

Highlights from the STAR experiment

Prithwish Tribedy (for the STAR collaboration) (Brookhaven National Laboratory)

ptribedy@bnl.gov

29TH INTERNATIONAL CONFERENCE ON ULTRARELATIVISTIC NUCLEUS - NUCLEUS COLLISIONS APRIL 4-10, 2022 KRAKÓW, POLAND

Supported in part by the U.S. DEPARTMENT OF ENERGY

Office of Science

Successful Operation of STAR in Years 2020-21 Watch Live Collisions At STAR: https://online.star.bnl.gov/aggregator/livedisplay/

7 energies between 7.7 - 27 GeV (collider mode) 12 energies between 3.0 - 13.7 GeV (FXT mode)

RHIC Beam Energy Scan II completed, p+p 510 run with fully installed forward upgrade is ongoing

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Run 20 and 21 completed successfully: enhanced collision rates due to Low Energy RHIC Electron Cooling (LEReC) system, smooth & desired performance of BES-II upgrades (iTPC, eTOF, EPD)

Early completion of BES-II data taking allowed O+O & d+Au runs in 2021

Outline of STAR highlights

 Isobar collisions & strong field effects 		 Critical phenomena & mapping phase diagrar 		
1. Chiral magnetic effects	Slide #5-7	13. Net-proton fluctuations	Slide #25	
2. Directed flow splitting	Slide #8	14. Deuteron fluctuations	Slide #25	
3. Global polarization	Slide #9, 17	15. Search for chiral crossover	Slide #26	
4. Spin alignment	Slide #10	16. Di-lepton as QGP thermometer	Slide #27	
5. Photoproduction	Slide #11-12	 Hard probes in the medium 		
 New Insights on collective effects 		17. J/ψ suppression	Slide #29	
6. Nuclear shape & structure	Slide #14	18. High p_T hadron R_{AA}	Slide #30	
7. Longitudinal dynamics	Slide #15	19. Heavy flavor jet shape	Slide #31	
 Prerequisites for phase transition 	s & freezeout	20. Broadening of γ/π^0 +jets	Slide #32	
8. Baryon stopping	Slide #18-19	 Upgrades and future program 		
9. Strangeness production	Slide #20	21. Forward upgrade of STAR	Slide #34	
10. Hyper-nuclei formation	Slide #21			
11. Nuclei formation	Slide #22			
12. Hadron & nuclei femtoscopy	Slide #23			

STAR results are being presented in 21 parallel talks and 47 posters at this Quark Matter

З

Isobar collisions & strong field effects

- **Global polarization**
- Spin alignment
- Photoproduction

Chiral magnetic effect **Directed flow splitting**

Chiral magnetic effect search in isobar collisions Talk by Yu Hu (Thu T02-III) Poster by Yicheng Feng (Wed T02)

$$\frac{\langle Observable \rangle_{Ru+Ru}}{\langle Observable \rangle_{Zr+Zr}} > 1$$

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

B-field square is 10-15% larger in Ru+Ru than Zr+Zr

Best possible control of signal and background compared to all previous experiments for CME search

Chiral magnetic effect search in isobar collisions Talk by Yu Hu (Thu T02-III) Poster by Yicheng Feng (Wed T02)

Blind analysis performed with pre-defined criteria for primary CME sensitive observable:

No pre-defined signature of CME is observed in isobar collisions, possible residual signal due to change of baseline & non-flow effects are under study

Precision of 0.4% achieved

M. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105 (2022) 1, 014901

Chiral magnetic effect search in isobar collisions Talk by Yu Hu (Thu T02-III) **Poster by Yicheng Feng (Wed T02)**

Blind analysis performed with pre-defined criteria for primary CME sensitive observable:

No pre-defined signature of CME is observed in isobar collisions, possible residual signal due to change of baseline & non-flow effects are under study

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Precision of 0.4% achieved

M. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105 (2022) 1, 014901

Splitting of charge dependent directed flow

EM-field driven v₁ splitting

v1 slope difference for p & p shows sign change in peripheral events

QM

Splitting of charge dependent v_1 slope observed that cannot be explained by baryon transport

Global lambda polarization

Precision new FXT (3 GeV) and BES-II (19.6 GeV) results follow the global trend

Posters by Kosuke Okubo (Wed T02) & Xingrui Gou (Wed T02)

9

Global spin alignment of vector mesons

What causes vector meson spin alignment? Strong force field?

