Di-Jet Imbalance Measurements and Semi-Inclusive Recoil Jet Distributions in Central Au+Au Collisions in STAR

Jörn Putschke for the STAR Collaboration

(Wayne State University)

Jet Quenching via triggered correlations at RHIC STAR

Zhang (p+p) Zhang (Au+Au)

Qin (p+p) Qin (Au+Au)

π⁰-h[±]

0.8

Au+Au 0-5%

Jet-hadron STAR, PRL 112, 122301 (2014)

Different triggers \rightarrow different biases

Observations:

- high-z suppression
- low-z enhancement
- *modest* azimuthal broadening at low p_T

Jet Quenching via triggered correlations at RHIC

 π^0 -h¹

Jet-hadron STAR, PRL 112, 122301 (2014)

Different triggers \rightarrow different biases **Observations:**

- high-z suppression
- low-z enhancement
- *modest* azimuthal broadening at low p_T

But recoil hadrons only probe jet structure statistically!

Next Chapter:

Reconstruction of recoil jets; again utilize different triggers and biases

Calculate A_j with constituent p_{T,cut}>2 GeV/c

$$A_{J} = rac{p_{\mathrm{T},1} - p_{\mathrm{T},2}}{p_{\mathrm{T},1} + p_{\mathrm{T},2}}$$
 $p_{T} = p_{T}^{rec} - \rho \times A$

AJ: (Biased) Di-Jet Selection and "Notation"

Calculate A_j with constituent p_{T,cut}>2 GeV/c

$$A_{J} = rac{p_{\mathrm{T},1} - p_{\mathrm{T},2}}{p_{\mathrm{T},1} + p_{\mathrm{T},2}}$$
 $p_{T} = p_{T}^{rec} - \rho \times A$

AJ: (Biased) Di-Jet Selection and "Notation"

Calculate A_j with constituent p_{T,cut}>2 GeV/c

$$A_{J} = rac{p_{\mathrm{T},1} - p_{\mathrm{T},2}}{p_{\mathrm{T},1} + p_{\mathrm{T},2}}$$
 $p_{T} = p_{T}^{rec} - \rho \times A$

Calculate "matched" |A_j| with constituent p_{T,cut}>0.2 GeV/c.

Au+Au di-jets more imbalanced than p+p for p_T^{cut}>2 GeV/c

Au+Au di-jets more imbalanced than p+p for p_T^{cut}>2 GeV/c

Au+Au di-jets more imbalanced than p+p for p_T^{cut}>2 GeV/c Au+Au A_J ~ p+p A_J for matched di-jets (R=0.4)

<u>Assumption:</u> Observed di-jet balancing for matched jets is <u>only</u> due to background fluctuations, <u>not</u> due to correlated signal yield!

Method 1: Random Cone (RC):

Take di-jet pair pT^{Cut}>2 GeV/c (w/o low pT)

Embed randomly

the 2 Jet vectors into a Au+Au 0-20% Minimum Bias event Calculate IAJI with pT^{Cut}>0.2 GeV/c using cone of R

<u>Assumption:</u> Observed di-jet balancing for matched jets is <u>only</u> due to background fluctuations, <u>not</u> due to correlated signal yield!

Method 1: Random Cone (RC):

Take di-jet pair pT^{Cut}>2 GeV/c (w/o low pT)

Balancing of Au+Au matched di-jets due to correlated signal yield in a cone of R=0.4

Select modified di-jet pairs with $p_T^{cut}>2$ GeV/c in Au+Au \rightarrow quenched jet energy is recovered at low p_T within a cone of R=0.4 – consistent with Jet-Hadron results

	R=0.4	R=0.2
Au+Au vs. p+p p⊤ ^{Cut} >2 GeV/c	X	X
Matched Au+Au vs. p+p (p⊤ ^{Cut} >0.2 GeV/c)	0	X

X = "Non-identical" A_J distribution (Au+Au vs. p+p)
O = "Identical" A_J distribution (Au+Au vs. p+p)

Recoil jets

Charged hadron trigger: 9<pT<19 GeV/c **Charged particle jets**:

- Anti-k_T R=0.3
- Constituent tracks: $p_T > 0.2 \text{ GeV/c}$

Recoil jet azimuth: $|\phi-\pi| < \pi/4$

Semi-inclusive Observable: Recoil jets per trigger

Ensemble-averaged analysis:

- No rejection of jet candidates on a jet-by-jet basis
- Jet measurement is collinear-safe with low infrared cutoff (0.2 GeV/c)

New Method: Combinatorial Jets via Mixed Events

Charged Jets Au+Au 0-10%

Excellent description of combinatorial jets background via new event mixing method!

→ Triggered Recoil jet distribution: SE-ME

Au+Au background subtracted distributions (SE-ME):

- Ultimately: Correct to particle level via unfolding of bkgd fluctuations and detector effects
- *Currently:* Compare to PYTHIA p+p distribution "smeared" by these effects

<u>Dominant sys uncertainty</u>: Tracking eff. → Jet energy scale (JES) uncertainty ~7%

Peripheral Au+Au: Good agreement between data and PYTHIA

Au+Au background subtracted distributions (SE-ME):

- Ultimately: Correct to particle level via unfolding of bkgd fluctuations and detector effects
- Currently: Compare to PYTHIA p+p distribution "smeared" by these effects

Dominant sys uncertainty: Tracking eff. → Jet energy scale (JES) uncertainty ~7%

Peripheral Au+Au: Good agreement between data and PYTHIA Central Au+Au: Strong suppression (relative to PYTHIA)

STAR

First Look: Medium Induced Acoplanarity?

First Look: Medium Induced Acoplanarity?

AuAu central vs peripheral: Similar widths; can measure large angle radiation

TAR

First Look: Medium Induced Acoplanarity?

