8th International Workshop on High p_T Physics at LHC Oct. 21-24, Wuhan, China

Quarkonium Production from STAR at RHIC

Zebo Tang (for the STAR Collaboration) University of Science and Technology of China (USTC)

High-pT 2012, Wuhan, Oct. 21-24

Quarkonium melting in QGP

High-pT 2012, Wuhan, Oct. 21-24

QGP Thermometer

Dissociation temperature depends on binding energy → **QGP temperature**

Complications

- Reference (production in p+p) is not well understood:
- Production mechanism: Color-singlet vs. Color-octet?
- Feeddown: direct (~60%), ψ ' (~10%), χ_c (~30%) and LO CSM from B mesons (small for integrated, but strong p_T dependent)

Cold Nuclear Matter (CNM) effects:

- Nuclear absorption
- PDF modification in nucleus
- Cronin effect
- Gluon saturation
- ...

•

Hot Nuclear Matter effects:

- Color screening
- Recombination of uncorrelated c and cbar

J/ψ yield ↘ J/ψ yield ↗ LO COM

The Solenoid Tracker At RHIC (STAR)

Magnet

TOF

Maria & Alex Schmah

EEMC

Particle Identification

High- $p_T J/\psi$ signals in p+p collisions

$J/\psi p_T$ spectra in p+p collisions

Consistent between datasets/experiments

Color singlet model: direct NNLO still misses the high-p_T part P. Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008), and J.P. Lansberg private communication.

NLO CS+CO describes the data Y.-Q. Ma, K. Wang, and K.-T. Chao, Phys. Rev. D84,

51 114001 (2011), and private communication

CEM can also reasonably explain the spectra down to ~1 GeV/c M. Bedjidian et al., hep-ph/0311048, and R. Vogt private communication

PHENIX: Phys. Rev. D 82, 012001 (2010) STAR: Phys. Rev. C80, 041902(R) (2009), arXiv: 1208.2736

x_T scaling

J/ ψ follows x_T scalling at p_T>3 GeV/c Soft processes affect low p_T J/ ψ production

J/ψ -hadron correlation in p+p collisions

J/ψ -hadron correlation in p+p collisions

Zhangbu Xu, BNL summer program, Quarkonium production in elementary and heavy ion collisions, BNL, June 4-18, 2011

Gluon jet tag?

Consistent with hadron-hadron correlation

→away-side seems to come from gluon/light quark fragmentation

J/ψ polarization in p+p collisions

Discrimination power between different J/ψ production models at high-p_T

- ✓ Polarization parameter λ_θ is measured in helicity frame at |y| <1 and 2 < p_T < 6 GeV/c
- ✓ No significant polarization

PHENIX: Phys. Rev. D 82, 012001 (2010) COM: Phys. Rev. D 81, 014020 (2010) CSM NLO⁺: Phys. Lett. B, 695, 149 (2011) CSM s-cut, Phys. Rev. Lett. 100, 032006 (2008).

J/ψ in d+Au collisions

Measurement of J/ψ in d+Au collisions provides information on CNM effects

Good agreement with model predictions using EPS09 nPDF parametrization for the shadowing, and a J/ ψ nuclear absorption cross section $\sigma_{abs}^{J/\psi} = 2.8^{+3.5}_{-2.6} (stat.)^{+4.0}_{-2.8} (syst.)^{+1.8}_{-1.1} (EPS09)$ mb

STAR results consistent with PHENIX measurements CNM not well understood yet!

High- $p_T J/\psi$ provides a cleaner probe

- Nuclear absorption and life time (Cold Nuclear Matter effects) $R_{AA} \sim 0.5$ at low p_T , increase to unity at 5 GeV/c
- Regeneration and possible radial flow only affect low p_T
- Low- $p_T J/\psi$ deviates from x_T -scaling, soft process affects

High- $p_T J/\psi$ signals in Au+Au collisions

0-20%: 1000 signals with S/B ~= 1/7 40-60%: 300 signals with S/B ~=1/2

J/ ψ spectra in Au+Au collisions

Significantly extend the p_T range to 10 GeV/c

J/ ψ spectra significantly softer than the prediction from light hadrons \rightarrow Much smaller radial flow? \rightarrow Regeneration at low p_T?

