## Towards Measurements of Chiral Effects Using Identified Particles from STAR

Liwen Wen (for the STAR Collaboration) University of California, Los Angeles Quark Matter 2017, Chicago, IL, USA



of 2

2/7/17







## Outline



- I. Physics Motivation and Observables
- II. STAR Experiment

#### III. Correlation Measurements

- $\succ \gamma, \kappa_K$  for identified particles in Au+Au.
- $\succ \gamma$  for charged hadrons in p+Au, d+Au.
- Search for Chiral Magnetic Wave (CMW) in p+Au.
- IV. Summary & Outlook

# Chiral Magnetic Effect (CME)

D. Kharzeev, etc. NPA 803, 227(2008)



Non-zero topological charge induces excess of right or left handed quarks. Under strong magnetic field (B), an electric current along B direction is generated and leads to electric charge separation.

## Observable: y correlator





# Background!



A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

5

# Background!



A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

$$\delta \equiv \langle \cos(\phi_1 - \phi_2) \rangle = F + H$$

$$\gamma \equiv \langle \cos(\phi_1 + \phi_2 - 2\psi_{ep}) \rangle = \kappa v_2 F - H \Rightarrow \kappa = \frac{\Delta \gamma + \Delta H}{v_2 (\Delta \delta - \Delta H)}$$
F: Flow-related backgrounds  
H: Charge separation signal  
 $\Delta: OS - SS$   

$$H = \frac{\kappa v_2 \delta - \gamma}{1 + \kappa v_2}$$

$$H = \frac{\kappa v_2 \delta - \gamma}{1 + \kappa v_2}$$

$$\downarrow$$
F: Flow-related backgrounds  
H: Charge separation signal  
 $\Delta: OS - SS$ 

Correlators:

$$\begin{aligned} \gamma_{ss} &= -1 \\ \delta_{ss} &= -1 \qquad H_{ss}^{\kappa=1} = 0 \end{aligned}$$

$$v_2 = 1$$

 $\gamma_{os} = 0$   $\delta_{os} = 0$   $H_{os}^{\kappa=1} = 0$  **H is more robust!** 

# Background!



A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).



## $\kappa_K$ : scaled bg+signal



A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).



Assumption:  $\kappa$  from background is beam-energy, centrality and particle idependent and between 1 to 2!

Charge may not be conserved in this version of AMPT



- At the extreme, we introduce  $\kappa_K$  such that  $\Delta H = 0$ . If  $\kappa_K > \kappa$   $(H_{ss-os} > 0)$ , there could be extra physics, like CME.
- $\kappa_K$  at 7.7 GeV shows weak centrality dependence with values within [1, 2].
- At energies >= 19.6 GeV,  $\kappa_K$  shows higher values than 2 in mid central and mid peripheral collisions.
- $\kappa_K$  is not applicable in peripheral collisions due to non-flow correlations.

### Solenoidal Tracker At RHIC (STAR)





## STAR Particle Identification



#### **TPC Event Plane Reconstruction**





small systems.

### $\pi\pi$ correlation, Au+Au 200 GeV





Δγ for ππ in Au+Au 200 GeV shows similar value to charged hadrons'.
 κ<sub>K</sub> for mid central and mid peripheral collisions is much larger than the background level (1.0 to 2.0) estimated from AMPT.

### $\pi\pi$ correlation, Au+Au 39GeV





• Au+Au 39 GeV  $\pi\pi$  pair  $\Delta\gamma$  shows similar magnitude to charged hadron's at the same energy.

•  $\kappa_K$  is higher than 2 except in central collisions.

## $\pi K$ correlation





•  $\Delta \gamma$  for  $\pi K$  pair is finite in Au+Au at both 200 GeV and 39 GeV. •  $\kappa_K$  values are close to or below 2, making it hard to distinguish from background.

## $p\pi$ correlation





•  $\Delta \gamma$  for  $p\pi$  pair is finite in Au+Au at both 200 GeV and 39 GeV.

 $\bullet$   $\kappa_K$  values are close to or below 2, making it hard to distinguish from background.

# pp and pK correlation



- pp pairs in Au+Au 200 GeV show large  $\Delta\gamma$ .
- $\Delta \gamma$  for pK has smaller values, but still finite in peripheral and mid central collissions.
- $\kappa_K$  for pp is lower than 2 or even 1 in some centrality bins. This behavior might be due to annihilation effect.
- For pK,  $\kappa_K$  fluctuates between I and 2.

# PID summary





•  $\Delta \gamma$  for all PID pairs is finite in peripheral and mid central Au+Au collisions at 200 GeV.

•  $\kappa_K$  for  $\pi\pi$  is higher than estimated background in mid peripheral and mid central collisions. Other pairs are close to or within background range of 1.0 to 2.0.

Pp shows large  $\Delta \gamma$ , but  $\kappa_K$  is not fully understood yet.

#### $\gamma$ correlation in p+Au and d+Au





- Sizable  $\Delta \gamma$  in p+Au and d+Au w.r.t. 2<sup>nd</sup>-order event-plane(EP)  $\Psi_2$  from TPC, the magnitude is similar to or higher than Au+Au.
- $\Delta \gamma$  disappears in p+Au when  $\eta$  gap is introduced between EP and particles of interest:  $\Delta \gamma$  in TPC EP results mostly from short range correlation.

# Another scaling scheme





- $\Delta \gamma \cdot N/v_2$  from AMPT (hadronic scattering turned off) does not match data in central events, but accounts for ~2/3 of the observed signal from peripheral to mid-central Au+Au.
- $\Delta \gamma \cdot N/v_2$  from AMPT accounts for ~1/3 of the observed signal in d+Au.



# Chiral Magnetic Wave in p+Au? Matter



• The slope, r of  $\Delta v_2(A_{ch})$  between  $\pi^+$  and  $\pi^-$  was used to search for CMW; • Similar to peripheral Au+Au 200 GeV, r is consistent with zero in p+Au 200 GeV;

# Summary and Outlook



#### Summary:

- a. Search for Chiral Magnetic Effect in Au+Au:
  - $\succ \kappa_K$  for  $h^{\pm}h^{\pm}$  and  $\pi\pi$  in Au+Au 200 GeV is larger than AMPT background.
  - $\succ \kappa_K$  of other identified pairs,  $\pi K$ ,  $p\pi$ , pK, is hard to distinguish from background.
  - $\succ \kappa_K$  for pp needs further investigation.
- b. Search for Chiral Magnetic Effect in p+Au and d+Au:
  - >  $\Delta \gamma$  for  $h^{\pm}h^{\pm}$  in p+Au and d+Au 200 GeV shows sizable magnitude using TPC event plane.
  - >  $\Delta \gamma$  disappears when introducing  $\eta$  gap (>2) between particles of interest and event plane in p+Au 200 GeV.

#### c. Search for Chiral Magnetic Wave in p+Au:

In p+Au 200 GeV collisions, the observable r is consistent with zero.
Outlook:

Isobar collisions,  ${}^{96}_{44}Ru + {}^{96}_{44}Ru$  and  ${}^{96}_{40}Zr + {}^{96}_{40}Zr$ , maintaining flow magnitude and varying magnetic field, provide an exciting opportunity to justify the physics beyond flow-related background. Stay tuned for STAR in 2018!



#### Back up slides

### Non-flow in peripheral collisions





Non-flow dominated in peripheral Au+Au collisions

# Peripheral $\kappa_K$ ?





Phys. Rev. Lett. 113 (2014) 52302