-corrected to corrected mean multiplicity for 0-5% most central STAR data as quoted in

ref [309]. Note, however, that this comparison is approximate since the correction depends on

dN/dy [309] which would modify the shape of overall multiplicity distribution.

The multiplicity distributions of charged particles Nch at mid-rapidity (|η| < 0.5) for different

systems are shown in Fig. 4.29(a).
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Figure 4.29: Fluctuation of multiplicity and energy density in IP-Glasma model.

We also show three distributions obtained by constraining the impact parameter range to

demonstrate that their shape resembles a negative binomial distribution (NBD). The negative

binomial fluctuations of the transverse energy as emerging from the IP-Glasma model is shown

in Fig. 4.29(b). Here we show that they also appear in the multiplicity distribution. In the

Glasma flux tube framework [310, 311], negative binomial distributions given in Eq.4.27 with

k = ζ
N2
c − 1

2π
Q2
sS⊥ (4.55)

arise [312], with k inversely proportional to the width of the NBD. k here is proportional to the

165



number of flux tubesQ2
sS⊥, where S⊥ is the transverse size of the system. (Hence smaller systems

at a fixed energy generate more fluctuations.) In the expression above, ζ is an intrinsically non-

perturbative function which can be computed ab initio from solutions of the CYM equations.

To determine ζ it is sufficient to compute the double inclusive distribution by solving CYM

equations as done in Ref. [313]. Here we are computing the n-particle inclusive distribution,

and can thus also extract ζ if the NBD description of these distributions is robust. ζ in general

can depend on Q2
sS⊥; however, a powerful test of how robust the Glasma flux tube picture is

depends on this dependence being weak for large values of Q2
sS⊥. We will therefore discuss the

behavior of ζ below and what the results tell us about the nature of different sources of quantum

fluctuations.

Within the IP-Glasma model, we determine ζ(Q2
sS⊥) by extracting k from a fit with an

NBD and computing an average 〈Q2
sS⊥〉 by summing over the minimum of the two Q2

s,A(B) in

the whole transverse plane.

We first determine n̄ and k of Eq. (4.27) from the fit to the multiplicity distributions at

fixed impact parameter b. The results are shown in Fig. 4.30(a). Interestingly, the ratio k/n̄ is

greater than one for central collisions and at large impact parameters approaches approximately

k/n̄ ≈ 0.14, which is close to the value determined from fits to distributions in p+p collisions

[314].

The corresponding ζ-values are shown in Fig. 4.30(b) as a function of the average values of

Q2
sS⊥ for a given b. We observe a strong dependence of ζ on Q2

sS⊥, which is in disagreement

with the flux tube picture. The reason is that the effect of fluctuations in the number of wounded

nucleons (which were not considered in the derivation of Eq. (4.55)) in addition to fluctuations

in the color charge distributions, make the distribution wider (ζ smaller), especially at large

impact parameters (small Q2
sS⊥) where geometrical fluctuations dominate.

This behavior of ζ is compatible with the previously extracted values from fits based on

k⊥ factorization to multiplicity distributions [92] described in section 4.5.4, where small dN/dy

required small values of ζ and large dN/dy larger values to achieve a good fit. The IP-Glasma
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Figure 4.30: Parameters of NBD in the non-perturbative framework.

model automatically produces this variation of ζ, leading to very good agreement with the

experimental data as shown in Fig. 4.28.

To be able to better compare to the flux tube picture and Eq. (4.55), we now consider only

the effect of fluctuations in color charges. To do so we average over the nuclear color charge

density squared over many nucleon configurations. This results in a smooth distribution that

removes fluctuations in the wounded nucleon number and positions.

This is in the spirit of the original Glasma flux tube perturbative [312] and non-perturbative [313]

computations. The result for this ζsmooth is shown in Fig. 4.31. After starting out near 1, ζsmooth

drops and approaches a constant value of approximately ζsmooth = 0.2 for large Q2
sS⊥. This

means that at low parton densities, k is initially more constant than expected in the Glasma

flux tube picture but then becomes proportional to Q2
sS⊥ at high parton densities as anticipated.

