

J/psi photoproduction off deuteron in d+Au UPC at STAR

Kong Tu
on behalf of STAR Collaboration
BNL
06.01.2020

Photoproduction of J/psi

Cross section of J/psi meson in photoproduction, with a *hard scale* imposed by its mass, is sensitive to the gluon density at the LO

$$\left. \frac{d\sigma}{dt} \left(\gamma^* p \to \psi p \right) \right|_0 = \left. \frac{\Gamma_{ee} M_{\psi}^3 \pi^3}{48\alpha} \, \frac{\alpha_S(\overline{Q}^2)^2}{\overline{Q}^8} \, \left[xg(x, \overline{Q}^2) \right]^2 \, \left(1 + \frac{Q^2}{M_{\psi}^2} \right) \right]$$

It's a power probe to study the gluon density and its distributions inside nucleons and nucleus, physics applications:

- Gluon spatial distributions
- Gluon shadowing effects
- Gluon saturations
- Origin of mass, D-term
- Short-Range Correlations
- ...

e+p=e'+J/psi+p'

Photoproduction of J/psi

Cross section of J/psi meson in photoproduction, with a *hard scale* imposed by its mass, is sensitive to the gluon density at the LO

$$\frac{d\sigma}{dt} \left(\gamma^* p \to \psi p \right) \bigg|_0 = \frac{\Gamma_{ee} M_{\psi}^3 \pi^3}{48\alpha} \frac{\alpha_S(\overline{Q}^2)^2}{\overline{Q}^8} \left[xg(x, \overline{Q}^2) \right]^2 \left(1 + \frac{Q^2}{M_{\psi}^2} \right)$$

It's a power probe to study the gluon density and its distributions inside nucleons and nucleus, physics applications:

- Gluon spatial distributions
- Gluon shadowing effects
- Gluon saturations
- Origin of mass, D-term
- Short-Range Correlations

• ...

Low energy elastic J/psi was measured by SLAC, Cornell, and GlueX recently.

Proton

High energy elastic J/psi was measured at HERA (H1, ZEUS) and LHC off protons.

Photoproduction of J/psi in HEAVY NUCLEUS

Ultra-peripheral collisions of heavy ions

- Impact parameter b > 2R
- High energy quasi-real photons
- Huge enhancement of the photon flux comparing to electron-proton

Photoproduction of J/psi in HEAVY NUCLEUS

Ultra-peripheral collisions of heavy ions

- Impact parameter b > 2R
- High energy quasi-real photons
- Huge enhancement of the photon flux comparing to electron-proton

Gluon shadowing? Nuclear effects?

Leading Twist Approximation (LTA)
describes the Ultra-peripheral collisions
(UPC) data at the LHC very well

LTA: Guzey, Zhalov JHEP 1310 (2013) 207 EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065

Photoproduction of J/psi in LIGHT NUCLEUS

Big questions

- Why nucleus is nucleus instead of a few free nucleons sitting together?
- Where does nuclear effect come from?
- How can we find out?

Recent experiments point to local density with extreme configurations, at least for high x region, e.g., valence quarks. (*Nature 566, 354 (2019)*)

Photoproduction of J/psi in LIGHT NUCLEUS

Big questions

- Why nucleus is nucleus instead of a few free nucleons sitting together?
- Where does nuclear effect come from?

How can we find out?

Recent experiments point to local density with extreme configurations, at least for high x region, e.g., valence quarks. (*Nature 566, 354 (2019)*)

New ideas - deuteron

Study the simplest and lightest nuclei

- More proton-like or nuclei-like?
- Possible to control its configurations at the initial state?

UPC dAu collisions at RHIC can be a perfect testing ground

STAR data

- Deuteron-gold collisions at 200 GeV recorded at STAR, with $\sim 93~{\rm nb}^{-1}$
- Ultra-peripheral triggers were used during 2016 data taking, with J/psi vector meson targeted (i.e., topological requirement)
- J/psi → ee pair are reconstructed using TPC for |y| <
 1.0
- Zero Degree Calorimeter (ZDC) was used to detect neutrons from deuteron breakup, providing additional info about the physics process.

