

Exploring the Origin of Anisotropy in Small Systems: From Symmetric (O+O) to Asymmetric (d+Au) Collisions

Zhengxi Yan (for the STAR collaboration) Stony Brook University Quark Matter 2025, Frankfurt, Germany

Supported in part by

STAR Collaboration

Initial state vs. final state?

- 1) Provide new evidence for the geometry driven picture
- 2) Disentangle nucleon vs. sub-nucleon fluctuation

STAR: PRC 110(2024)6, 064902

Zhengxi Yan

NLEFT: Lu et al., PLB 797 (2019) 134863, Glauber: Loizides, PRC 94, 024914 (2016)

In central collisions:

- ε_2 {4} $\approx \varepsilon_2$ {2} in d+Au. Dominated by average geometry.
- ε_2 {4} < ε_2 {2} in O+O due to fluctuation.

Comparison with v_2 {4} and v_2 {2} to test the final state gemetry response to fluctuations.

Zhao.*et al.,* PRC107(2023) 014904 PHENIX, Nature Physics 15, 214-220 (2019), STAR, PRL 130, 242301(2023)

New run21 d+Au and O+O data

Wide η coverage, better handles on:

- De-correlation
- Non-flow

New data

Run21 d+Au: High Multiplicity Trigger: 70M Events MB Trigger: 70M Events

Run21 O+O: High Multiplicity Trigger: 510M Events MB Trigger: 470M Events

Di-hadron correlation at mid-rapidity

0-10% d+Au **1/N_{trig} * dN/dΔφ** 5.5 7.5 **STAR Preliminary -**C₃ $\sqrt{s_{NN}} = 200 \text{ GeV}$ $1.0 < \Delta \eta < 3.0$ $|\eta| < 1.5$ p_T^{a, t}: 0.2-2.0 GeV/c 3 2 4 -1 $\mathbf{0}$ Δφ

Two-particle correlation method:

Zhengxi Yan

Multiplicity dependence of c_2 and c_3

Non-monotonic d+Au c₂: Non-flow dominance shift to flow dominance from peripheral to central

 $c_2(d+Au) > c_2(O+O)$ tracks initial geometry hierarchy

Similar c_3 in 2 systems

Multiplicity dependence of scaling ratio v_n/ϵ_n

$$v_n\{2\} \propto \varepsilon_n\{2\}$$

 v_2/ϵ_2 : d+Au and O+O show consistent collective response to geometry. \rightarrow A QGP droplet in small system?

Multiplicity dependence of scaling ratio v_n/ϵ_n

$$v_n\{2\} \propto \varepsilon_n\{2\}$$

 v_2/ϵ_2 : d+Au and O+O show consistent collective response to geometry. \rightarrow A QGP droplet in small system?

v_3/ϵ_3 : Prefer sub-nucleon fluctuation

→ Hallmark of collective response from QGP in small systems

Flow fluctuations v₂{4} and v₂{2}

 $\frac{v_2\{4\}}{v_2\{2\}} \quad \text{vs.} \quad \frac{\varepsilon_2\{4\}}{\varepsilon_2\{2\}} \quad \text{Fluctuation in flow also scales with fluctuation in geometry} \\ \rightarrow \text{ collective response}$

Cross-check of the run 16 and run 21

The results measured in mid-mid correlation are consistent between run 16 and run 21

The role of longitudinal decorrelation

Larger acceptance in mid-rapidity has minimal effect on the measured flow

Mid-mid vs. mid-forward

STAR

$v_n(mid-mid) \approx v_n(mid-forward)$

Measured v_n shows no sign of de-correlation

Non-flow with large $\Delta\eta$ gap

New run 24 p+p @ 200 GeV: 3 billion min-bias + 3 billion high-multiplicity triggered events 1) Improve control over non-flow subtraction and de-correlation effects in small systems 2) Measure potential collectivity in p+p by subtracting min-bias from high-multiplicity events *Zhengxi Yan*

Summary

1) Constraining geometry via v_2 and v_3 from d+Au and O+O:

- v₂(d+Au) > v₂(O+O): d+Au ε₂ average geometry dominated by the nucleon configurations in deuteron
- $v_3(d+Au) \approx v_3(O+O)$: v_3 consistent with ε_3 ordering that further includes sub-nucleon fluctuation

2) Non-flow subtracted v_n in d+Au with different $\Delta \eta$ -gaps suggest:

- No significant de-correlation effect predicted by the 3D Glauber model was found
- Large $\Delta\eta$ -gap does not eliminate non-flow in v₃ without subtraction
- \bullet Final vn remains stable with varying reference particle acceptance