The fact that ζ at small impact parameters (cf. Fig. 4.30(b)) approaches that in the smooth

case for the same Q2
sS⊥ gives hope that there is a chance to experimentally access a regime

where the flux tube picture is valid. Fixing b = 0 fm and increasing the energy, and this way

increasing Q2
sS⊥ while keeping S⊥ as constant as possible, reduces fluctuations in the nucleon

167



Entries  0

 S2

S
Q

0 5000 10000 15000

ζ

0.2

0.4

0.6

0.8

1

Entries  0

average nucleon positions

fixed b=0 fm

Figure 4.31: Proportionality factor ζ in k = (ζ(N2
c − 1)/(2π))Q2

sS⊥ as a function of Q2
sS⊥ for

averaged nucleon positions (squares) and with nucleon fluctuations at fixed impact parameter
b = 0 fm (circles). At large Q2

sS⊥ the result for the smooth distribution approaches a constant
as predicted by the Glasma flux tube model for n-gluon correlations. The result for fluctuating
nucleon positions at constant b = 0 fm is very similar and becomes very weakly dependent on
Q2
sS⊥.

number. Indeed we find that the result for the extracted ζ, shown as blue circles in Fig. 4.31, is

very close to the one obtained with smooth initial distributions, and its dependence on Q2
sS⊥

becomes weak at large Q2
sS⊥.

4.7 Initial state geometry and fluctuation in heavy ion collisions

In this section we discuss how initial state fluctuation influence bulk observables other than

multiplicity. Aforementioned, several sources of fluctuations in the initial stages of heavy ion

collisions. The dominant ones are the geometric fluctuations of nucleon positions and fluctuations

of the impact parameter. In collisions of deformed (non-spherical) nuclei the orientations of the

nuclei, characterized by four spherical angles, also fluctuate from event to event. For each such

configuration of the collision geometry, additional sub-nucleonic fluctuations of color charges

lead to fluctuations in the produced gluon fields.

The combined effect of these fluctuations is reflected in the distributions of global observ-
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Figure 4.32: Energy density (arbitrary units) in the transverse plane at τ = 0 fm (upper panel)
and τ = 0.2 fm (lower panel). The structures are smoothed by the evolution over the first
∆τ ∼ 1/Qs.

ables such as anisotropic flow and its fluctuations. The IP-Glasma model, that incorporates

different sources of initial state fluctuations and includes an ab initio description of multi par-

ticle production, therefore serves as an ideal framework to simulate the initial stage of heavy

ion collisions. Several other frameworks like Monte-Carlo Glauber-type models (MC-Glauber)

and Monte-Carlo implementations of the KLN model (MC-KLN) [315–317] are widely known

models for initial conditions for heavy ion collisions. A comparison between different models of

initial condition is described in Table.4.7.

Fig. 4.33 shows the structure of the energy density in the transverse plane after the collision,

at time τ = 0 fm and after classical Yang-Mills evolution in 2+1 dimensions for ∆τ = 0.2 fm,

which is of the order of 1/Qs, the time scale over which interactions are still significant. After

this time, expansion causes the fields to become weak and the system becomes freely streaming.

We now show the energy density distribution in the transverse plane in Fig. (4.33). We

compare to the MC-KLN model and to an MC-Glauber model that was tuned to reproduce

experimental data [306, 318]. In the latter, for every participant nucleon, a Gaussian distributed

energy density is added. Its parameters are the same for every nucleon in every event, with the

width chosen to be 0.4 fm to best describe anisotropic flow data. We will also present results for

a model where the same Gaussians are assigned to each binary collision. The resulting initial

energy densities differ significantly. In particular, fluctuations in the present computation occur
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I.C. Geometry kT−factorization Classical Yang-Mills
(MC-Glauber) (MC-KLN) (IP-Glasma)

framework 2-component CGC CGC
model perturbative non-perturbative

E-by-E � � �
Sub-nucleonic × × �
fluctuation

Time × × �
evolution

Initial × × �
flow

NBD fluctuation by hand by hand �

Table 4.3: Comparison between different models of initial conditions.