Tsallis Blast-Wave model: ZBT et al., arXiv:1101.1912; JPG 37, 085104 (2010)

$\mathbf{R}_{\mathbf{A}\mathbf{A}}$ vs. $\mathbf{p}_{\mathbf{T}}$

STAR CuCu: PRC80, 014922(R) PHENIX: PRL98, 232301

Yunpeng Liu, Zhen Qu, Nu Xu and Pengfei Zhuang, PLB 678:72 (2009) and private comminication

Xingbo Zhao and Ralf Rapp, PRC 82,064905(2010) and private communication

Consistent with unity at high p_T in (semi-) peripheral collisions More suppression in central than in peripheral even at high p_T

R_{AA} vs. Centrality

Significant suppression in central Au+Au collisions for high- $p_T J/\psi$ Systematically higher at high p_T in all centralities Consistent with model I (including color screening effects) Trend is different from high- p_T pion, not dominantly from color-octet?

Compare to LHC

Compare to LHC

Stronger suppression at CMS than STAR, even in peripheral collisions $R_{CP}\sim 1/3$ for CMS, 0.45 for ATLAS and 0.6 for STAR, Similar at RHIC and LHC if take the uncertainty into account CNM and regeneration is less important at high p_T at RHIC. \rightarrow Is it true for LHC?

$J/\psi v_2$ in semi-central Au+Au collisions

Acta Physica Polonica B , Proceedings Supplement Vol. 5, No. 2, 2012, page 323

[1] V. Greco, C.M. Ko, R. Rapp, PLB 595, 202. (MB)

- [2] L. Ravagli, R. Rapp, PLB 655, 126. (MB)
- [3] L. Yan, P. Zhuang, N. Xu, PRL 97, 232301. (b=7.8fm)
- [4] X. Zhao, R. Rapp, 24th WWND, 2008. (20-40%)
- [5] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317. (b=7.8)
- [6] U. Heinz, C. Shen, priviate communication. (20-60%)

Models		P-value
Initially produced	1.8/3	6.2e-1
Coalescence at freezeout	22.6/3	4.9e-5
Coalescence In transport	13.9/3	3.0e-3
Coalescence In transport	4.8/3	1.8e-1
Coalescence +initial mix	2.9/3	4.0e-1
Coalescence +initial mix	1.8/4	7.7e-1
Hydro T=120 w/viscosity	16.5/3	9.2e-4
Hydro T=165w/ viscosity	14.9/3	1.9e-03
Hydro T=120 w/o viscosity	191.6/3	2.7e-41
Hydro T=165w/o viscosity	237.3/3	0.0

Disfavors the case that J/ψ with $p_T > 2$ GeV/c is produced dominantly by coalescence from thermalized charm quarks.

Upsilon measurement in STAR

recombination can be neglected at RHIC

☐ Final state co-mover absorption is small.

More suppression in more central collisions

Consistent with prediction from a model requiring strong 2S and complete 3S suppression.

Summary

J/ψ :

- CEM and NLO CS+CO describe p_T spectra in p+p
- 10-25% B-hadron feeddown contribution at $4 < p_T < 12 \text{ GeV/c in } p+p$
- First measurement of high- $p_T J/\psi$ suppression in Au+Au collisions at RHIC
 - Less complication of CNM and Recombination effects
 - Significant suppression at p_T>5 GeV/c, color-screening?
- J/ ψ v₂ measurements disfavor the case that coalescence dominate the production at p_T > 2 GeV/c.

Upsilon:

- Significant suppression in central heavy-ion collisions
- Consistent with melting of excited states

Muon Telescope Detector (MTD)

J/ψ with MTD projection

Upsilon with MTD projection

Separate different Upsilon states