

Recent Heavy-Flavor Results from STAR

Guannan XIE (for the STAR Collaboration) Lawrence Berkeley National Laboratory June 10-15, 2019

Guannan Xie

Contents

- Heavy quarks: $m_{c/b} \gg \Lambda_{QCD}$, $T_{QGP(RHIC)}$
 - Produced early in heavy-ion collisions through hard scatterings
 - Experience the whole evolution of the system
 - \rightarrow good probe of medium properties
- Open heavy flavor $(Q\bar{q}, Qqq)$
 - In medium energy loss, radiative + collisional $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
 - Charm quark diffusion, v_n
 - Hadronization mechanism, D_s , Λ_c^+
- Quarkonium ($Q\overline{Q}$)
 - Dissociation : $Q\overline{Q}$ potential color-screened in the medium
 - Sequential melting : different quarkonia dissociate at different temperatures
 - Regeneration

STAR Detector

Time Of Flight detector: Time Projection Chamber: PID (1/ β), $|\eta| < 1$, $0 < \phi < 2\pi$ Tracking, PID (dE/dx), $|\eta| < 1$, $0 < \phi < 2\pi$

Muon Telescope Detector: Trigger on and identify muons $|\eta| < 0.5$, 45% of $0 < \phi < 2\pi$, Less bremsstrahlung **Barrel ElectroMagnetic Calorimeter**: Trigger on and identify high-p_T electrons $|\eta| < 1, 0 < \phi < 2\pi$

Guannan Xie

Heavy Flavor Tracker

Phys. Rev. C 99, (2019) 034908

■ p+p

 $\circ \mathbf{K}^{\pm}$ π[±]

1.5

2

Open Charm Signals

D⁰ p_T Spectra

- D⁰ measurement was much improved with the help of HFT
 - A factor of >15, in terms of significance

• p_T -integrated D⁰ cross-section is nearly independent of centrality, and smaller than in p+p collisions. However, for $p_T > 4$ GeV/c it increases towards peripheral collisions.

$D^0 R_{AA}$

• $R_{AA} < 1$ in the 0-10% centrality interval for all p_T

- Suppression at high p_T increases towards more central collisions
- Similar suppression trend as D-mesons at LHC and high- p_T pions at RHIC

$D^0 \operatorname{R}_{\operatorname{CP}}$ and $\overline{D^0}/D^0$ Ratio

• Significant suppression at high p_T.

STAR

- Reasonable agreement with theoretical calculations
- $\overline{D^0}/D^0$ ratio is larger than 1, possibly due to finite baryon density

D⁰ Radial Flow

- Exponential fit to the m_T spectra : collective behavior, T_{eff} slope parameter follows the same trend as multi-strange hadrons
- Blast Wave fits ($p_T < 5 \text{ GeV/c}$) :

 $T_{kin}(D^0) \sim T_{kin}(\phi, \Xi) > T_{kin}(\pi, K, p)$ and $\beta(D^0) \sim \beta(\phi, \Xi) < \beta(\pi, K, p)$ \rightarrow suggests earlier freeze-out of D^0 compared to light-flavor hadrons.

Λ_c/D^0 : p_T Dependence

- Significant enhancement of Λ_c/D^0 compared to PYTHIA/fragmentation baseline and p+p, p+Pb at LHC
- The Λ_c/D^0 ratio is comparable with light flavor baryon-to-meson ratios
- Consistent with charm quark hadronization via coalescence

-- higher than model predictions, particularly at higher p_T

Λ_c/D^0 : Centrality Dependence

- Trends of Λ_c/D^0 ratio increases from peripheral to central collisions
- Ratio for peripheral Au+Au comparable with p+p value at 7 TeV

D_s/D^0 Enhancement

- Strong D_s/D⁰ enhancement observed in central A+A collisions w.r.t fragmentation baseline
 - Strangeness enhancement and coalescence hadronization
- Enhancement is larger than p+p, PYTHIA predictions

12

Recent Model Predictions

• Recent model predictions developed fast

Total Charm Cross-section

- Total charm cross-section is extracted from the various charm hadron measurements
- -- D⁰ yields are measured down to zero p_T
- -- For D^{+/-} and D_s, Levy function fits to measured spectra are used for extrapolation.
- -- For Λ_c , fits of three models to data are used and differences are included in systematics

Charm Hadron		Cross Section dơ/dy (µb)
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	D^+	18 ± 1 ± 3
	D_s^+	15 ± 1 ± 5
	Λ_c^+	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
pp 200 GeV	Total	130 ± 30 ± 26

