

Quarkonium production in protonproton collisions at the STAR experiment

Qian Yang (杨 钱) (for the STAR Collaboration) Shandong University

Outline

- Motivation
- STAR experiment
- Charmonium production in p+p collisions
- $\circ \Upsilon$ production in p+p collisions

Summary

Quarkonium in p+p collisions

 Heavy quarkonium is a non-relativistic QCD system(v²<<1): the simplest system in QCD.

Difficulty:Involving both perturbative and non-perturbative processes

Quarkonium: An ideal test ground of QCD!!

Production mechanism

Models differ in the treatment of hadronization:

- Improved color evaporation model
- Color singlet model
- NRQCD approach (CGC+NRQCD at low p_T)

[P. Faccioli, Polarization in LHC physics, Course on Physics at the LHC 2014]

Observables

Quarkonium production mechanism in elementary collisions is not fully understood

No consistent descriptions of cross section and polarization

The Solenoid Tracker At RHIC (STAR)

J/ψ→ e+e-J/ψ → $\mu^+\mu^-$ Y(ns) → e+e-

MTD - trigger on and identify muons

> BEMC-trigger on and identify electrons

TPC-momentum and energy loss

TOF-1/B and

charged particle

6

J/ψ and ψ(2S) in p+p at 200 &500 GeV

Inclusive J/ψ cross section at 200 GeV STAR

•Both CEM model (direct J/ ψ) and NLO NRQCD calculations (prompt J/ ψ) describe the data reasonably well in the relevant p_T ranges

•CGC+NRQCD calculation are close to the upper uncertainty boundary of data in the low-p_T region ($p_T < 5$ GeV/c)

Inclusive J/ψ cross section at 500 GeV STAR

Precision measurement within large dynamic range

- J/ ψ production cross-section for p_T from 0 to 20 GeV/c
- Measurements consistent with CGC+NRQCD & NLO NRQCD calculations
 - Calculations only take prompt J/ψ production into account

Inclusive J/ψ polarization at 200 GeV STAR

J/ψ polarization-model comparison

NRQCD1: Phys. Rev. Lett 114 (2015) 092006 NRQCD2: Phys. Rev. Lett 110 (2013) 042002 CGC+NRQCD: JHEP12 (2018) 057

 NRQCD calculations with two different sets of Long Distance Matrix Elements (LDMEs) and CGC+NRQCD calculation are all consistent with data within uncertainties

$\psi(2S)/J/\psi$ cross section ratio

•Measured $\psi(2S)/J/\psi$ ratio in both 200 & 500 GeV are consistent with world-wide data •The ICEM model can qualitatively describe the measurement

J/ψ production vs. n_{ch} in 200 GeV

EPOS3.2: Phys. Rept. 350 (2001) 93.

- •A strong increase in J/ ψ relative yields with n_{ch} is observed, which seems to be stronger at high p_T (> 4 GeV/c)
- Similar trend at LHC's measurement → weak dependence of the underlying mechanism on collision energy
- PYTHIA8, EPOS3 and Percolation model can qualitatively describe the rising behavior

Y signals in p+p at 200 & 500 GeV STAR

Υ →e+e-

 3 Crystal-ball functions - Geant simulation of STAR detector Residual background:

• $b\bar{b}$ and Drell-Yan correlated background - Pythia

Y cross section in p+p

STAR: [Phys.Lett.B 735,127–137(2014)]
CDF: [Phys.Rev.Lett. 88,161802(2002)]
CMS: [Phys.Rev.D 83,112004(2010)]
CFS: [Phys.Rev.Lett. 39,1240-1242(1977)]
[Phys.Rev.Lett. 41,684–687(1978)]
[Phys.Rev.Lett. 42,486–489(1979)]
[Phys.Rev.Lett. 55,1962–1964(1985)]
E605: [Phys.Rev.D 43,2815–2835(1991)]
[Phys.Rev.D 39,3516(1989)]
CCOR: [Phys.Lett.B 87,398–402(1979)]
E866: [Phys.Rev.Lett. 100,062301(2008)] ISR
[Phys.Lett.B 91,481-486(1980)]

- p+p at √s = 200 GeV (2015 data): 81 ± 5(stat.) ± 8(syst.)pb
- p+p at √s = 500 GeV (2011 data): 186 ± 14(stat.) ± 33(syst.)pb
- Measurements in p+p collisions at 200 and 500 GeV
 - Follow the world data trend
 - Consistent with CEM prediction
- Baseline for measurements in 200 GeV p+Au and Au+Au collisions

Y differential cross section

CEM: Phys.Rev.C 92 034909(2015) CGC+NRQCD: Phys.Rev.D 94, 014028(2016) Phys.Rev.Lett. 113, 192301(2014)

- CEM prediction of inclusive $\Upsilon(1S)$ describes measurement
- CGC+NRQCD calculation of direct $\Upsilon(1S)$ are above the inclusive $\Upsilon(1S)$ measurement
 - According to the authors: additional correction is needed for the lowest p_T bin (feed-down et.al)

Cross section ratios: $\Upsilon(nS)/\Upsilon(1S)$

Phys. Rev. C 88, 067901(2013)

• Cross section rations are slightly below (2σ) world data average

Y rapidity in p+p at 200 & 500 GeV

Open circle and star are mirror image points

p+p @ 200 GeV:

 Narrower rapidity distribution than NLO CEM calculation p+p @ 500 GeV:

• Flatter rapidity spectrum at $\sqrt{s} = 500$ GeV compared to 200 GeV

- Indication (~ 2σ) of dip at mid-rapidity for $\Upsilon(2S + 3S)$
- CEM model consistent with measurement for $\Upsilon(1S)$
- CGC+NRQCD (direct) overestimates measurement (inclusive)

Summary

J/ψ production:

- Inclusive J/ ψ production cross-section for p+p at $\sqrt{s} = 200$ GeV and 500 GeV can be described by CEM (direct J/ ψ) and NLO NRQCD (prompt J/ ψ) model calculations,
 - CGC+NRQCD seems to overestimate the data at 200 GeV
- Both λ_{θ} and λ_{φ} for J/ ψ in p+p are consistent with 0 in HX and CS frames
- J/ ψ yields in p+p grow faster than linearly with n_{ch}

Υ production:

- The $\Upsilon(1S+2S+3S)$ total cross-section at $\sqrt{s} = 200$ GeV and 500 GeV can be reasonably well described by NLO CEM calculation
- The p_T-differential $\Upsilon(1S)$ spectra can also be described by NLO CEM calculations
- Flatter rapidity distribution for Υ at $\sqrt{s} = 500$ GeV than at 200 GeV