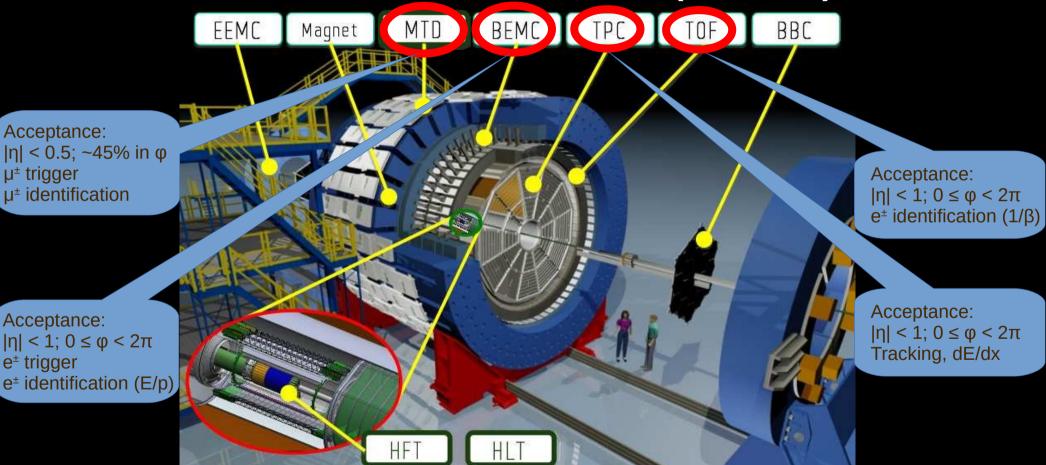
Recent Heavy Flavor Results from the STAR Experiment

Supported in part by

Office of Science


29TH INTERNATIONAL
CONFERENCE ON ULTRARELATIVISTIC
NUCLEUS - NUCLEUS COLLISIONS
APRIL 4-10, 2022
KRAKÓW, POLAND

Ziyue Zhang
University of Illinois at Chicago
For the STAR Collaboration

Content

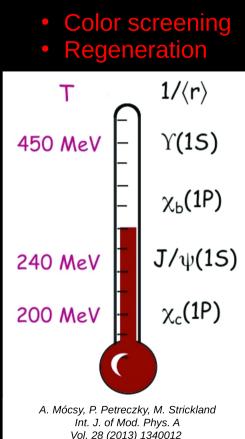
- Solenoidal Tracker at RHIC
- Nuclear matter effects on quarkonia
 - J/ψ R_{AA} in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV
 - J/ψ R_{AA} in isobar ($^{96}_{44}Ru + ^{96}_{44}Ru$ and $^{96}_{40}Zr + ^{96}_{40}Zr$) collisions at $\sqrt{s_{NN}}$ = 200 GeV
 - J/ ψ R_{pAu} at $\sqrt{s_{NN}}$ = 200 GeV
- Open heavy flavor production
 - Λ_c , D_s , D^{\pm} and D^0 production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
 - Total charm production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

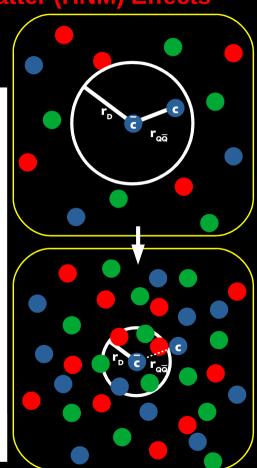
Solenoidal Tracker at RHIC (STAR)

Acceptance:

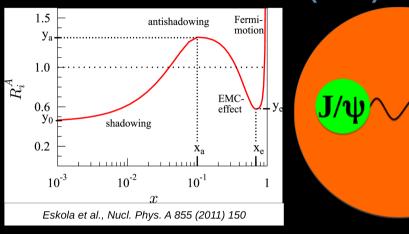
µ[±] identification

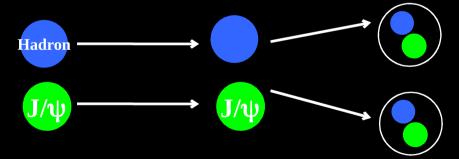
Acceptance:

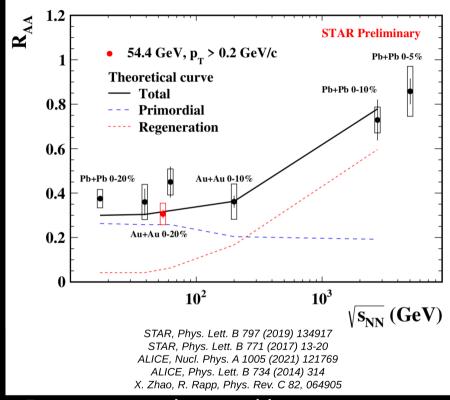

e[±] trigger

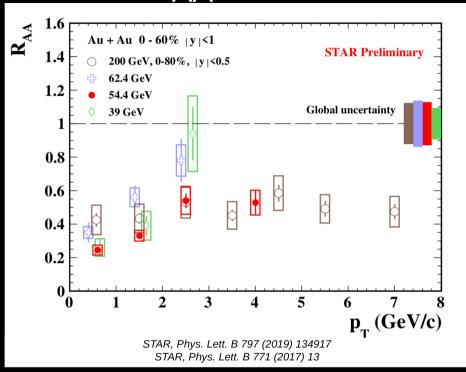

 $|\eta| < 1$; $0 \le \phi < 2\pi$

μ[±] trigger


Nuclear Matter Effects on Quarkonia

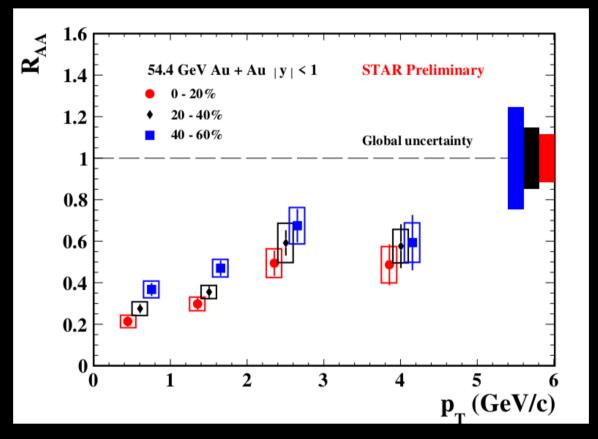

Hot Nuclear Matter (HNM) Effects


Cold Nuclear Matter (CNM) Effects



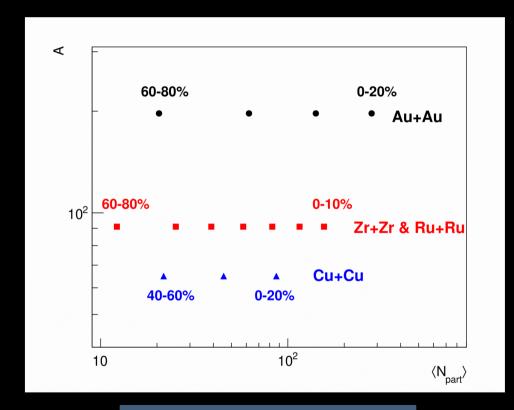
- Modification of PDF Nuclear absorption
- Parton saturation
- Co-mover absorption

Energy Dependence of J/ψ R_A

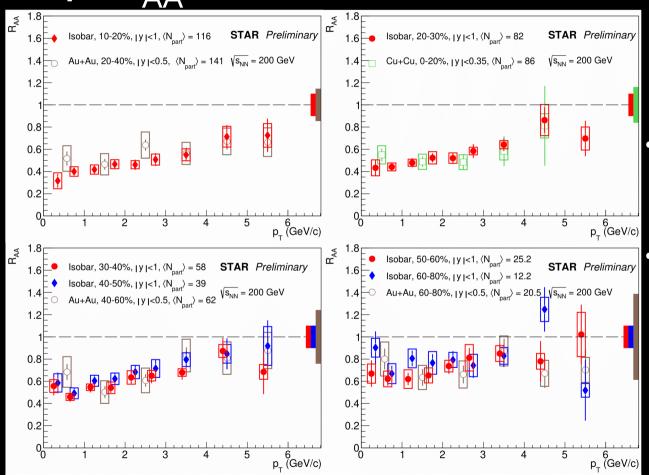


Data are consistent with a transport model including primordial and regeneration contributions
*Model calculation is in 0-20% centrality