Like Λ polarization (-10⁵) Electric field (-10⁴ $\rho_{00}^{\phi} \approx \frac{1}{2} + c_{\Lambda} + c_{\varepsilon} + c_{E} + c_{\phi}$ Vorticity tensor (-10⁻⁴) Vector meson field

Charged K^{*} measurements in will provide more insights

Model with strong vector meson force field (~2.5 m_{π}^2) provides a possible explanation

Talk by Subhash Singha (Tue T02-I)

K^{*0} meson consistent with 1/3 8.4 σ positive deviation from 1/3 for ϕ meson

M. Abdallah et al (STAR Collaboration), arXiv: 2204:XXYY

★ ϕ (lyl < 1.0 & 1.2 < p₁ < 5.4 GeV/c) 0.4 • K^{*0} (lyl < 1.0 & 1.0 < p_{τ} < 5.0 GeV/c) $-C_s^{(y)} = 1109 \pm 143 \text{ fm}^{-8}$ (From fit to data) Field strength ~ $2.5 m_{\pi}^2$ 0.35 ρ00 0.3 filled: Au+Au (20% - 60% Centrality) open: Pb+Pb (10% - 50% Centrality) 0.25 10^{3} 10^{2} 10 (GeV)

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

101 096005 (2020), Phys. Rev. D 102, 056013 (2020)

 $\sigma(\gamma\gamma \to e^+e^-) \sim \mathcal{Z}^4$

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Data suggest low p_T photon induced processes follow "Z" scaling of EM-fields for isobars

Nuclear radii using photon-induced processes ρ_0 $1 + \exp\left[(r - R)/a\right]$

Charge radius R & skin depth a constrained using $\gamma\gamma \rightarrow e^+e^-$ process, compared with e-scattering data

Novel ways of extracting nuclear charge radius, and strong-interaction (gluon) radius at RHIC energies

New insights on collective effects

Nuclear shape & structure Transverse & longitudinal dynamics **Collectivity driven hyperon polarization**

Neutron skin & nuclear deformation of isobars

Pioneering new ways to constrain neutron skin & nuclear deformation with heavy ion collisions STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Gaoguo Yan (Thu T14-II) Poster by Niseem Magdy (Wed T14-I) **Jiangyong Jia (Wed T01)**

 Ψ_{A}

Flow de-correlation with **BES-II** data

Strong constraints on the transverse & longitudinal dynamics of heavy ion collisions

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Triangular flow driven local polarization

Longitudinal polarization due to v₂ ("spin puzzle" in heavy-ion collisions)

• z

• z

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Joey Adams (Thu T02-III) Poster by Takafumi Niida (Wed T02)

> v₃-driven polarization observed in isobar collisions

The first observation of v₃ driven longitudinal polarization will bring new insights on thermal vorticity

Prerequisites for phase transition & freezeout

- Baryon stopping Strangeness production Hyper-nuclei formation Nuclei formation

- Hadron & nuclei femtoscopy

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

New insights on baryon stopping

Measurement of proton density with Au+Au $\sqrt{s_{NN}}$ = 3 GeV FXT data: centrality dependence of rapidity distribution

Rapidity loss per collision extracted & indicates a strong centrality dependence

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Benjamin Kimelman (Tue T03-I) Poster by Nicole Lewis (Wed T08 / T09)

ea	
90	
ג	

New insights on baryon stopping

Measurements of proton & net-proton density in central heavy ion collisions

B. Abelev et al. (STAR Collaboration) Phys. Rev. C 79 (2009) 034909

Global data show exponential dependence of baryon density with rapidity shift

Talk by Benjamin Kimelman (Tue T03-I) Poster by Nicole Lewis (Wed T08 / T09)

First look at photonuclear events: stronger rapidity dependent stopping in γ +Au >> Au+Au

Path towards a microscopic understanding of what carries baryon number & how it is stopped

Insights on strangeness production

 ϕ to strange hadron (K, Ξ) yield ratio measured at $\sqrt{s_{NN}}$ = 3 GeV

M. Abdallah et al. (STAR Collaboration), arXiv:2108.00924

Resonance/non-resonance ratio constrain strangeness correlation length & hadronic phase lifetime

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Aswini K Sahoo (Thu T14-I) Poster by Yingjie Zhou (Fri T11_2)

Precision hypernuclei measurements

Precision hypernuclei measurements and top RHIC energy data

The first Hyper-Helium-4 lifetime measurement in heavy ion collisions

Formation of excited hypernuclei states in heavy ion collisions

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Yue-Hang Leung (Thu T16) Posters by Xiujun Li (Fri T16) & Tan Lu (Fri T16)