STAR 20 years

Fig. 2. ZDC modules installed on RHIC-STAR experiment.

STAR data

- Deuteron-gold collisions at 200 GeV recorded at STAR, with $\sim 93~{\rm nb}^{-1}$
- Ultra-peripheral triggers were used during 2016 data taking, with J/psi vector meson targeted (i.e., topological requirement)
- J/psi → ee pair are reconstructed using TPC for |y| <
 1.0
- Zero Degree Calorimeter (ZDC) was used to detect neutrons from deuteron breakup, providing additional info about the physics process.
- Au + d \rightarrow J/psi + Au' + X
 - X = d' (coherent) or X = d', d' → p'+n' (coherent + Coulomb)
 - X = p'+n' (elastic nucleon)
 - X = p' + X or n' + X (nucleon dissoc.)

STAR 20 years

Fig. 2. ZDC modules installed on RHIC-STAR experiment.

J/psi in UPC dAu @ 200 GeV

- Clear signal, roughly 300 J/psi are reconstructed.
- Signal function based on STARlight J/psi mass signal after STAR GEANT simulations.
- Background function:

$$(x-A)e^{B(x-A)(x-C)+Cx^3}$$

 Difference between bkg and likesign is due to photon-photon→ee (QED background)

Analysis technique

Energy

Photon energy determined by J/psi rapidity

$$W_{\gamma^*p}^2 = 4E_{\rm p}k$$

$$k = \frac{1}{2} M_{J/\psi} e^{-y_{\rm J}}$$

- 100 GeV/nucleon at RHIC
- <W> ~ 25 GeV
- Differential cross section in photon-deuteron system is:

$$\frac{d\sigma}{dtdy} = \frac{1}{\Phi_{T,\gamma}} \frac{N_{i,t,pt,y}^{obs}}{L_{int} \times Br(ee) \times \Delta t_i \times (A \times \epsilon) \times \epsilon_{trig} \times \Delta y}$$

- t is the momentum transfer, $\Phi_{T,\gamma}$ is the transversely polarized photon flux.
- In UPC, $t \sim p_T^2$ is used instead since $Q^2 \sim Q^2$
- Integrating over t to obtain the cross section for each $W \rightarrow \sigma(W)$

Neutrons in UPC dAu

- The UPC trigger used in analysis is unbiased with respect to the ZDC
- ZDC for d- and Au-going directions can be used to look for neutrons
- Neutrons in d-going direction came from deuteron breakup
 - a) coherent + coulomb
 - b) incoherent (Without neutron, however, doesn't mean coherent.)
- Au-going side has no neutron, stay intact!

What is plotting

- Total data no selections on final-state of the deuteron breakups, only J/psi at mid-rapidity with no other activity
- n-tagged data total data + requirement of neutron at d-going ZDC.

What is plotting

- Total data no selections on final-state of the deuteron breakups, only J/psi at mid-rapidity with no other activity
- n-tagged data total data + requirement of neutron at d-going ZDC.
- Total fit has three components:
 - 1) Coherent contribution, assuming an exponential function
 - 2) Elastic nucleon (H1 proton data as shape)
 - 3) Nucleon dissociative (H1 proton data as shape)

(ref. Eur.Phys.J.C 73 (2013) 6, 2466)

Fit range $t = (0, 1.2) \text{ GeV}^2$

What is plotting

Caveat:

 Incoherent diffractive contributions should go to 0 for t ~ 0 GeV². H1 data used as templates are not ideal.

Solution:

 Fit without the first bin (t > 0.05) is checked, with similar results obtained.
 Used it as systematic uncertainty.