- R_{AA} increases with p_T at $\sqrt{s_{NN}}$ = 39, 54.4 and 62.4 GeV (but not 200 GeV) below 3 GeV/c
 - Could be due to more regeneration contribution at low p_T at 200 GeV
- $\sqrt{s_{NN}} = 54.4$ GeV: improved precision


J/ψ R_{AA} at $\sqrt{s_{NN}}$ = 54.4 GeV

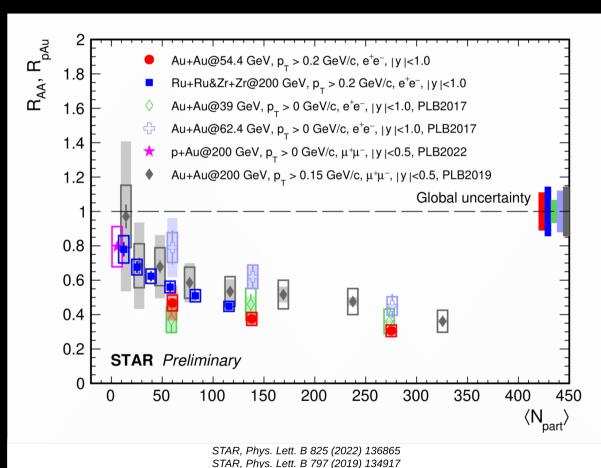
- Suppression observed across centrality
- Larger suppression in more central collisions as they are more impacted by the HNM effects


Isobar Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- ${}^{96}_{44}Ru + {}^{96}_{44}Ru$, ${}^{96}_{40}Zr + {}^{96}_{40}Zr$ (${}^{197}_{79}Au + {}^{197}_{79}Au$)(${}^{63}_{29}Cu + {}^{63}_{29}Cu$)
- Isobar collisions are smaller (larger) collision systems compared to Au+Au (Cu+Cu); this allows us to study the dependence of HNM effects on medium size and geometry
- Good data quality: around 4 billion minimum bias events

Yan Wang, Apr 8, 2022 Poster Session 3 T11_2

$J/\psi R_{AA}$ in Isobar Collisions

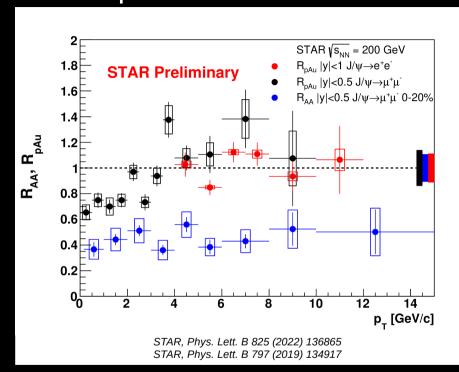


- R_{AA} vs p_T is consistent with results in Cu+Cu and Au+Au collisions with similar <N_{par}> at the same collision energy
- No significant collision system dependence at the same <N_{part}>

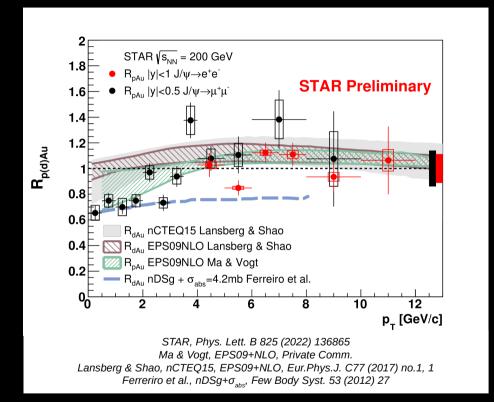
Yan Wang, Apr 8, 2022 Poster Session 3 T11 2