* derived using Λ_c^+ / D^0 ratio in 10-80%

• Total charm cross-section per nucleon-nucleon collision is consistent with p+p value within uncertainties, but redistributed among different charm hadron species

Guannan Xie

D⁰ Elliptic Flow

- Mass ordering at $p_T < 2$ GeV/c (hydrodynamic behavior)
- $v_2(D^0)$ follows the $(m_T m_0)$ NCQ scaling as light flavor hadrons below 1 GeV/c²
 - \rightarrow Evidence of charm quarks flowing with the medium

2014 +2016 Dataset

2014 data, Phys. Rev. Lett. 118, (2017) 212301

STAR

D⁰ Elliptic Flow

- High precision of v_2 data offers stringent constraints to model calculations. Transport models with charm quark diffusion in the medium can describe the data
- Sensitivity to charm diffusion coefficient $2\pi TD_s$ and its temperature dependence

2014+2016 Dataset

16

pQCD LO $\alpha_{q}=0.4$

2

Guannan Xie

D^0 Directed Flow (v₁)

- Charm quarks interact with bulk medium $\rightarrow D^0 v_1$ sensitive to the initial tilt of the source (bulk) S. Chatterjee and P. Bożek, PRL 120 (2018) 192301
- Charm and anti-charm quarks can be deflected differently by the initial EM field \rightarrow difference between D^0 and $\overline{D^0}$ v₁ sensitive to EM field
- First observation of non-zero (negative) $D^0(\overline{D^0})$ v₁ slope, much larger than that of kaons $D^0 + \overline{D^0} dv_1/dy = -0.081 \pm 0.021(stat) \pm 0.017(sys)$
- More precise data are needed for $\Delta v_1 d\Delta v_1/dy = -0.041 \pm 0.041(stat) \pm 0.020(sys)$

Charm to Bottom Through Single e Channel

- Strong interaction of charm with the medium. How about bottom?
- Impact parameter method to separate $c/b \rightarrow$ electrons
- Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e (\sim 2 \sigma)$: consistent with $\Delta E_c > \Delta E_b$. Measurements with improved precision on the way

Guannan Xie

STAR

Quarkonium Signals

Te-Chuan Huang on June 13th Thu.

J/ ψ : Large cross section at RHIC energy, interplay of several effects Y: A cleaner probe at RHIC, small production cross section

arXiv:1905.13669 , submitted to P.L.B

SILVE

12

12

$J/\psi R_{AA}$ vs. p_T

- Suppressed for a wide kinematic range
- Low p_T : regeneration
- High p_T : initial production

Inclusive J/ψ from STAR

Pb+Pb @ 2.76 TeV

- ALICE: Inclusive J/ ψ, 0-40%, |y|<0.8</p>
- CMS: Prompt J/ ψ, 0-100%, |y|<2.4

Model II at RHIC. 60 PRC submittec 82 064905 HEP 05 (2012) 063 CEPLB734 (2014) 314

$J/\psi R_{AA}$ vs. Centrality

- Both, low and high p_T , R_{AA} decreases from peripheral to central collisions
- Low p_T : more suppressed at RHIC in central and semi-central \rightarrow Less regeneration due to lower charm production
- High p_T : hint of systematically less suppression at RHIC for semi-central \rightarrow Probably stronger dissociation at LHC due to high temperature

arXiv:1905.13669, submitted to P.L.B

Inclusive J/ ψ from STAR

$J/\psi\;R_{AA}$ comparison with models

- Low p_T : both models can describe centrality dependence at RHIC
- High p_T : the data lay mostly between the two model calculations

arXiv:1905.13669, submitted to P.L.B

Inclusive J/ψ from STAR

STAR

Y(1S) vs. Y(2S+3S)

- Combined results from two decay channels ($e^+e^-\&\mu^+\mu^-$) from STAR
- Indication of more suppression towards central collisions
- No clear p_T dependence
- $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in 0-10% central collisions
 - \rightarrow consistent with "sequential melting" expectation

STAR

Υ**(1S)**

- Combined results from two decay channels ($e^+e^-\&\mu^+\mu^-$) from STAR
- Indication of more suppression towards central collisions
- No strong p_T dependence
- Suppression level is similar at RHIC and the LHC:
 - CNM /pfgeffect
 - Suppression of excited Y states

CMS, PLB 770 (2017) 357

Υ**(2S+3S)**

- Indication of more suppression towards central collisions
- No clear p_T dependence
- More suppressed than $\Upsilon(1S)$ in 0-10% central collisions
 - \rightarrow consistent with "sequential melting" expectation
- Indication of STAR values higher than LHC in peripheral collision
 less suppression at RHIC?

