Photoproduction at the Relativistic Heavy Ion Collider with STAR

Yury Gorbunov for the STAR collaboration Creighton University

Ultra Peripheral Collisions

- Ultra Peripheral Collisions nuclei miss each other and interact via long range electromagnetic fields
 - Weizsacker-Williams: a field of almost-real photons
 - Virtuality $Q^2 < (h/R_A)^2$
- Photon $E_{max} \sim \gamma h/R_A$
 - 3 GeV with gold at RHIC
- Photon flux ~ Z²
 - Higher intensity with heavy ions, higher probability of multi-photon interactions

- Photonuclear vector meson production is the dominant
- Both processes can be exclusive and coherent
 - Exclusive : nuclei stay in tact no other particles in the event
 - Coherent: fields couple to the entire nucleus with momentum transfer at the order of ħ/R_A
 - At RHIC : σ (AuAu \rightarrow AuAu $+\rho^0$) = 530 mb

- Gluon structure function
 - gA -> J/ Ψ , cc(bar), dijets, etc $\sigma_{J/\Psi} \sim g^2(x)$

 - $\sigma_{QQ, dijets} \sim g(x)$
- Meson spectroscopy
 - ρ, ω, ϕ , excited states, etc
 - ρ' state which believed to consist of r(1450) and r(1700)
 - $\sigma(\gamma p \rightarrow \rho p)$ and $\sigma(\gamma A \rightarrow \rho A)$ of the two components should scale differently with A due to shadowing
- Transition from soft physics (ρ, ω, ϕ) to pQCD $(J/\Psi, Y)$
- Fundamental tests of Quantum Mechanics
 - Interference between non overlapping particles
- Multiple production
 Unitarization of the strong electromagnetic fields leads to production of multiple VM in a single event

Signature and Triggering

- Signatures:
 - Coherent production dominates
 - $p_{\tau} ≤ 2h/RA ≈ 60 MeV/c$
 - Low multiplicity events with vertex
 - Events with nuclear breakup accompanied by forward neutrons
- Triggers:
 - "Minimum bias"
 - Low multiplicity
 - Neutrons in both ZDCs
 - "Topology"
 - Low multiplicity events
 - Coincidence of North and South
 - Top and Bottom veto cosmics

ρ^0 Photoproduction at STAR

- Coherently produced events
 - Exclusive ρ⁰ accompanied by mutual Coulomb excitation
 - p_T < 150 MeV/c</p>
 - Acceptance corrected
- Fit function:
 - Relativistic Breit-Wigner for ρ^0 signal
 - Mass independent direct $\pi^+\pi^-$ production amplitude
 - Söding term for the interference of the two

$$rac{d\sigma}{dM_{\pi\pi}} = \left|Arac{\sqrt{M_{\pi\pi}M_
ho\Gamma_
ho}}{M_{\pi\pi}^2-M_
ho^2+iM_
ho\Gamma_
ho} + B
ight|^2.$$

- Background
 - Beam Gas Interactions
 - Peripheral hadronic interactions
 - Pile up events
 - Cosmic Rays

Phys. Rev. C77 34910 (2008)

ρ^o Photoproduction Cross Section

Goncalves & Machado (EPJ C29,2003) QCD color dipole approach Nuclear effects and parton saturation phenomena

Frankfurt, Strikman & Zhalov (PRC67 034901 2003) Generalized vector dominance (VDM) QCD – Gribov-Glauber approach Klein & Nystrand (PR C60 014903, 1999)

VDM

Classical mechanical approach for scattering

- Coherent and incoherent form factors
 - Double exponential fit function
- Incoherent production nucleon form factor
 - $b_N = 8.8 \pm 1.0 \text{ GeV}^{-2}$
- Coherent production
 - b_{Au} = 388.4 ±24.8 GeV⁻²
 - Data sensitive to hadronic radius of gold