STAR, Phys. Lett. B 797 (2019) 134917 PHENIX, Phys. Rev. Lett. 101 (2008) 122301

$J/\psi R_{AA} vs < N_{part} >$

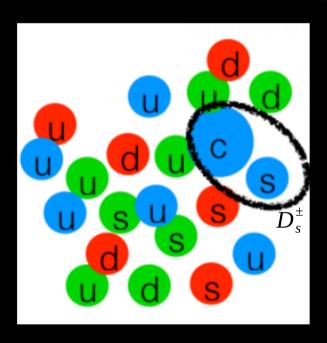


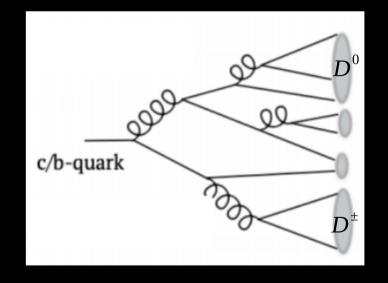
STAR, Phys. Lett. B 771 (2017) 13


- R_{AA} decreases with <N_{part}> at RHIC energy
- No significant energy and species dependence of R_{AA}

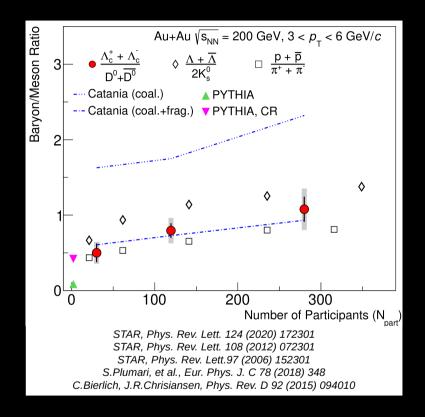
Yan Wang, Apr 8, 2022 Poster Session 3 T11 2

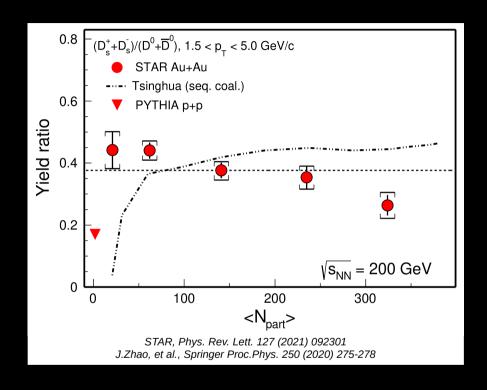
$J/\psi R_{pAu}$ at $\sqrt{s_{NN}} = 200$ GeV


- \bullet R_{pAu} < 1 at low p_T
- R_{pAu} is consistent with unity at mid to high p_T
- The suppression in Au + Au collisions at mid to high $p_{\scriptscriptstyle T}$ is dominated by HNM effects

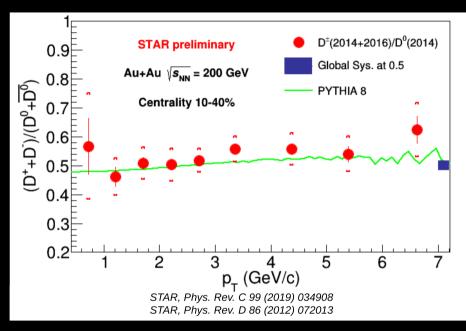

 R_{pAu} result is consistent with model calculations taking nPDF into account, but at high p_{T} disfavor the one with additional nuclear absorption