Figure 4.33: Initial energy density (arbitrary units) in the transverse plane in three different
heavy-ion collision events: from left to right, IP-Glasma, MC-KLN and MC-Glauber [318] mod-
els.

on the length-scale Q−1
s (x⊥), leading to finer structures in the initial energy density relative to

the other models. As noted in [314], this feature of CGC physics is missing in the MC-KLN

model.

The n-th order spatial eccentricity that characterizes the initial state geometry is defined as

εn =

√
〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉 (4.56)

Here 〈·〉 is the energy density ε(r, φ, τ) weighted average. To eliminate noise in the computation

of eccentricities, we only include cells in which the energy density is greater than εmin = Λ4
QCD,

where ΛQCD is chosen to be 200 MeV. The effect of variation of εmin was previously studied in

Ref. [319]. The system size calculated was found to be sensitive to the choice of εmin. However,
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Figure 4.34: Even (upper panel) and odd (lower panel) eccentricities from the IP-Glasma model
compared to those from MC-KLN.

we find that variation of εmin has only a negligible effect on the εn we compute here, because

they are ratios of quantities proportional to the system size. Fig. 4.34 shows the results for εn

up to n = 6 in Au+Au collisions at
√
s = 200GeV from the IP-Glasma model which is compared

to the predictions from the MC-KLN model. One can see that the purely fluctuation driven

odd harmonics ε3 and ε5 from the IP-Glasma model are larger than those from the MC-KLN

model for all b, while ε2 is smaller than that computed in the MC-KLN model, in particular

for b > 3 fm. As a consequence, the ratio ε2/ε3 is smaller than in the MC-KLN model, which

is going to decrease the ratio of v2/v3 obtained after hydrodynamic evolution, making it more

compatible with experimental observation. ε4 and ε6 are almost equal or larger than those from

the MC-KLN model. We make the comparison to MC-KLN at τ = 0 fm/c, because at later

times we would also have to take into account the pre-equilibrium flow built up in the CYM

simulation.
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4.8 Summary

In this chapter we study the multi-particle correlations in the framework of Color Glass Con-

densate. This framework consistently includes several sources of initial state fluctuations and

provides an ab initio description of particle production. The study includes the extraction of

hadronic and nuclear wave functions using saturation models of HERA DIS data to predict the

inclusive multiplicity and its fluctuation in p+p, p+A and A+A collisions at RHIC and LHC.

To study different sources of fluctuations at the initial stages of collisions we have developed

a new framework of fluctuating initial condition “Impact Parameter dependent Glasma” (IP-

Glasma) model which computes the initial gluon fields and their Yang-Mills evolution on a two

dimensional real-time lattice. This model goes beyond the widely known MC-KLN implementa-

tion by using CYM solutions instead of k⊥-factorization and including quantum fluctuations on

the dynamically generated transverse length scale 1/Qs. Further, unlike MC-KLN, its parame-

ters are fixed by HERA inclusive and diffractive e+p DIS data. At fixed impact parameter, this

model naturally produces Negative Binomial multiplicity fluctuations that are known to describe

p + p and A + A multiplicity distributions, and its ratio of initial triangularity to eccentricity

is more compatible with experimental data of harmonic flow coefficients. This model naturally

describes inclusive multiplicity fluctuations and can be used to study wide range of systems

like p+p, p+A/d+A and A+A. This model can be used as an input to viscous hydrodynamic

simulations.
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Summary

This thesis work includes two major topics : modelling of inclusive multiplicity fluctuations,

and measurement of inclusive multiplicity fluctuation in ultra relativistic heavy ion collisions.

The goal was to develop an understanding of how observed multiplicity fluctuation arises from

different stages of heavy ion collisions. Over several years, experimental results have suggested

that the observed distribution of inclusive multiplicity in hadronic collisions are well described

by the Negative-Binomial distributions (NBDs). For heavy ion collisions it turns out that

the minimum bias multiplicity distribution is a convolution of many such NBDs. Although

several models have predicted the origin of such a distribution, a first principle QCD motivated

explanation was missing. This work is the first to demonstrate the origin of Negative-Binomial

fluctuations in a non-perturbative approach by employing a framework of high energy effective

field theory of QCD known as the Color Glass Condensate. Such fluctuations are essential in

describing the fluctuation of the multiplicity of gluons produced in the early stages of collisions

which further fragment into charged and neutral particles.

