

Collision energy dependence of high transverse momentum R_{CP} for charged hadrons in STAR

Stephen Horvat – Yale University, for the STAR Collaboration

<u>Abstract</u>

Possible signatures of de-confinement have been measured at top RHIC and LHC energies. One such signature is the suppression of high transverse momentum particles as measured with R_{AA} and R_{CP}. The beam energy scan at RHIC was designed to explore the phase diagram for the hot and dense medium produced in heavy ion collisions. Among STAR's goals for the beam energy scan was to determine whether these signatures disappeared at reduced beam energies. The versatility of RHIC has allowed for collisions to be carried out at beam energies ranging from 7.7 – 200GeV, and the efficiency corrected R_{CP} measurements from these energies are shown here.

<u>Motivation</u>	Au + Au at $\sqrt{s_{NN}} = 200 \text{GeV}$ Binary Collision scaling	<u>Data</u>			<u>Method</u>	Efficiency corrected spectra for	(0-5)% ■ 62.4GeV
 Previous measurements of suppression 	(Intractional Contractions) (Intractional Contractions) (Intractional Contractions) (International Contractional Contracti		Vear	N MB	 Charged tracks with η <0.5 are used 		 ✓ 39GeV (x 1/3) ✓ 27GeV (x 1/10)
at $\sqrt{\mathbf{s}_{NN}} \ge 200 \text{GeV}$ have been attributed	Z 2 0.1 0-5%/40-60% — Saturation	$\sqrt{3}$ NN(UCV)	Теат	Evivib	• Spectra are produced for each centrality of each $\sqrt{s_{NN}}$ as shown	10 ⁻¹	▲ 19.6GeV (x 1/30) ■ 11.5GeV (x 1/100)
to a strongly interacting medium		7.7	2010	3.7M	to the right		• 7.7GeV (x 1/300)
(Top plot) [1]		11.5	2010	7.3M			_
	0.1 = 0.5%/00-80% 0.2 4 6 8 10 12 p_{-} (GeV/c)	19.6	2011	33M	I he spectra exhibit strong centrality dependence and some		

Charged hadron R_{CP} falls below unity for $\sqrt{s_{NN}} \ge 39$ GeV at high p_T . Note that the Cronin Effect competes

dependence on $\sqrt{s_{NN}}$

- Single particle tracking efficiencies from embedding are applied
- The scaled ratio of central to peripheral spectra is R_{CP}

$$R_{CP} = \frac{(N_{Bin})_{P}}{(N_{Bin})_{C}} \times \frac{\left(\frac{d^{2}N}{p_{T}dp_{T}d\eta}\right)_{C}}{\left(\frac{d^{2}N}{p_{T}dp_{T}d\eta}\right)_{P}}$$

- While N_{bin} describes high p_T (low cross-section) physics, N_{part} is the proper scaling at low p_T
- Observed enhancement in d + Au collisions (The Cronin Effect) rules out cold nuclear matter effects as the source of suppression

Observations

1) It might be expected that R_{CP} demonstrate x_T scaling. $x_{T} = \frac{2p_{T}}{\sqrt{S_{NN}}}$ That is to say, we might expect some beam energy independent trends with the proper scaling and x_{T} could be considered the most natural. No trends emerge with this scaling (top right). Scaling both axes reveals a possible x_T dependent trend for high p_T tracks(bottom right).

2) N_{part} scaled result at low p_T exhibits very weak

Conclusions

- Charged hadron R_{CP} is statistically below unity for 200, 62, and 39GeV data sets
- A clear energy ordering is observed with smooth monotonic dependence on beam energy
- The Cronin effect is seen to dominate the lower beam energies, complicating the interpretation of results •
- Suppression at lower energies may also reveal itself as variation from trends, as shown in part 2 of the observations section
- A complimentary study of triggered dihadron correlations will provide an additional tool for extracting medium modification effects •

References

[1] STAR Collaboration, Phys. Rev. Lett. 91, 172302 (2003) [2] STAR Collaboration, Physics Letters B 637 (2006) 161–169 [3] Miklos Gyulassy and Xin-Nian Wang, Comput. Phys. Commun. 83 (1994) 307

0.2 8.0

0.8

energy dependence (bottom left).

z