TOWARD A MEASUREMENT OF THE MULTIPLICITY DEPENDENCE OF THE J/ψ YIELD IN p + p COLLISIONS AT $\sqrt{s} = 510$ GEV IN THE STAR EXPERIMENT

Supported in part by

Office of Science

OUTLINE

- RHIC and the STAR experiment
- J/ ψ measurement
- Muon particle ID
- Invariant mass
- Summary and future work

RELATIVISTIC HEAVY ION COLLIDER

- Collides beams of heavy ions and protons
 - Heavy ion collisions up to centerof-mass energy of 200 GeV
 - p + p collisions up to center-ofmass energy of 510 GeV
- Beams travel in opposite directions around ring
- Only polarized proton beam in the world

MEASURING J/ ψ YIELD

- Quarkonia: heavy quark-antiquark pairs
- Recent measurements at RHIC and LHC showed faster than linear rise in J/psi production with event multiplicity
 - Model calculations with Multiple-Parton-Interactions (MPI) can reasonably describe data
 - May point to link between hard scattering and underlying soft processes
 - Can test and fine tune existing models
- J/ ψ ($c\bar{c}$) can decay through dimuon and dielectron channels
 - Measurement of J/ ψ yield using invariant mass via dimuon decay
- Using data from p + p collisions at $\sqrt{s} = 510$ GeV from 2017 data taking
 - Has been done at $\sqrt{s} = 200$ GeV, higher energy will provide higher multiplicity
 - $0 < p_{T, J/\psi} < 30 \text{ GeV/c}$
 - $|y_{J/\psi}|^2 < 0.5$

PREVIOUS RESULTS ON J/ ψ PRODUCTION AT STAR

- STAR measurements of J/ ψ yields ($\sqrt{s} = 200 \text{ GeV}$) as a function of multiplicity, compared to ALICE results ($\sqrt{s} = 7 \text{ TeV}$, forward rapidity) and PYTHIA, EPOS, and percolation models
 - PYTHIA and EPOS reproduce data
 - Reasonable agreement with ALICE
- Previous invariant mass measurement using $p + p \sqrt{s} = 510$ GeV data

Rachael Botsford STAR collaboration, Physics Letters B, 786 (2018), p. 87-93.

THE STAR EXPERIMENT

- Time Projection Chamber (TPC)
 - Tracks charged particles
 - Measures momentum and energy loss
 - $|\eta| < 1$, full azimuth
- Muon Telescope Detector (MTD)
 - Identifies and triggers on muons
 - $|\eta| < 0.5, 45\%$ of azimuth
- Time of Flight (TOF)
 - Identifies particles
 - $|\eta| < 1$, full azimuth
- Vertex Position Detector (VPD)
 - Measures position of primary vertex along beamline
 - $4.24 \le |\eta| \le 5.1$

MULTIPLICITY MEASURED WITH TPC

- Number of charged particles produced at primary vertex
- v_x, v_y, v_z: Vertex position in the x, y, z direction as measured by the TPC

$$\mathbf{v}_r = \sqrt{v_x^2 + v_y^2}$$

- Using dimuon trigger data
- Subject to event quality cuts which select primary vertices most likely to correspond to ${\rm J}/\psi$ events
 - $|v_z| < 75 \text{ cm}$
 - | v_{z,dif} | < 6 cm: difference between v_z as measured by TPC and VPD, ensures event is not from pile-up

CHARGED PARTICLE RECONSTRUCTION USING TPC

- Track quality cuts
 - Pseudorapidity ($|\eta| < 0.8$): angle of particle with respect to beam axis
 - Distance of closest approach (DCA < 3 cm): smallest distance to the primary vertex along the track trajectory
 - Number of TPC hits used in track reconstruction ≥ 20
 - Number of TPC hits used in energy loss measurement ≥ 15
 - Ratio of used TPC hits to possible TPC hits ≥ 0.52
 - $p_T > 1.2 \text{ GeV/c}$

MUON IDENTIFICATION USING MTD

- Array of Multi-gap Resistive Plate Chambers that surrounds the TPC and triggers on muons
 - Muons provide cleaner signal and improved mass resolution due to less bremsstrahlung radiation
 - Magnet coils shield from other hadrons
 - MTD matching ensures a given track is the same in the TPC and MTD
- ΔTOF : difference between expected TOF (time of flight) value and TOF value as measured by MTD
- Δz : difference between MTD hit position and extrapolated track position, along beam direction
- Δy : difference between MTD hit position and extrapolated track position, along azimuthal direction

STAR p+p 510 GeV — PID Cuts — No PID Cuts

PID WITH TPC

- $n\sigma_{\pi}$: difference between measured and theoretical energy loss assuming pion mass, normalized to energy loss resolution of TPC
 - Pion and muon have similar mass, so this can be used for muon identification
 - Use TPC to determine p,q
 - Use ionization energy loss to select muon candidates
- Event quality cuts, track quality cuts, MTD matching criteria applied
 - Red lines indicate cuts applied to $n\sigma_{\pi}$
- Ideally centered at zero
 - Can select on p_T to compensate for this

INVARIANT MASS

- Reproduced previous analysis
- J/ ψ yield determined through fitting, after background subtraction
 - Signal obtained by subtracting like-sign pairs (background) from unlike-sign pairs
 - Signal is fit with Crystal Ball function for J/ ψ , plus a 4th order polynomial for residual background
 - Yield is the area of signal distribution with all the background subtracted
- Residual background contains other processes such as Drell-Yan

SUMMARY

Rachael Botsford

- A study of p + p collisions at higher energy can help measure J/psi production at higher multiplicity
- The Muon Telescope Detector (MTD) at STAR allows us to study the dimuon channel of J/ ψ decay in p + p collisions.
- Quantities measured using the TPC and MTD enable identification of muon candidates.
- The next step is to obtain the invariant J/ψ yield as a function of multiplicity and as a function of transverse momentum.

This work is funded by the Lehigh University Lee Fellowship Program and Department of Energy award DE-SC0023491.

$\frac{1}{\beta}$ CURVES WITH TOF

- Time of Flight ($|\eta| < 1$, full azimuth)
 - Measures stop/start time of flight from collision vertex to detector
- $\beta = \frac{v}{c}$ where v is velocity and c is the speed of light
 - Determined by TOF using path length and time of flight
- Event quality cuts, track quality cuts, MTD matching criteria, and PID cuts including a cut on $n\sigma_{\pi}$ applied
 - TOF selection cuts in progress
- $\frac{1}{\beta}$ curves indicate expected values for different particle species

