

Thermal dielectron measurement in Au+Au collisions with STAR BES-II data

Zhen Wang (王 桢) for the STAR collaboration
Shandong University

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

QCD phase diagram

Deconfined QCD matter produced at extreme high temperatures and/or baryon densities

Study phase structure in the T – μ_B plane

A "Little Bang" in heavy ion collisions

Deconfined QCD matter produced at extreme high temperatures and/or baryon densities

Study phase structure in the T – μ_B plane

Extract the information from the final detected particles

C.Shen https:// u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion- collisions

How to measure temperature

 $\begin{array}{c} \textbf{Hadrons} \\ \textbf{yields} \text{ , } \textbf{p}_{T} \text{ spectra} \end{array}$

Hadrons:

- ✓ Large yields
- ✓ Infer QGP properties when the hadrons decouple
- \checkmark Extract temperatures of chemical and kinetic freeze-out, T_{ch} and T_{kin}

How to measure temperature

Photons
p_T spectra

Dileptons
M_{II} spectra

Electromagnetic Probes:

- ✓ Emitted from early stage to final stage
- ✓ Minimal interaction with medium

How to measure temperature

Photons p_T spectra

Dileptons
M_{II} spectra

Electromagnetic Probes:

- ✓ Emitted from early stage to final stage
- ✓ Minimal interaction with medium

Photons:

- ✓ Extract T_{eff} from p_T spectra
- \checkmark T_{eff} \rightarrow T_{QGP}: medium effect

Dileptons:

- ✓ Temperature measurement without distortion by medium flow effects
- ✓ Only observable to directly access in-medium spectral function

Thermal dileptons

Invariant mass spectra of thermal dileptons can reveal temperature of the hot medium at both QGP phase and hadronic phase

STAR experiment and eID

Time Projection Chamber + Time of Flight detectors

- Charge particle tracking and momentum measurement
- ✓ Electron identification by dE/dx and velocity
- ✓ High purity electron samples

STAR BES-I Dielectron measurements

 $\sqrt{s_{\mathrm{NN}}} = 200 \,\mathrm{GeV}$:

- High statistics
- Open charm dominate the intermediate mass region

$$\sqrt{s_{\rm NN}} = 19.6 - 62.4 \, {\rm GeV}$$
:

Statistically limited

BES-II:

✓ Statistics ~ 10 times larger than that in the BES-I datasets

2024/6/4

Dielectron spectra

Clear enhancement compared to hadronic cocktail in both low mass region (LMR) and intermediate mass region (IMR)

Excess yield

Excess dilepton spectra in LMR at $\sqrt{s_{\mathrm{NN}}}$ = 27 and 54.4 GeV Au+Au collisions and at $\sqrt{s_{\mathrm{NN}}}$ = 17.3 GeV In+In collisions are similar

Temperature extraction from LMR

Low mass region:

$$(a*BW + b*M^{3/2}) * e^{-M/T}$$

- ✓ Similar T_{LMR} for STAR and NA60 measurements
- √ T_{LMR} around the pseudo critical temperature T_{pc} (156 MeV)

Temperature extraction from IMR

 $T_{IMR}^{27 \text{ GeV}} = 280 \pm 64 (\text{stat.}) \pm 10 (\text{sys.}) \text{ MeV}$

T_{PC}: HotQCD, Phys.Lett.B 795 (2019) 15-21; NA60: EPJC (2009)59 607-623

Low mass region:

 $(a*BW + b*M^{3/2}) * e^{-M/T}$

- ✓ Similar T_{LMR} for STAR and NA60 measurements
- ✓ T_{LMR} around the pseudo critical temperature T_{pc} (156 MeV)

Intermediate mass region:

 $M^{3/2} * e^{-M/T}$

- ✓ QGP thermal radiation is predicted to be the dominant source in the IMR
- ✓ T_{IMR} is higher than the pseudo critical temperature T_{pc} (156 MeV) supporting that the emission is predominantly from deconfined partonic phase

Temperature v.s. μ_B

Thermal dielectrons in LMR:

- \checkmark T_{LMR} is close to the T_{pc} and T_{ch}
- ✓ Emitted form the hadronic phase, dominantly around the phase transition

Thermal dielectrons in IMR:

- \checkmark T_{IMR} is higher than T_{LMR}, T_{pc} and T_{ch}
- ✓ Emitted from the partonic phase