•
$$b_{Au} \sim R_{A}^{2}$$

σ(incoh)/σ(coh)~ 0.29 ±0.03

Interference in p Production

- Impossible to distinguish source of γ and target
 - VM are short lived
 - Decay points are separated in space-time
 - No interference
 OR

PRL 102, 112301 (2009)

- The wave function retains amplitudes for all possible decays, long after decay occurs
- Non-local wave function
 - Non factorizable $\Psi_{\pi+\pi-} = \Psi_{\pi+} \Psi_{\pi-}$
- Example of the EPR paradox
- $\rho,\omega,\phi, J/\psi$ are $J^{PC} = 1^{-1}$
 - $\sigma \sim |A_{1(b,y)} A_{2(b,-y)}e^{ip \cdot b}|^2$ where b is impact parameter
 - Suppression at low $p_T \le h/$
- Different triggers provide access to different median impact parameter
 - Topology data : median b \approx 46 fm
 - Minimum bias : median b \approx 18 fm (extends interference effects to larger p_T)
- Photon energy dependence of the ρ production amplitudes leads to the decrease of the interference at large rapidities

Analysis Technique

- Tight cuts
 - Exactly 2 tracks
 - 1 vertex with net charge =0
 - 0.52 < Mππ < 0.92 GeV</p>
- 2 Monte Carlo samples
 - Interference
 - No interference
 - Including detector effects
 - Momentum smearing
- Data matches int
- Inconsistent with noint
- Fit to dN/dt = A exp(-kt)* [1+c(R(t)-1)]
 - Exponential for nuclear form factor
 - R = Int(t)/NoInt(t) where t $\sim p_{\tau}^{2}$
 - Separates nuclear form factor (exponential) & interference

Interference Effects in ρ^0 production

Systematic errors due to trigger (10% for topology), other detector effects (4%), background (1%), fitting & nuclear radius(4%), theoretical uncertanties (5%) Combined measured interference $c=0.87 \pm 0.05$ (stat.) ± 0.08 (syst.)%

Photoproduction of $\pi^+\pi^-\pi^+\pi^-$

- Expected to be largely through a radially excited ρ
 - Could be ρ(1450) and/or ρ(1700)
- Peaks at low p_T due to the coherent production
- Mass spectra similar to γp collisions
- Studies of the substructure showed low mass pion pairs accompanied by ρ(770)

Zoom into higher mass region show no signal for $\rho' \to \pi^+\pi^-$ channel

Hadron collider is the unique tool to study photoproduction

- At RHIC, STAR & PHENIX have studied several topics
 - Published new measurement of $ρ^0$ production cross section at $\sqrt{s}=200$ GeV
 - Good agreement with theoretical predictions
 - Paper about interference effect has been published PRL 102, 112301 (2009)
 - Several ongoing analysis
 - ρ^0 production dAu at 200 GeV and AuAu at 62 GeV
 - Resonant production of $\pi\pi\pi\pi\pi$ at $\sqrt{s} = 200$ GeV in AuAu collisions
- New subsystems are being commissioned right now
 - Central Trigger Barrel is replaced by Time of Flight
 - Improved triggering performance
 - New Data Acquisition system
 - Readout rate at the level of 1 kHz

Physics Outlook

- New DAQ 1000 system should increase available statistic by factor 10
 - Studies of J/Ψ, etc
 - Gluon shadowing
 - $\sigma \sim g(x,Q^2)^2$ with $x \sim \text{few } 10^{-2}$ for J/ ψ at RHIC
 - Substructure in 4 pion state
 - Meson spectroscopy : ρ*,ρ⁰ρ⁰,ω,φ, etc

- Roman pots system
 - Elastic and inelastic diffractive processes and spin dependence
 - Exotics

RHIC is a great place to study diffractive and electromagnetic processes in heavy ion collisions

BACKUP

BACKUP SLIDES

Backup slide

Roman pots system has been installed Dedicated three day run this year

Phase I – elastic scattering and particle production in Double Pomeron

Exchange (DPE)

Phase II - increased data set for elastic scattering and particle production in DPE