Kinetic freeze out of light nuclei

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Hui Liu (Thu T16)

Femtoscopy & correlation of nuclei

First measurements of d-d femtoscopic correlation function at RHIC

Pearson coefficient of p-d with **BES-I** data indicates anticorrelation, discriminates models

Models incorporating coalescence provide a consistent explanation of deuteron formation at RHIC

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

р

Critical phenomena & mapping phase diagram

- Net-proton fluctuations Deuteron fluctuations Search for chiral crossover Di-lepton as QGP thermometer

Search for the QCD critical point

Proton fluctuations ($k\sigma^2 = C_4/C_2$) measured with Au+Au $\sqrt{s_{NN}} = 3 \text{ GeV FXT data: consistent with UrQMD}$

M. Abdallah et al. (STAR collaboration) arXiv:2112.00240

Baryon conservation leads to negative kurtosis at the highest $\mu_{\rm R}$ accessible through RHIC collisions

Talk by Yu Zhang (Tue T03-I)

Search for the chiral crossover transition

Cumulant ratios C_5/C_1 and C_6/C_2 of net-proton measured with p+p, Au+Au and high statistics isobar data at $\sqrt{s_{NN}} = 200$ GeV show decreasing trend with multiplicity, approaching LQCD predictions

High multiplicity measurements are consistent with results from lattice QCD that predicts crossover at $\mu_B = 0$

Talk by Ho-San Ko (Thu T07-II)

M. Abdallah et al. (STAR Collaboration) Phys. Rev. Lett. 127, 262301

Medium temperature with di-leptons

Precision di-lepton spectra measured with Au+Au 27 GeV (2018) and 54.4 GeV data (2017) blue-shift free average temperatures extracted: IMR systematically above LMR temperature

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Zaochen Ye (Thu T13-I)

Hard probes in the medium

- $\cdot J/\psi$ suppression • High p_T hadron R_{AA} Heavy flavor jet shape

- Broadening of γ/π^0 + jets

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

J/ψ in medium at RHIC energies

Medium modification of J/ ψ studied via R_{AA} in isobar and Au+Au 54.4 GeV, new baseline measurement of R_{pA}

Clear indications of J/ψ suppression at RHIC that scales with N_{part}

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Ziyue Zhang (Thu T11-IV) Posters by Yan Wang (Fri T11_2), Yu-Ming Liu (Fri T11_3)

Charged hadron RAA at high pt

Medium modification of J/ψ studied via R_{AA} in various systems at RHIC, new baseline measurement of R_{pA}

Clear indications of J/ψ suppression at RHIC that scales with Npart

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Ziyue Zhang (Thu T11-IV) Talk by Tong Liu (Wed T05-II)

Medium modification of high $p_T > 5$ GeV/c hadrons studied via R_{AA} in isobars

Suppression of charged hadrons at high p_T possible centrality bias in peripheral events

Open heavy flavor tagged jets

First measurement of D⁰-tagged jets@RHIC using STAR HFT

PYTHIA fragmentation is used for unfolding

R^{*}_{CP} in mid-central & central events indicate suppression at low jet-p_T

STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Talk by Diptanil Roy (Thu T11-III) Poster by Matthew Kelsey (Fri T11_2)

No jet substructure modification seen in central & mid-central events within uncertainties

Access to mechanisms of heavy quark diffusion & energy loss in the medium produced at RHIC

Medium-induced broadening of jets

Fig: Mehtar-Tani

Vacuum shower (p+p)

Medium induced gluon radiation (Au+Au)

Ratio of spectra by varying cone sizes for semi-inclusive π^0/γ +jets is lower in Au+Au than p+p measurements

A clear observation of medium-induced First observation of mediumbroadening of jet-shower at RHIC induced broadening of acoplanarity

Talk by Derek Anderson (Tue T04-I) Poster by Nihar Sahoo (Wed T04_1)

Excess yield at large angle for π^{0}/γ +jet in Au+Au observed compared to p+p PYTHIA baseline

Forward upgrade and STAR beyond 2022+

Small Strip Thin Gap Chambers (Fall 2021)

Forward Silicon Tracker (Fall 2021)

Forward Calorimetry EMCal, HCal (Jan 2021)

Forward upgrade program of STAR

SN0773 : The STAR BUR for Run-22 & data taking in 2023-25 Forward Silicon Tracker (fall 2021) Di-hadron correlations studied in photonuclear Small Strip Thin Gap Chamber (fall 2021) processes using Au+Au $\sqrt{s_{NN}} = 54.4$ GeV data

Forward Calorimetry (EMCal, HCal Jan 2021)