Neutron tagged data:

- First look at J/psi photoproduction with neutron tagging.
- Limited statistics, but under expectation

Proton charged radius ~ 0.8 fm, deuteron charged radius 1.8 fm

Cross sections:

- \circ t < 1.2 GeV²
- Total cross section = 73 \pm 9 (stat.) \pm 11(sys.) nb
- Coherent = 34 ± 6 (stat.) ± 5 (sys.) nb
- Coherent slope para. = -8.5 \pm 1.2 (stat.) \pm 1.5 (sys.) GeV⁻²
- Coherent $d\sigma/dt$ @ t = 0, 300 \pm 40 (stat.) \pm 45 (sys.) nb/GeV^2

Proton charged radius ~ 0.8 fm, deuteron charged radius 1.8 fm

Cross sections:

- \circ t < 1.2 GeV²
- Total cross section = 73 \pm 9 (stat.) \pm 11(sys.) nb
- Coherent = 34 \pm 6 (stat.) \pm 5 (sys.) nb
- Coherent slope para. = -8.5 \pm 1.2 (stat.) \pm 1.5 (sys.) GeV⁻²
- Coherent $d\sigma/dt$ @ t = 0, 300 \pm 40 (stat.) \pm 45 (sys.) nb/GeV²

J/psi photoproductions off protons:

- \circ t < 1.2 GeV² @ <W> = 55 GeV
- Coherent slope para. = -4.3 ± 0.2 GeV⁻²
- Coherent $d\sigma/dt$ @ $t = 213 \pm 18$ nb/GeV² (ref. *Eur.Phys.J.C* 73 (2013) 6, 2466)

Supports coh. slope ~ size of the target ?

 $-t \approx p_{T, J/\psi}^2 \text{ (GeV}^2\text{)}$

Comparison with theory

- CGC calculations with J/psi off protons at HERA indicated importance of gluon fluctuations of the protons (*Phys.Rev.Lett.* 117 (2016) 5)
- Same calculations, thanks to the authors, has just been made for UPC J/psi measurement off deuteron.
- Both with and without fluctuations of incoherent contributions are compared with data. Favors fluctuations!
- However, coherent suggests a much steeper slope ~ -28 GeV⁻² → Huge deuteron?
- Encourage more data for low t to narrow down what the slope is -- very challenging.

Mäntysaari and Schenke (new prediction 2020)

Alternative fit with CGC incoherent as template

Fit range (0,1.2) GeV²

- Total data the same data as previous slides
- Total fit has two components:
 - Coherent contributions, free exponential fit functions (same)
 - Incoherent sum, <u>are templates from CGC</u> <u>theory calculations</u>, includes both elastic nucleon and nucleon dissociative contributions

Take-away:

- Total cross sections are similar
- Coherent slope \sim -11 \pm 4 GeV⁻² > -28 GeV⁻² (Mean value becomes steeper, but still consistent with default method within uncertainty.)

Gluon source distributions

Caveat:

- 1. Only the exponential function with a slope parameter is used for Fourier transformations ~ -8.5 GeV⁻²
- 2. Only statistical uncertainty is applied. No correlated error or systematic uncertainty
- 3. Charge density is from Hulthen distributions

Hint:

Gluon source distribution tends to be wider than the charge distribution

Ref: Talk by M. Diehl for Fourier transformations: http://www.int.washington.edu/talks/WorkShops/int_10_3/People/Diehl_M/Diehl1.pdf

Summary

- First measurement of J/psi meson in photoproduction off deuteron.
- No ZDC trigger bias and tagging neutron spectator is practically possible to gain insights of underlying physics process
- Measurements are sensitive to the deuteron wavefunc. and gluon dist. of deuteron.
- Similar process can be done at the Electron-Ion Collider, with spectator tagging capability to access the extreme deuteron configurations
- STAR data is a great baseline measurement. Looking forward to the future!

Backups

Fit range (0.05, 1.2) GeV²