AuAu central vs peripheral: Similar widths; can measure large angle radiation RHIC vs LHC: Comparable widths

TAR

Discussion: The Role of *Biases*

T. Renk, PRC 87 (2013) 024905 and PRC 88 (2013) 054902

Biases (p_T^{Cut}, R, ...) can be used to change *systematically* the *pathlength* of the recoil jet

(even more when also applied on recoil jet definition)

Further advantage at RHIC: Steeply falling spectrum at RHIC → good correlation to the *initial parton energy*

Discussion: The Role of Biases

T. Renk, PRC 87 (2013) 024905 and PRC 88 (2013) 054902

Biases (p_T^{Cut}, R, ...) can be used to change *systematically* the *pathlength* of the recoil jet

(even more when also applied on recoil jet definition)

Further advantage at RHIC: Steeply falling spectrum at RHIC → good correlation to the *initial parton energy*

Discussion: The Role of Biases

T. Renk, PRC 87 (2013) 024905 and PRC 88 (2013) 054902

Biases (p_T^{Cut}, R, ...) can be used to change *systematically* the *pathlength* of the recoil jet

(even more when also applied on recoil jet definition)

Data/PYTHI⊅

Further advantage at RHIC: Steeply falling spectrum at RHIC \rightarrow good correlation to the *initial parton energy*

recoil jet p_-pA (GeV/c)

o pp HT ⊗ AuAu MB p^{cut}>2 Ge\

New di-jet measurements from STAR:

- **A**_J : Balance restored for R=0.4 wrt p+p (for *biased* di-jets)
- *h-Jet* : (Strong) suppression wrt Pythia (R=0.3); no evidence of large angle scattering

More data available (6x more HT triggered data wrt Run 7) and full jet analysis in Run 11.

Coherent Jet Quenching Program in STAR:

Statistically: Di-Hadron, γ-Jet, Jet-Hadron and 2+1 Correlations

Extension via new/future jet Measurements:

Explore systematically and differentially biases (p_T^{cut}, R, ..) in particular utilizing di-jet coincidence measurements at RHIC

- → engineer geometrical biases
- → "jet tomography"
- → study evolution of soft gluon radiation

Backup

E-by-E AJ Difference: ΔAJ Au+Au 0-20% R=0.4 & R=0.2

R=0.4: ΔA_J larger for Au+Au than p+p \rightarrow more energy recovered at low p_T

$\Delta A_J = A_J(p_T^{cut} > 2GeV) - A_J(p_T^{cut} > 0.2GeV)$

R=0.2: $\Delta A_J Au + Au \sim \Delta A_J p + p$

 \rightarrow similar energy recovered at low p_T

Reference:

pp HT ⊗ AuAu MB

Embed pp HT randomly into AuAu 0-20% minimum bias event, adjusted for relative tracking efficiency between pp HT Y06 and AuAu HT Y07

STAR, PRL 112, 122301 (2014)

Systematic Uncertainties (Analogous to Jet-Hadron Corr.)

- Tracking efficiency uncertainties 6%
- Relative Tower energy scale uncertainty 2%
- Background/vn: Null-Hypothesis Method1 vs. Method2
- Remaining uncertainties negligible

Jet Energy Scale (JES) uncertainty: 7%

Dominant contribution: tracking efficiency

- studied via embedding in Run11 data
- average charged track reconstruction efficiency is about 68% at high $\ensuremath{p_{\text{T}}}$

 the p_T-dependent efficiencies were varied by +/-10% (relative) and applied to the PYTHIA tracks as a systematic uncertainty on reference (instead of unfolding of data, TBD)

Track momentum resolution: negligible contribution to JES resolution (~1-2%)

Event plane correlations

No evidence of a correlation of high p_T particles with the

event plane

- (e.g.: STAR Phys.Rev.Lett. 93 (2004) 252301)
- → a bias of the jet spectrum due to event plane correlations with the trigger particle are unlikely.
- → an upper limit was estimated by using two different Delta p_T distributions which were calculated in and out of plane.

Anti-k_T R=0.2, p_{T,1}>16 GeV & p_{T,2}>8 GeV with p_T^{cut}>2 GeV/c

Anti-k_T R=0.2, p_{T,1}>16 GeV & p_{T,2}>8 GeV with p_T^{cut}>2 GeV/c

Anti-k_T R=0.2, p_{T,1}>20 GeV & p_{T,2}>10 GeV with p_T^{cut}>2 GeV

A_J at the LHC

CMS, PRC 84, 024906 (2011)

Significant di-jet momentum imbalance AJ observed in central Pb+Pb

CMS, PRC 84, 024906 (2011)

The momentum difference in the di-jets is balanced by low p_T particles at large angles relative to the away side jet axis

CMS, PRC 84, 024906 (2011)

The momentum difference in the di-jets is balanced by low p_T particles at large angles relative to the away side jet axis

LHC:

Larger energy loss at early times

- → more diffusion in medium
- → larger angles

CMS, PRC 84, 024906 (2011)

The momentum difference in the di-jets is balanced by low p_T particles at large angles relative to the away side jet axis

LHC:

Larger energy loss at early times

- → more diffusion in medium
- → larger angles

RHIC:

Quenched energy closer to initial parton/jet direction. Can utilize biases for systematic exploration.

→ (easier) to study soft gluon radiation

Biases are not always bad - actually a strength of RHIC

T. Renk, Phys.Rev. C87 (2013) 024905

Due to the steeply falling spectrum at RHIC, ev with imposing biases (p_T^{Cut} , ...), a good correla to the initial parton energy is preserved

Biases (p_T^{Cut} , ...) can be used to change systematically the pathlength of the recoil jet

Biases (p_T^{Cut}, ...) can be further utilized to favor gluon recoil jets