Anticipated runs with forward upgrades: High statistics Au+Au in 2023 and 2025 Polarized p+p, p+Au in 2024 QM

Talk by Xu Sun (Wed T15-I) Talk by Tong Liu (Wed T05-II)

No signature of collectivity (near side ridge) in the γ +Au, higher energy and activity events under exploration with STAR forward upgrades

Focus will be on study of microstructure of QGP & RHIC measurements informative towards EIC science

STAR Talks details

 Isobar collisions & strong field effects 13. Net-proton fluctuations Yu Zhang (Tue T03-I) 1. Chiral magnetic effects Yu Hu (Thu T02-III) 14. Deuteron fluctuations Debasish Mallick (Wed T07-I) 2. Directed flow splitting Ashik Ikbal (Wed T08-) 15. Search for chiral crossover Ho San Ko (Thu T07-II) 3. Global polarization Joey Adams (Thu T02-III) 16. Di-lepton as QGP thermometer Zaochen Ye (Thu T13-I) 4. Spin alignment Subhash Singha (Tue T02-I) Hard probes in the medium 5. Photoproduction Xiaofeng Wang (Thu T09-I) 17. J/ψ suppression Ziyue Zhang (Thu T11-IV) New Insights on collective effects 18. High p_T hadron R_{AA} Tong Liu (Wed T05-II) 6. Nuclear shape & structure Haojie Xu (Wed T01-II) 19. Heavy flavor jet shape Diptanil Roy (Thu T11-III) 7. Longitudinal dynamics Gaoguo Yan (Thu T14-II) 20. Broadening of γ/π^0 +jets Derek Anderson (Tue T04-I) Prerequisites for phase transitions & freezeout Upgrades and future program Baryon stopping Benjamin Kimelman (Tue T03-I) 8. 21. Forward upgrade of STAR Xu Sun (Wed T15-I) 9. Strangeness production Aswini K Sahoo (Thu T14-I) 10. Hyper-nuclei formation Yue-Hang Leung (Thu T16) 11. Nuclei formation Hui Liu (Thu T16) 12. Hadron & nuclei femtoscopy Ke Mi (Thu T07-III)

Critical phenomena & mapping phase diagram

Yang Li - Identified particle spectra in isobaric collisions of Ru+Ru and Zr+Zr at $\sqrt{s} = 200$ GeV with the STAR experiment **Jian Zhou** - Low-pT $\mu+\mu$ pair production in Au+Au collisions at $\sqrt{sNN} = 200$ GeV at STAR Kaifeng Shen - Initial electromagnetic field dependence of photon-induced production in isobaric collisions at STAR **Yingjie Zhou** - Strange hadron and resonance production in Au+Au collisions at RHIC Beam Energy Scan Mate Csanad - Pseudorapidity distributions of charged particles measured with the STAR Event Plane Detector in 19.6 GeV and 27 GeV Au+Au collisions Tan Lu - Observation of anti-H4L Xiujun Li - Precision measurements of light hypernuclei lifetime and R3 in Au+Au Collisions from STAR experiment Nicole Lewis - Identified hadron spectra and baryon stopping in gamma-Au collisions at STAR Matthew Harasty (Arushi Dhamija, Krishan Gopal) - Study of identified hadrons in Au+Au collisions at $\sqrt{\text{sNN}} = 27$ and 54.4 GeV using the STAR detector at RHIC Yuanjing Ji - Precision measurements of light hypernuclei lifetime and branching ratio fraction R3 by the STAR experiment Xingrui Gou - Measurements of Global and Local Polarization of Hyperons in 200 GeV Isobar Collisions from STAR **Chunjian Zhang** - Observation and detailed measurements of nuclear deformations at STAR

Diyu Shen - Significant charge splitting of rapidity-odd directed flow slope and its implication on electromagnetic effect in Au+Au, Ru+Ru, and Zr+Zr collisions from STAR

Jiangyong Jia - Probing the nuclear deformation effects in Au+Au and U+U collisions from STAR experiment

Takafumi Niida - Hyperon polarization along the beam direction relative to the second and third order event planes in isobarcollisions from STAR

Kosuke Okubo - Global polarization of Lambda hyperons in Au+Au sqrt(sNN) = 7.2 GeV fixed-target collisions at RHIC-STAR experiment

Jagbir Singh - Study of Chiral Magnetic Effect in Isobar (Ru+Ru & Zr+Zr) and Au+Au collisions at √sNN = 200 GeV at STAR using SDM