Comparison with Models: Y(1S)

- Both models show good agreement with data for $\Upsilon(1S)$
 - KSU: Complex potential (lattice QCD); No CNM or regeneration
 - TAMU: T-dependent binding energy; Includes CNM and regeneration

KSU : *B. Krouppa, A. Rothkopf, and M. Strickland, PRD* 97, (2018) 016017 *TAMU*: *X. Du, M. He, and R. Rapp, PRC* 96, (2017) 054901

Comparison with Models: Y(2S+3S)

- Both models consistently describe RHIC and LHC excited Y states suppression in semi-central and central collisions
 - KSU model is lower than data in 30-60% centrality

KSU : *B. Krouppa, A. Rothkopf, and M. Strickland, PRD* 97, (2018) 016017 *TAMU*: *X. Du, M. He, and R. Rapp, PRC* 96, (2017) 054901

Summary

- Open heavy flavor
 - Significant collective behavior for charm \rightarrow charm quark diffusion in medium
 - Hint of $R_{AA}(b \rightarrow e) > R_{AA}(c \rightarrow e) \rightarrow$ mass hierarchy
 - D_s/D^0 and Λ_c^+/D^0 enhancement \rightarrow coalescence hadronization
- Quarkonium
 - Strong suppression of J/ψ at high p_T in central collision \rightarrow dissociation
 - Low $p_T J/\psi R_{AA}$ at RHIC lower than the LHC \rightarrow regeneration
 - $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in central collision \rightarrow sequential melting

Back up

K-

Topological Reconstruction

• Direct topological reconstruction through hadronic channels

$$D^{0}(\overline{D^{0}}) \to K^{\mp}\pi^{\pm}$$
$$\Lambda_{c}^{+} \to pK^{-}\pi^{+}$$
$$D_{s}^{+} \to \phi(1020)\pi^{+} \to K^{+}K^{-}\pi^{+}$$

- With HFT: greatly reduced combinatorial background
- Topological cuts optimized by TMVA (Toolkit for Multi Variate Analysis)

 $\mathbf{D}^{+-}\mathbf{R}_{\mathbf{A}\mathbf{A}}$

- Similar suppression for D⁰ and D^{+/-}
- Spectra measurement is important for the total charm cross-section

D*+ Production in Au+Au Collisions

- D^{*+} feeds down to D^0 yields $D^{*+} \rightarrow D^0 + \pi^+_{soft}$
- Possible hot medium effects :
 - D*+ life time could become shorter in hot medium
 - Re-scattering can lead to loss of yield

Shuai Y. F. Liu and Ralf Rapp. Phys. Rev. C 97 (2018) 034918.

STAR

D*+/**D**⁰ Ratio in Au+Au Collisions

- D^{*+}/D^0 ratio in Au+Au collisions at 200 GeV is consistent with PYTHIA and with ALICE data at higher p_T .
- Ratio of the integrated yields shows no strong centrality dependence

K/K, Phys. Rev. C (2011) 84. 034909. ALICE Collaboration, arXiv:1804.09083.*

Guannan Xie

Λ_{c} Reconstruction

- More than 50% improvement in signal significance with TMVA BDT
- Also new data from 2016
 → Effectively 4x more data

Guannan Xie

Directed flow (v1) due to EM fields

 The moving spectators can produce enormously large electromagnetic field (eB ~ 10¹⁸ G at RHIC)

Au

Ex

- Due to early production of heavy quarks (τ_{CQ} ~ 0.1 fm/c) positive and negative charm quarks (CQs) can get deflected by the initial EM force
- D⁰ and D⁰ v₁ can offer insight into the early time EM fields

35

Guannan Xie

Au

2018 RHIC & AGS Annual Users' Meeting (BNL)

^o Directed flow (v1) due to hydro

4

(%) *-2

HF Bulk

х

- Heavy quarks are produced according to Ncoll density: symmetric in rapidity
- At non-zero rapidity, CQs production⁻⁶ points are shifted from the bulk
- This can induce larger v₁ in CQs than light flavors
- Magnitude of CQ v₁ depends on the drag parameter used in this model

Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

(a)

(D, D) Hydro

B Study from Non-prompt J/ψ & D^0 & e

- Strong interaction of charm with the medium. How about bottom?
- Strong suppression for $B \rightarrow J/\psi$ and D^0 at high p_T .

STAR

• Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e$ (~2 σ): consistent with $\Delta E_c > \Delta E_b$. Measurements with improved precision on the way

$J/\psi R_{AA} vs. p_T$

PHENIX : PRL 98 (2007) 232301; CMS: JHEP 05 (2012) 063 arXiv:1905.13669 submitted to P.L.B; ICE PLB734 (2014)314