Hadronization of Heavy Flavor Quarks


- Coalescence
 - Dominant at low p_T



- Fragmentation
 - Dominant at higher p_T

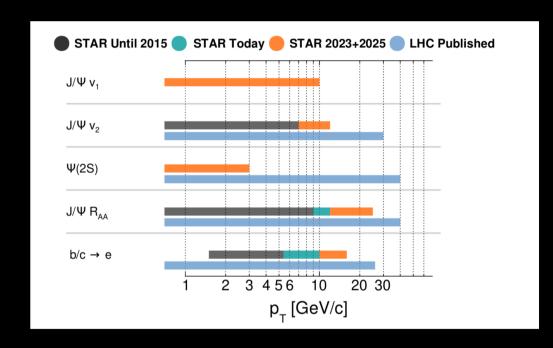

Open Heavy Flavor Production in 200 GeV Au+Au Collisions

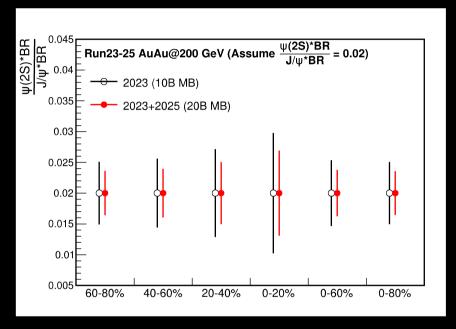
- Enhancements compared to PYTHIA for both Λ_c and D_s
- Λ_c and D_s significantly contribute to the total charm production
- Coalescence plays an important role in hadronization

Open Heavy Flavor Production in 200 GeV Au+Au Collisions

Similar level of suppression is observed for D^{\pm} and D^{0}

Jan Vaněk, Apr 8, 2022 Poster Session 3 T11_3


Collision System	Hadron	dσ _{NN} /dy [μb]
Au+Au at 200 GeV Centrality: 10-40% 0 < p _T < 8 GeV/c	D^0 [1]	39 ± 1 ± 1
	$D^{^{\pm}}$	18 ± 1 ± 3*
	D _s [2]	15 ± 2 ± 4
	Λ _c [3]	40 ± 6 ± 27**
	Total	112 ± 6 ± 27
p+p at 200 GeV [4]	Total	130 ± 30 ± 26
D^{o} [1] STAR, Phys. Rev. C 99 (2019) 034908 $D_{_{S}}$ [2] STAR, Phys. Rev. Lett. 127 (2021) 092301 $\Lambda_{_{c}}$ [3]STAR, Phys. Rev. Lett. 124 (2020) 172301 p+p [4] STAR, Phys. Rev. D 86 (2012) 072013		


 $^*\!D^{^\pm}$ calculated from preliminary invariant yields $^*\!$ Cross section of Λ_c is calculated based on $\Lambda_c /\!\! D^0$ yield ratio

Summary

- J/ ψ R_{AA} measured at $\sqrt{s_{NN}}$ = 54.4 GeV in Au+Au collisions and at $\sqrt{s_{NN}}$ = 200 GeV in isobar collisions
 - No significant energy and species dependence at the same <N $_{part}>$ between $\sqrt{s_{NN}}=$ 39 and 200 GeV
 - Suppression seems to be driven by system size <N_{part}>
- J/ ψ R_{pAu} at $\sqrt{s_{NN}}$ = 200 GeV
 - Suppressed at low p_⊤; consistent with unity at mid to high p_⊤
 - R_{AA} suppression at mid to high p_T is dominated by HNM effects
- Open heavy flavor production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
 - Coalescence plays an important role in hadronization
 - Total charm production cross section per binary nucleon-nucleon collision in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is consistent with that in p+p collisions with a hint of suppression

Look Ahead: 2023 – 2025

- Extend the kinematic reach of $J/\psi v_2$, $J/\psi R_{AA}$ and $b/c \rightarrow e$ measurement
- Allow new measurements on $J/\psi v_1$ and $\psi(2S)$

Thank you for your attention!

Office of Science

29TH INTERNATIONAL
CONFERENCE ON ULTRARELATIVISTIC
NUCLEUS - NUCLEUS COLLISIONS
APRIL 4-10, 2022
KRAKÓW, POLAND