Xiaoyu Liu - Directed flow in the forward and backward region in Au+Au Collisions at √sNN = 27 GeV from STAR

Zuowen Liu - Directed flow of identified particles in Au+Au collisions at $sqrt{sNN} = 19.6$ and 14.5 GeV

Privanshi Sinha - Anisotropic flow of ϕ meson in Au+Au collisions at $\sqrt{sNN} = 14.6$ and 19.6 GeV in second phase of beam energy scan program

Li-ke Liu - Azimuthal anisotropy measurement of (multi)strange hadrons and ϕ mesons in Au+Au collisions at $\sqrt{\text{sNN}} = 3 - 19.6 \text{GeV}$ in BES-II at STAR

Ding Chen - Anisotropic flow of (multi-)strange hadrons and ϕ mesons in Au+Au collisions at fixed-target (FXT) and second phase beam energy scan (BES-II) programs from STAR

Prabhupada Dixit - Anisotropic flows of (multi-)strange hadrons and ϕ mesons in Au+Au collisions at $\sqrt{sNN} = 3-19.6$ GeV at STAR

Cameron Racz - Triangular Flow of Identified Particles in Fixed Target Au+Au Collisions at STAR STAR overview, P. Tribedy, QM 2022, Krakow, Poland

Eddie Duckworth - Net Proton directed flow in 19GeV Au+Au collisions

Rishabh Sharma - Elliptic flow of light nuclei produced in Au+Au collisions at $\sqrt{sNN} = 7.7, 14.5, 19.6, 27$ and 54.4 GeV

Yicheng Feng - Study nonflow via two-particle (deta, dphi) correlations from the isobar data at STAR

Jin Wu - Measurement of Intermittency for Charged Particles in Au+Au Collisions at \sqrt{sNN} = 7.7-200 GeV from STAR

Jonathan Ball - Fluctuations in Lambda Multiplicity Distribution in Au+Au collisions at $\sqrt{sNN} = 3$ GeV at STAR

Pawel Szymanski - Dynamics of particle production in the STAR experiment

Ashish Panday - Seventh and eighth order cumulants of net-proton number distribution in heavy-ion collisions recorded by STAR detector at RHIC

Changfeng Li - Measurement of Higher-order cumulants of net-(Kaon+Lambda) multiplicity distributions in $\sqrt{\text{sNN}} = 27 \text{ GeV}$ with STAR

Ayon Mukherjee - Bose-Einstein correlations of charged kaons produced by \sqrt{sNN} = 200 GeV Au+Au collisions in STAR at the RHIC

Moe Isshiki - Measurements of Lambda-Lambda and Xi-Xi correlations in Au+Au collisions at \sqrt{sNN} = 200 GeV at RHIC-STAR

Zhi Qin, Yaping Wang - Studies of strong interactions with femtoscopy in Au+Au collisions at RHIC/STAR

Diana Pawlowska - Femtoscopic measurement of strange hadrons in Au+Au collisions at the STAR experiment

Raghav Kunnawalkam Elayavalli - Exploring jet topological dependences in pp and Au+Au collisions at $sqrt{sNN} = 200 \text{ GeV at RHIC}$

Veronica Verkest - Measurements of jet and soft activity in $\sqrt{sNN} = 200$ GeV p+Au collisions at STAR

Monika Robotkova - Mult-dimensional measurements of the parton shower in pp collisions at RHIC

Mathew Kelsey - Measurements of D0-tagged Jet Spectra and Radial Profiles in Au+Au collisions from STAR

Nihar Sahoo - Search for large-angle jet deflection using semi-inclusive γ +jet and pi0+jet correlations in p+p in Au+Au collisions at $\sqrt{sNN} = 200 \text{ GeV}$ with STAR

Ziyang Li - Very-low-pT J/ ψ production in Au + Au collision at $\sqrt{sNN} = 200$ GeV at STAR

Yu Ming Liu - Study of J/psi elliptic flow in Zr+Zr and Ru+Ru collisions at sqrt{s_NN} = 200 GeVin the STAR experiment

Yan Wang - J/ ψ production in isobaric collisions at $\sqrt{sNN} = 200 \text{ GeV}$ Hao Huang - Study of J/ ψ production with jet activity in pp collisions at $\sqrt{s} = 200$ GeV in the STAR experiment

Leszek Kosarzewski - Quarkonium production in p+p collisions measured by the STAR experiment Jan Vanek - Measurements of open-charm hadron production and total charm quark production cross section at midrapidity in Au+Au collisions at $\sqrt{sNN} = 200$ GeV by the STAR experiment

Thank you

