# Elliptic Flow and the Jet and Ridge Correlation

# Paul Sorensen



RHIC&AGS Users Meeting

### **Questions:**

Does the presence of a jet deform the structure of the soft medium?

Does the space-momentum correlation that causes  $v_2$  also cause the ridge?

To look for answers to these questions, we look for coupling between the  $v_2$  of soft particles  $p_T$ <2.0 GeV/c and the angular correlations of higher  $p_T$  particles

Talk outline:

- dn/d $\Delta\phi$ , ZYAM, and the two-component model
- one di-hadron pair per event and  $\left<\left|q\right|\right>$  vs  $\Delta\phi$  and  $\Delta\eta$
- extracting dn/dq for the different components
- fitting dn/dq and interpreting the fit parameters
- retraction of v<sub>2</sub>{4} for "jet"-events from QM08

### Introduction: $dn/d\Delta \phi$ & ZYAM



### two dimensions: $d^2n/d\Delta\phi d\Delta\eta$



#### motivation

Can we learn more about the source of the ridge and jet structure by studying the characteristics of the underlying events?

#### analysis procedure

Select the leading dihadron pair satisfying our minimum  $p_T$  requirement  $\rightarrow$  one pair per event



### jet and ridge yields



- the "ridge" is calculated by projecting  $|\Delta\eta|{>}0.7$  correlation to  $|\Delta\eta|{<}0.7$ 

- the "jet" is the remaining correlation at  $|\Delta\eta|{<}0.7$  after subtracting the "ridge"

#### Ridge area scales with the background! Ridge ratio is independent of minimum $p_T$ cut

Jet signal diluted by combinatorics as expected Jet ratio grows with minimum  $p_T$  cut

Caution: this is leading and subleading dihadrons (different quantity than usual associate particle yields)



#### event characteristics

The leading dihadron pair satisfying our minimum  $p_T$  requirement is selected  $\rightarrow$  one pair per event

Let's study the characteristics of the events as a function of  $\Delta \phi$  and  $\Delta \eta$  of the high p<sub>T</sub> pair (p<sub>T,min</sub>=2 GeV/c)



 $\langle p_T \rangle$  does not show a strong  $\Delta \phi$  dependence

#### event characteristics

The leading dihadron pair satisfying our minimum  $p_T$  requirement is selected  $\rightarrow$  one pair per event

Let's study the characteristics of the events as a function of  $\Delta \phi$  and  $\Delta \eta$  of the high p<sub>T</sub> pair (p<sub>T,min</sub>=2 GeV/c)



## dn/dq for signal and background



# dn/dq for signal and background



- consider two bins on the near-side: each with a different signal to background ratio
- measure dn/dq for each bin
- solve two equations for two unknowns

$$(S_1 + B_1)\frac{dn_1}{dq} = S_1\frac{dn_s}{dq} + B_1\frac{dn_B}{dq}$$
$$(S_2 + B_2)\frac{dn_2}{dq} = S_2\frac{dn_s}{dq} + B_2\frac{dn_B}{dq}$$

### what we learn from |q|



if the preferred axis (x) is the reaction plane, then the q-vector and  $v_2$  are related by definition:  $v_2 = \langle \cos(2\varphi_i) \rangle = \langle q_{2,x} \rangle / \sqrt{M}$ .

then what we can extract from dN/d|q| is:

$$\langle v_2 \rangle^2 - \sigma_{v_2}^2 = v_2 \{4\}^2$$
  $\sigma_{q_2,dyn}^2 = \delta_2 + 2\sigma_{v_2}^2 = v_2 \{2\}^2 - v_2 \{4\}^4$ 

<q> will be influenced by non-flow, fluctuations and  $v_2$ 

## fitting dn/dq



 $\begin{array}{c} c_{\text{dyn}} \\ 0.003 \\ \end{array} = \delta_2 + 2\sigma_{v_2}^2 \{q\} \\ + v_2\{2\}^2 \cdot v_2\{4\}^2 \\ \cdots \\ \text{minimum} \\ \delta_2 \\ 0.002 \\ 0.001 \\ 0 \\ 0 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ \text{impact parameter } \langle b \rangle \text{ (fm)} \end{array}$ 

the well constrained combinations of fit parameters are:

$$\langle v_2 \rangle^2 + \sigma_{v_2}^2 + \delta_2 = v_2 \{2\}^2$$
  
 $\langle v_2 \rangle^2 - \sigma_{v_2}^2 = v_2 \{4\}^2$ 

the dynamic width is the difference between the above equations

$$\sigma_{dyn}^2 = \delta + 2\sigma_{v_2}^2 = v_2 \{2\}^2 - v_2 \{4\}^4$$

we report v\_2{4} and  ${\sigma_{\text{dyn}}}^2$ 



### dn/dq parameters

Modulation of  $\langle |q| \rangle$  manifests in increase of v<sub>2</sub>{4} and/or  $\sigma_{dyn}^2$  for events contributing a pair to the ridge



systematic errors from relaxation of ZYAM and track merging studies careful mapping of 2-D  $\chi^2$  contours (v<sub>2</sub>{4} vs  $\sigma_{dyn}^2$ ) is still needed to establish which parameter accounts for the  $\Delta \phi$  dependence

**<u>RHIC&AGS</u>** Users Meeting

### jet-event v<sub>2</sub>{4} from QM08

- small jet-event v<sub>2</sub>{4} reported at QM08 was due to error
- $\eta$  dependence of <q> is still under study
- update planned for ICHEP08 (stay tuned)



#### summary

An analysis has been developed to search for jet interactions with the medium and/or physics that couples the high  $p_T$  ridge correlations to  $v_2$  (are the ridge and  $v_2$  both manifestations of the same space-momentum correlations for example?)

Variation in the shape of dn/dq vs  $\Delta\phi$  indicates possible effects to be further studied

Source of variation needs much further investigation are ZYAM and the two-component model applicable? is  $\cos(2\Delta\phi)$  the right shape for the background modulation? what are the effects of momentum conservation? can non-flow account for entire effect?

Small  $v_2$ {4} for events yielding a jet-like correlation reported at QM08 was in error

Updated results will be presented soon.



### jet and ridge yields



- the "ridge" is calculated by projecting  $|\Delta\eta|{>}0.7$  correlation to  $|\Delta\eta|{<}0.7$ 

- the "jet" is the remaining correlation at  $|\Delta\eta|{<}0.7$  after subtracting the "ridge"

#### Ridge area scales with the background! Ridge ratio is independent of minimum $p_T$ cut

Jet signal diluted by combinatorics as expected Jet ratio grows with minimum  $p_T$  cut

Caution: this is leading and subleading dihadrons (different quantity than usual associate particle yields)