T_{ch}: Chemical freeze-out temperature

T_{pc}: Pseudo critical temperature

Temperature v.s. μ_B

Thermal dielectrons in LMR:

- \checkmark T_{LMR} is close to the T_{pc} and T_{ch}
- ✓ Emitted form the hadronic phase, dominantly around the phase transition

Thermal dielectrons in IMR:

- \checkmark T_{IMR} is higher than T_{LMR}, T_{pc} and T_{ch}
- ✓ Emitted from the partonic phase

T_{ch}: Chemical freeze-out temperature

T_{pc}: Pseudo critical temperature

BES-II:

✓ Probing the thermal dilepton in the high baryon density region

Dielectron spectra for $\sqrt{s_{NN}} \le 19.6$ GeV

BES-II collision mode at $\sqrt{s_{NN}} = 7.7 - 19.6 \text{ GeV}$

- ✓ First dielectron measurements under $\sqrt{s_{NN}}$ = 19.6 GeV at RHIC
- ✓ New 9.2 GeV dielectron spectra were obtained
- ✓ Excess observed in low mass region

BES-I V.S. BES-II

Excess = Data - Cocktail

Excess yield invariant mass spectra at $\sqrt{s_{\rm NN}}$ = 19.6 GeV

- ✓ BESI and BES-II results are consistent
- ✓ Much better statistical and systematic uncertainties at BES-II than BES-I
 - ✓ Total error reduced by a factor of ~4
 - ✓ Better precision for extended analysis

BES-II @ 7.7 - 19.6 GeV

Excess = Data - Cocktail

Thermal dielectron spectra with STAR BES-II

Mass spectra of excess dielectron yields at different $\sqrt{s_{NN}} = 7.7 - 19.6$

- ✓ Different environment for medium interactions
 - ✓ Baryon chemical potential
 - ✓ Temperature

BES-II @ 7.7 – 19.6 GeV

Normalized excess yield

R. Rapp, Phys. Rev. C 63, 054907 (2001)H. van Hees and R. Rapp, Phys. Rev. Lett. 97, 102301 (2006) 2024/6/4 Mass spectrum of excess dielectron at different $\sqrt{s_{NN}}$

- ✓ Different environment for medium interactions
 - ✓ Baryon chemical potential
 - ✓ Temperature
- ✓ Integrated excess yield
 - ✓ Normalized by π^0 yield
 - ✓ New result @ 9.2 GeV
 - ✓ Hint of decreasing trend below 19.6 GeV

Dielectron measurements with STAR BES-II and FXT program

STAR, arXiv: 2402.01998

NA60: EPJC (2009) 59 607-623

HADES: Nature Physics 15, 1040-1045 (2019)

Tch SH: P. Braun-Munzinger et al. Nature 561, 321-330 (2018)

Tch GCE/SCE: STAR PRC 96, 044904 (2017)

- ✓ BES-II and FXT data will cover the large gap between the STAR and HADES data
- ✓ The normalized integrated excess yields in mass window 0.4<M_{ee}<0.75 GeV/c² were obtained
 </p>
- ✓ Working on T extraction with BES-II data

Summary

Temperature @ 27 & 54.4 GeV:

- ✓ T_{LMR}: Close to T_{pc} and T_{ch}, provide a new insight to study the phase transition temperature
- √ T_{IMR}: Higher than T_{pc} and T_{ch}, first QGP temperature at RHIC

Thermal dielectron yields with BES-II:

- ✓ High precision measurement compared to BES-I measurements
- ✓ New thermal dielectron measurements at $\sqrt{s_{NN}}$ = 9.2 GeV presented
- ✓ Excess yield spectra for different T and µ_B

Summary

Temperature @ 27 & 54.4 GeV:

- ✓ T_{LMR}: Close to T_{pc} and T_{ch}, provide a new insight to study the phase transition temperature
- √ T_{IMR}: Higher than T_{pc} and T_{ch}, first QGP temperature at RHIC

Thermal dielectron yields with BES-II:

- ✓ High precision measurement compared to BES-I measurements
- ✓ New thermal dielectron measurements at $\sqrt{s_{NN}}$ = 9.2 GeV presented
- ✓ Excess yield spectra for different T and µ_B

Thanks for your attention!