According to the conventional model of heavy ion collisions, the initial gluonic matter created

after collisions, eventually thermalises to form a strongly correlated system of QCD matter

known as the Quark Gluon Plasma (QGP). The QGP phase eventually undergoes a phase

transition to hadronic matter. This phase transition is associated with the de-confinement

transition and the restoration of QCD chiral symmetry. Several experimental observables that

are sensitive to the de-confinement transition, indicate the formation of a thermalised QCD

matter in heavy ion collisions. Fluctuation of the multiplicity of conserved charges is one such
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observable. So far there are very few observables that directly probe the QCD chiral phase

transitions.

This thesis work focuses on the experimental search for the possible signature of chiral phase

transitions using the fluctuation of inclusive multiplicity of charged and neutral particles. When

the system passes from a chirally symmetric phase to a broken phase, in a scenario of rapid cool-

ing, there could be formation of metastable domains of disoriented chiral condensate (DCC).

Formation and decay of DCC domains could lead to a distinct distribution of the neutral pion

fraction compared to that from generic production of pions under isospin symmetry. If this

phenomenon survives the final-state interactions, it will appear as anti-correlation, between the

yields of charged and neutral pions. In heavy-ion collisions, charged and neutral particle pro-

ductions are dominant in the form of charged and neutral pions. One can use inclusive charged

particle multiplicity as a surrogate for charged pions and photons for the neutral pions. Any

form of correlation between charged and neutral pions is thus expected to affect the correlation

between measured charged particles (ch) and photons (γ). This is the main motivation for the

measurement of event-by-event multiplicities of charged particles and photons and to study their

ratio fluctuations. This thesis work presents the details of the measurement of event-by-event

multiplicity of charged particle and photons at the STAR experiment at RHIC. The final stages

of heavy ion collisions involve decay of resonances and detection related artefacts that introduces

spurious fluctuation of the observed multiplicity. This thesis work presents a detailed discussion

to develop an analysis technique to separate the dynamical fluctuations in the multiplicity from

various other spurious effects.

Using an approach based on moment generating function, the robustness of fluctuation ob-

servables on various detector related effects have been studied. It was shown that observables

constructed out of ratios of factorial moments are immune to detector in-efficiency. However

effects of mis-identification can not be removed by the construction of observables. Sensitivity

to dynamical signals of fluctuation and correlation was also studied in the same approach. A

method to study the event-by-event fluctuation of the multiplicity of inclusive charged particles
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and photons (neutral particles) has been developed. Sensitivity of two widely used fluctuation

observables νdyn and rm,1 to different sources of dynamical fluctuation and detector effects have

been studied using analytical and Monte-Carlo approach. These observables are further used for

data analysis and model studies. The two major sources of dynamical fluctuations of charged to

photon multiplicity ratio (i.e. charged-neutral correlation) are from DCC-like signals and from

resonance decays. Using generating function approach analytical expression for νdyn and rm,1

in terms of the fraction of DCC events (x) and fraction of DCC candidates (y) was derived.

A Monte-Carlo model to simulate DCC events using inputs from hijing event generator was

developed. The effect of resonance decay on these fluctuation observables was also studied. The

method developed for studying the correlation and fluctuation of charged particle and photon

multiplicity was used to analyse the data from the STAR experiment at RHIC.

This thesis work presents the measurement of event-by-event multiplicity and the correlations

between photon and charged particles in the pseudo-rapidity range of −3.7 < η < −2.8 in STAR

using the Photon Multiplicity Detector and the Forward Time Projection Chamber in Au+Au

collisions at
√
sNN=200 GeV. The observables νγ−ch

dyn and rγ−ch
m,1 have been used as measures

of correlation. Measured νdyn from data shows a non-zero, positive value that exceeds the

predictions from hijing, mixed event and hijing+geant when charged particles and photons

are measured in the same acceptance. When charged particles are measured in a different

acceptance (3.7 > η > 2.8) compared to photons (−3.7 < η < −2.8), the difference between

model prediction and data is found to be negligible. This indicates the presence of dynamical

fluctuations in the ratio of inclusive charged to photon multiplicities when measured in the same

acceptance. νdyn shows an approximate 1/
√
〈NchNγ〉 dependence as expected from the Central

