Probing the Parton Shower and
Hadronization with Novel Jet
Substructure Measurements at STAR

Introduction

Jets are collimated sprays of final-state particles produced from initial high-momentum-transfer partonic

scatterings in collisions. Since jets are multi-scale objects that connect asymptotically free partons to confined
hadrons, jet substructure measurements in vacuum can provide insight into the parton shower and the
ensuing hadronization processes. We present two novel jet substructure measurements with /s = 200 GeV
pp collision data recorded by the STAR experiment.

Grooming

To enhance perturbative contributions, SoftDrop With CollinearDrop grooming, we can study the soft wide-
grooming is often used to remove soft wide-angle angle radiation within jets. This is an interesting region of

radiation. phase space of the parton shower that deserves more study!
Chien and Stewart JHEP 06 (2020) 64.

_ We use (z_,, 1, 84) = (0,0) and (z_,, », B,) = (0.1,0): difference in
L arkoski, et al. JHEP 05 (2014) 146. R4 o the original and SoftDrop groomed observable. E.g., the

Dasgupta et al. JHEP 09 (2012) 29. CollinearDrop groomed jet mass: M — M,
AM/M = Vi =

Charge Correlator Ratio

The charge correlator ratio r, probes for evidence of string-like
fragmentation, by distinguishing the charge signs of leading and
subleading charged particles within jets. chien et al PrD 105 051502 (2022)
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This measurement can also establish a baseline for studying medium

Unfoldi ng Correlated Variables modification of hadronization in the QGP! The choice of leading

dihadrons makes it less susceptible to the background.

Unfolding methods: MultiFolded result is consistent with the previously published

lterative Bayesian unfolding oagostini. arxiv:1010.0632 2010y ~ RooUnfolded result! (star coliaboration. PRD 104, 052007(2021))
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Unfolded observables: % 0.10} % I % followed by a bin-by-bin reweighting to account for the jet energy scale.
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STAR Preliminary _- . r. measured on subjets.
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resolved splitting at parton level!

parton showers

20 < pr,jet <30 GeVic
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*I\/IC models describe the trend of data. SN Wright
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