Temperature Fluctuation and the Specific Heat in Au+Au Collisions at $\sqrt{s_{NN}} = 7.7 - 200$ GeV from AMPT model and STAR STAR

Xiujun Li, for the Star Collaboration

University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics

Abstract

In this poster, we will present the energy dependence of event-by-event temperature fluctuations and specific heat of the QCD matter created in Au+Au collisions at $\sqrt{s_{NN}}$ = 5, 7, 17.3, 39, 62.4, and 200 GeV from the AMPT model calculations and at $\sqrt{s_{NN}}$ = 7.7, 19.6, and 27 GeV from BES-I program of the STAR experiment.

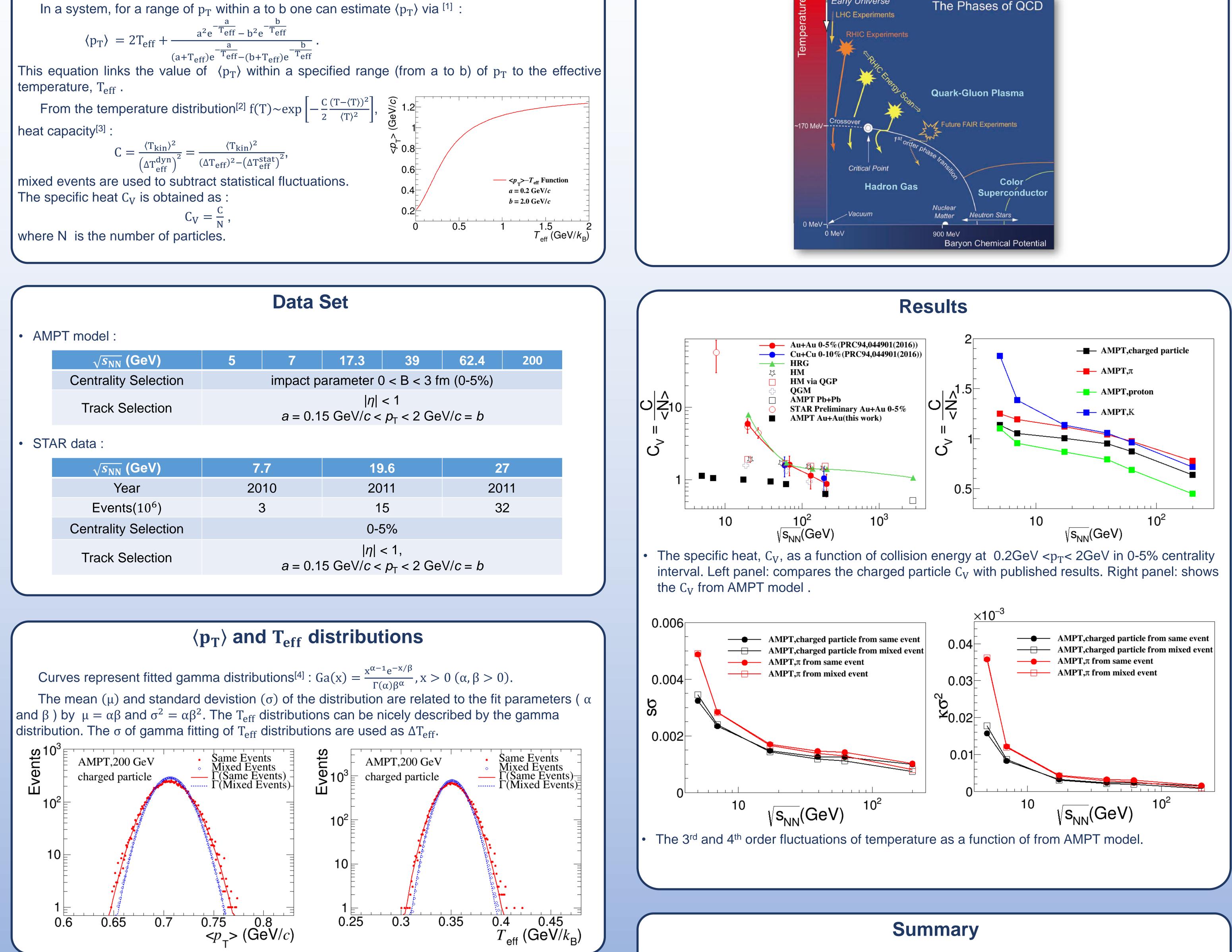
Analysis method

Motivation

The transition to QGP changes from a crossover to the 1st order phase transition results in the existence of a critical point (circle) in the QCD phase diagram. Lattice QCD estimates indicated that the critical point exists in the range $250 < \mu_{\rm B} < 450$ MeV ^[8].

The specific heat, C_V , is a thermodynamic quantity that characterizes the equation of state of the system. For a system undergoing phase transition, C_V is expected to diverge at the critical point, which can be extracted from event-by-event temperature fluctuation. Thus the variation of thermal fluctuations with temperature can be effectively used to probe the QCD phase transition and QCD critical point.

Early Universe



Temperature high order fluctuations measures

High order cumulants describe the shape of distribution and quantify fluctuations. They are sensitive to the correlation length ξ . We use them to characterize the fluctuations of temperature. The cumulants of event-by-event temperature distributions can be expressed in terms of moments. For a distribution of N (here N is T_{eff} , $\delta N = N - \langle N \rangle$), the cumulants can be expressed ^{[5]-[7]}:

 $C_1 = \mu = \langle N \rangle$, $C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$ $C_3 = S\sigma^2 = \langle (\delta N)^3 \rangle$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2,$ Directly connected to the susceptibility of the system: $S\sigma = \frac{C_3}{C_2}$, $\kappa\sigma^2 = \frac{C_4}{C_2}$. For a gamma distribution $S\sigma = 2\beta$ and $\kappa\sigma^2 = 6\beta^2$.

Both $C_{\rm V}$ and higher order cumulants of the temperature fluctuations show monotonic distributions, which is expected that there is no phase transition critical point in the AMPT model. This provides a good reference for comparison with experimental data to search for the signal of critical point.

At low energies, a sharp drop of C_V from the STAR data is observed and it deviates from the AMPT results. Results will be further improved with more coming data at different energies.

References

[1] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 87, 064902 (2013). [2] G. Ma et al., High Energy Physics and Nuclear Physics 28 398-402 (2004). [3] S. Basu *et al.*, Phys. Rev. C **94**, 044901 (2016). [4] M. J. Tannenbaum, Phys. Lett. B 498, 29-34 (2001). [5] S. He, X. Luo, Phys. Lett. B 774 623-629 (2017). [6] X. Luo, J. Phys G: Nucl. Part. Phys. 39, 025008 (2012). [7] Y. Zhang *et al.*, arXiv: 1905.01095 [8] M. M. Aggarwal *et al.*, arXiv:1007.2613v1, 2010.

In part supported by Office of Science

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

