**Hypertriton Production in Au+Au** Collisions from  $\sqrt{s_{NN}}$  = 7.7 to 27 **GeV from STAR** 

Yue Hang Leung (yhleung001@gmail.com), Heidelberg University, for the STAR Collaboration



Hypernuclei, bound states of nucleons and hyperons, serve as a natural laboratory to investigate the hyperon-nucleon (Y-N) interaction, which is an important ingredient for the nuclear equation-of-state. Furthermore, precise measurements of their production yields in heavy-ion collisions are crucial for understanding their production mechanisms. In addition, the strangeness population factor,  $S_3 = {3 \choose \Lambda} H/{3 \choose \Lambda} He /(\Lambda/p)$  is of particular interest as it has been suggested to be sensitive to baryon-strangeness correlations and the onset of deconfinement.

The STAR Beam Energy Scan II program provides a unique opportunity to investigate the collision energy and system size dependence of hypernuclei production. In this poster, we present new measurements on the transverse momentum and centrality dependence of  ${}^3_{\Lambda}$ H yields in Au+Au collisions from  $\sqrt{s_{NN}} = 7.7$  to 27 GeV. The  ${}^3_{\Lambda}$ H/ $\Lambda$  ratio and  $S_3$  will be presented as functions of collision energy and centrality. These results are compared to model calculations, and their physics implications will be discussed.

#### **Motivation**

- Hypernuclei serve as important probes of the Y-N interaction
- Their production yields in heavy-ion collisions may be sensitive to the medium properties
- Their production mechanism are not well understood
- The hypertriton, the loosest bound hypernuclei, gives a unique constraint compared to normal nuclei

### Datasets and Analysis Method

| Collision Energy | 7.7 GeV | 14.6 GeV | 19.6 GeV | 27 GeV |
|------------------|---------|----------|----------|--------|
| Year             | 2021    | 2019     | 2019     | 2018   |
| # of events      | 101M    | 324M     | 478M     | 555M   |

- Hypertritons are reconstructed via  ${}^3_{\Lambda}{
  m H} 
  ightarrow {}^3{
  m He} + \pi^-$
- KFParticle package [1] for secondary vertex reconstruction, GEANT3 embedding for efficiency corrections

# Hypernuclei p<sub>T</sub> Spectra and Energy Dependence



- Extrapolate to  $p_T = 0$  using functional forms (e.g.  $m_T$ -exp)
- Yield increases strongly from  $\sqrt{s_{NN}} = 27$  GeV to 7.7 GeV, reaching a maximum at 3-4 GeV
- Energy dependence of hypertriton production can be qualitatively explained by an interplay between increasing baryon density and stronger strangeness canonical suppression towards low energies

# Hypernuclei Ratios



- Although d/p is well described by thermal model [2], t/p and  ${}^3_{\Lambda}{\rm H}/\Lambda$  are overestimated by a factor of ~2
- Thermal model is disfavored by the new BES-II data
- Both hypertriton and triton yields are not fixed at chemical freeze-out along with the light particles, likely fixed at a later stage

# The Strangeness Population Factor



- Observed an increasing trend for  $S_3 = ({}^3_{\Lambda} \text{H}/{}^3\text{He})/(\Lambda/\text{p})$
- May be driven by increasing feed-down to <sup>3</sup>He from unstable nuclei and/or suppression of  $^3_\Lambda H$  at low energies
- Observed a hint of suppression for  $S_3$  in 10-40% collisions compared to 0-10% collisions
- Measurements may help constrain coalescence models and help draw connection to the hypertriton radius [3]
  - [1] "Real-Time Event Reconstruction and Analysis in CBM and STAR Experiments",
- rs.Conf.Ser. 1602 (2020) 1, 012006
- [3] T. Reichert et al. Phys.Rev.C 107 (2023) 1, 014912

