

Elliptic flow of light nuclei in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 27, and 54.4 GeV using the STAR detector

Rishabh Sharma (for the STAR Collaboration) Indian Institute of Science Education and Research (IISER) Tirupati

International Conference on New Frontiers in Physics (ICNFP), 2022

December 12 - 13, 2022

Supported in part by:

Outline

- **★** Motivation
- ★ The STAR experiment
 - Analysis details
- **★** Results
 - Elliptic flow of light nuclei
- **★** Summary

Motivation

- ★ Light nuclei production in heavy-ion collisions can be explained either by the **thermal** model or the final-state **coalescence** of nucleons
- \star v₂/A of light nuclei was observed to be close to v₂ of protons for p_T/A < 1.5 GeV/c in BES-I data
- ★ Higher statistics dataset in BES-II program will allow us to revisit and better understand the production mechanism of light nuclei

The STAR Experiment

C. Yang et al., JINST 15 C07040 (2020)

- ★ Particle identification is performed using
 - \circ dE/dx information from Time Projection Chamber (TPC)
 - \circ m^2 information from **Time of Flight (TOF)**
- ★ BES-II upgrades:
 - iTPC: Large pseudorapidity coverage ($|\eta| < 1.5$)
 - Better track and event plane resolution
- **★** Datasets
 - BES II: Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 27, and 54.4 GeV

Analysis details

★ The particle azimuthal distribution can be written as:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2\nu_n \cos(n(\phi - \Psi_R))\right) \qquad v_n = \left\langle \cos[n(\phi - \psi_R)]\right\rangle$$

★ nth harmonic plane is calculated using the Q-vector:

$$Q_n \cos(n\Psi_n) = \sum_i w_i \cos(n\phi_i)$$

$$Q_n \sin(n\Psi_n) = \sum_i w_i \sin(n\phi_i)$$

$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)}\right) / n$$

To suppress non-flow contributions

- \star η-sub event plane is used
- \star η -gap of 0.1 is taken between two subevents

CMS, PRC 87 014902 (2013)

We observe an improvement of resolution by ~10% from BES I owing to higher <u>TPC</u> acceptance and <u>track resolution</u>

Particle identification

Particles are identified using dE/dx information from TPC in the range $|\eta| \le 1.0$

$$z_i = \ln \left(\frac{\langle dE/dx \rangle_{measured}}{\langle dE/dx \rangle_{theory}} \right)$$

- \star <dE/dx>_{theory} is calculated using Bichsel function
- ★ Double Gaussian fit is done to calculate yield in each p_T and $\phi \Psi_2$ bin

Elliptic flow of light nuclei

 \star The $v_2(p_T)$ for all nuclei species increases with increasing p_T for all collision energies

Centrality dependence

 \star v₂ of deuterons shows a strong centrality dependence

• Peripheral collisions have relatively larger v₂ due to their larger initial spatial anisotropy

Mass number scaling

 \star v₂/A of light nuclei is compared to the v₂ of protons to test mass number scaling

 \star v₂ of light nuclei obeys the mass number scaling within 20-30%

Summary

- \star v₂ of d, t, and ³He is presented in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6, 19.6, 27 and, 54.4 GeV (Collider)
 - v₂ shows a clear centrality dependence
 - Light nuclei v₂ seems to be obeying mass number scaling within 20-30%

Outlook

★ More exciting results to follow on light nuclei flow from BES-II energies

Thank you