Limit Theorem. The charge dependence of νγ−ch
dyn shows that different combinations of γ − ch

correlations are alike, but behave differently (both in magnitude and sign) when compared to

νch+−ch−

dyn obtained for the combination of positively and negatively charged particles in the same

acceptance. This indicates that the mechanism of correlated production of oppositely charged

particles is different from the correlated production of neutral and charged particles and, at the

175



same time, the γ − ch correlation is not dominated by correlations from decays. The observable

rm,1 has been used to extract any deviation of γ − ch correlation from the expectation of generic

pion production. The centrality dependence of rm,1(m=1−3) shows a different trend compared

to that from mixed events and hijing. rm,1 is below the generic (or Poisson) limit at higher

multiplicity. For central events, rm,1 as a function of the order m shows a trend opposite to

that from models, suggesting a small deviation from the expectation of the generic production

of pions. The analytical expressions derived in the generating function approach was used to

extract and upper limit of DCC like signal formation in the data sample.

Origin of multiplicity fluctuation from the initial stages of heavy ion collision was investigated

in this thesis work. The Color Glass Condensate framework of multi-particle production provides

an ab initio approach to such a problem. In this work, impact parameter dependent unintegrated

gluon distributions were extracted from fits to the HERA inclusive and exclusive data in the IP-

Sat, b-CGC and rc-BK models. All these models implement the physics of saturation but differ

in their dynamical assumptions. The impact parameter gluon distributions combined with the

k⊥ factorization formalism allows one to compute single inclusive rapidity and p⊥ distributions

in p+p collisions at the LHC. These give quite reasonable agreement with the LHC data up

to
√
s=7 TeV. These impact parameter dependent distributions also allows one to compute the

multiplicity distribution, which in the Color Glass Condensate/Glasma formalism is predicted to

be a negative binomial distribution with particular values for the parameter controlling the width

of the distribution. Using these assumptions, the multiplicity distributions are well reproduced in

the framework of k⊥-factorization. These results suggest that particle emission from Glasma flux

tubes generated in collisions of “hot spots” of size 1/QS are a strong candidate for generating

the multi-parton correlations underlying the multiplicity distribution. The same study has

been performed using full numerical solution of the Classical Yang Mills equations on 2+1 D

lattice. In this thesis work, the IP-Glasma model of fluctuating initial conditions for heavy-

ion collisions has been developed. This model goes beyond the conventional implementation

by using CYM solutions instead of k⊥-factorization and including quantum fluctuations on
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the dynamically generated transverse length scale 1/Qs. The parameters of this model are

fixed by HERA inclusive and diffractive e+p DIS data. At fixed impact parameter, this model

naturally produces NBD multiplicity fluctuations that are known to describe p + p and A + A

multiplicity distributions, and its ratio of initial triangularity to eccentricity is more compatible

with experimental data of harmonic flow coefficients.

In summary, in this work we have developed a new model of initial condition based on the

framework of Color Glass Condensate which naturally describes the inclusive multiplicity distri-

bution in p+p, p+A collisions at RHIC and LHC energies. This model includes various sources

of initial state fluctuations and produces eccentricities that are compatible to experimental data

of harmonic flow coefficients and can be used as an input to hydrodynamic simulations. We

develop method to study inclusive multiplicity fluctuation and correlations in heavy ion colli-

sions. As an experimental investigation of such fluctuations, we present measurement in Au+Au

collisions at top RHIC energy on the event-by-event fluctuation and the correlation of the multi-

plicity of neutral (photons) and charged particles. We study different models and measurement

related artefacts on the observables of multiplicity fluctuations. The centrality dependence of

the fluctuation in this analysis shows a small but non-zero signal of anti-correlation in the pro-

duction of charged and neutral particles for most central events. The origin of such fluctuation

was investigated using a DCC based model that was implemented using the moment generating

function approach. An upper limit of DCC like domain formation in a medium passing through

QCD chiral phase transitions in the data sample has been investigated.
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