

Elliptic flow of light nuclei in Au+Au collisions at $\sqrt{s_{NN}} = 14.6, 19.6, 27, \text{ and } 54.4 \text{ GeV using the STAR detector}$

Rishabh Sharma (*for the STAR Collaboration*) Indian Institute of Science Education and Research (IISER) Tirupati

DAE HEP 2022 Hosted by IISER Mohali

XXV DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2022

- ★ Motivation
- ★ The STAR experiment
 - Analysis details
- ★ Results
 - \circ p_T and centrality dependence of elliptic flow of d, t, and ³He
 - \circ $\,$ Mass number scaling of elliptic flow $\,$
- ★ Summary

Outline

Motivation

- ★ Thermal model: Light nuclei are produced near the chemical freeze-out (CFO) surface along with other hadrons
- ★ Coalescence model: Light nuclei are produced near the kinetic freeze-out (KFO) surface by the coalescence of final state nucleons
 - \rightarrow Mass number scaling of light nuclei v₂
- ★ v_2 /A of light nuclei was observed to be close to v_2 of protons for p_T /A < 1.5 GeV/c in BES-I data
- ★ Higher statistics dataset in BES-II program will allow us to better understand the production mechanism of light nuclei

STAR

The STAR Experiment

C. Yang et al., JINST 15 C07040 (2020)

Solenoidal Tracker At RHIC

- \star Particle identification is performed using
 - *dE/dx* information from **Time Projection Chamber (TPC)**
 - m^2 information from Time of Flight (TOF)
- \star BES-II upgrades:
 - \circ iTPC: Large pseudorapidity coverage ($|\eta| < 1.5$)
 - \circ Better track and event plane resolution
- \bigstar Datasets
 - **BES-II**: Au+Au collisions at $\sqrt{s_{NN}} = 14.6$, 19.6, 27, and 54.4 GeV

Analysis Details

Improvement of resolution by ~10% from BES-I

 \star The particle azimuthal distribution can be written as:

$$Erac{d^3N}{d^3p}=rac{1}{2\pi}rac{d^2N}{p_Tdp_Tdy}\{1+\sum_{n=1}^\infty 2v_n\cos(n(\phi-\Psi_R))\}$$
 $v_n=\langle\cos(n(\phi-\Psi_R))
angle$

 \star nth harmonic plane is calculated using the Q-vector:

$$egin{aligned} Q_x &= Q_n \cos(n\Psi_n) = \sum_i w_i \cos(n\phi_i) \ Q_y &= Q_n \sin(n\Psi_n) = \sum_i w_i \sin(n\phi_i) \end{aligned} \quad \Psi_n &= rac{1}{n} an^{-1} rac{Q_y}{Q_x} \end{aligned}$$

Particle Identification

 $z = \ln igg(rac{\langle dE/dx
angle_{ ext{measured}}}{\langle dE/dx
angle_{ ext{theory}}} igg)$

- ★ $<dE/dx>_{theory}$ is calculated using Bichsel function
- ★ Double Gaussian fit is done to calculate yield in each p_{τ} and $\phi \Psi_{2}$ bin

Elliptic flow of light nuclei

STAR

★ The $v_p(p_T)$ for all nuclei species increases with increasing p_T for all collision energies

- \star v₂ of deuterons shows a strong centrality dependence
 - Peripheral collisions have relatively larger v_2 due to their larger initial spatial anisotropy

Mass number scaling

*lines correspond to 3rd order fit to the proton v₂ data

 \star v₂ of light nuclei obeys the mass number scaling within 20-30%

STAR

- ★ v_2 of d, t, and ³He is measured in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 27, and 54.4 GeV (Collider)
 - Clear centrality dependence is observed for deuterons for all collision energies
 - Light nuclei v_2 seems to be obeying mass number scaling within 20-30%

Outlook

 \star Stay tuned for more exciting results on light nuclei flow from BES II energies

-0

Thank you