

Fluctuations imply odd terms aren't necessarily zero and v_n² vs n will provide information about the system like lifetime, viscosity, etc.

A.P. Mishra, R. K. Mohapatra, P. S. Saumia, A. M. Srivastava, Phys. Rev. C77: 064902, 2008 P. Sorensen, WWND, arXiv:0808.0503 (2008); J. Phys. G37: 094011, 2010

Analagous to the Power Spectrum extracted from the Cosmic Microwave Background Radiation

A.P. Mishra, R. K. Mohapatra, P. S. Saumia, A. M. Srivastava, Phys. Rev. C77: 064902, 2008 P. Sorensen, WWND, arXiv:0808.0503 (2008); J. Phys. G37: 094011, 2010

Correlation Landscape at RHIC

STA

The correlation landscape -is rich in information- on jets, jet modification, transport, early-times, and space-momentum correlations like flow

The understanding of higher harmonic v_n^2 is central to understanding the meaning of the correlations landscape in heavy ion collisions

P. Sorensen, arXiv:0808.0503; J. Phys. G37: 094011, 2010;

B. Alver, G. Roland Phys. Rev. C81:054905, 2010;

- B. Alver, Gombeaud, Luzum, Ollitrault, Phys.Rev.C82:034913,2010
- P. S., A. Mocsy, B. Bolliet, Y. Pandit, arXiv:1102.1403

We'll use correlations to extract the power spectrum from heavy-ions and investigate it's possible relationship to the early times

Higher v_n from 2 Particle Correlations

n=1 shows large difference between LS and CI: charge and momentum conserv?

n=3 exhibits effects of elliptic overlap geometry

n=4 and larger show 1/N dependence typical of non-flow correlations

Q-Cumulants: A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011)

Higher v_n from 4 Particle Correlations

STAF

 v_n {4} consistent with zero for odd terms. Consistent with v_3^2 {2} being due to nonflow **and/or** with $v_n \propto \varepsilon_{n,part}$: for $v_n \propto \varepsilon_{n,part}$, v_n {4} $\propto \varepsilon_{n,std}$ R.S. Bhalerao and J-Y.Ollitrault, Phys.Lett.B641:260-264 (2006)

S. Voloshin, A. Poskanzer, A. Tang, G. Wang, Phys.Lett.B659:537-541 (2008) For 0-2.5% central $v_2{4} \approx 0$ indicates elliptic shape is nearly gone. We'll look at the shape of $v_n^2{2}$ vs n for nearly symmetric collisions

v_n²{2} vs n for 0-2.5% Central

STAR

 v_n {4} is zero for 0-2.5% central: look at v_2^2 {2} vs n to extract power spectrum in nearly symmetric collisions

Fit by a Gaussian except for n=1 (momentum conservation): width can be related to lenth scales: viscous, acoustic horizon, 1/2πT... ^{P. Staig and E. Shuryak, arXiv:1008.3139 [nucl-th]} A. Mocsy, P. S., arXiv:1008.3381 [hep-ph] A. Adare [PHENIX], arXiv:1105:3928

Integrates all $\Delta \eta$ within acceptance: we can look more differentially to assess non-flow

Large Δη Power Spectrum a_nnecy if flow dominates the correlations $a_n \approx v_n^2$ $R_2 = \frac{\rho_{12}}{\rho_1 \rho_2} - 1$ $0.002 a_{n} \{R_{2}\}$ (c) 0-5% • (+,-) 0.0015 R₂ (+-) 0.008 **STAR** Preliminary ○ (+,+) 0.006 0.001 0.004 0.002 0.0005 \triangleleft_{η} **STAR Preliminary** -0.0005 3 5 6 2 harmonic n

 \rightarrow Fourier Tr. (0.7< $\Delta\eta$ <2.0) \rightarrow

STAR

harmonic n See also: A. Mocsy, P. S., arXiv:1008.3381 [hep-ph]

3

4

• (+,-)

o (+,+)

5

6

Recent Theoretical Developments

In a system where space-momentum correlations develop, the initial density fluctuations can manifest in momentum space

Ridge appears in hydro calculations with fluctuating initial conditions: doesn't require a jet explanation

For b=0 fm, at low p_T , v_n drops with n, but at intermediate p_T , $v_3 > v_2$

Correlations at Intermediate p_T

 v_3 should be most evident at intermediate p_T and for central collisions where the overlap geometry is most symmetric

STAF

For 0-1% central, n=3 double hump is present on the away-side without v_2 subtraction

We see effects consistent with expectations, we'll investigate further by looking at various measurements related to $v_{\rm n}$

Correlations at Intermediate p_T

 v_3 should be most evident at intermediate p_T and for central collisions where the overlap geometry is most symmetric

Trigger p_T >4-6 GeV and associate hadron p_T >1.5 GeV (Trigger is highest p_T particle in the event)

STAF

Interesting structure is also seen in **raw** correlations for non-pion triggers (mostly protons) at $\Delta \eta > 0.7$

We see effects consistent with expectations, we'll investigate further by looking at various measurements related to $v_{\rm n}$

Non-flow or Flow

STA

 v_2 subtracted di-hadron correlations: v_2 estimated using $\Psi_{EP}(2.8 < |\eta| < 3.8)$

Subtracting v_2 measured relative to the event-plane at large η leads to residual structure: adding v_3 doesn't account for residual

Unless there's a $\Delta\eta$ -dependence to $\langle \Psi_{EP,1} \bullet \Psi_{EP,2} \rangle$, these structures are non-flow Dusling, Gelis, Lappi & Venugopalan, Nucl. Phys. A 836, 159 (2010); Petersen, Greiner, Bhattacharya & Bass, arXiv:1105.0340 M. Luzum, Phys.Rev.C83:044911,2011 If $\langle \Psi_{EP}(\eta_1) \bullet \Psi_{EP}(\eta_1 + \Delta \eta) \rangle$ depends on $\Delta\eta$ then v_2 measured with a forward reaction plane underestimates the v_2 for dihadrons at smaller $\Delta\eta$.

Let's look at the $\Delta\eta$ dependence of v₃ from a Fourier Trans. of 2 particle correlations

Almond shape of the overlap area appears to couple to n=3

D. Teaney, L. Yan, arXiv:1010.1876 [nucl-th] P. S., A. Mocsy, B. Bolliet, Y. Pandit, arXiv:1102.1403

v_3 and $(v_3/v_2)^2$ vs centrality and p_T

STAF

 v_3 {2} using seperate η ranges: η_1 <-0.5 and η_2 >0.5

See Poster: Li Yi 520, board #33

For central collisions at intermediate p_T , $v_3{2} \ge v_2{2}$: what non-flow source would give such a behavior?

Weak v_3 {2} centrality dependence & $v_3 \ge v_2$ in central were predicted by models based on initial state density inhomogeneity r leading explanation

Analysis based on Q-Cumulants for all charges and $-1 < \eta < 1$

 $v_3^2/\epsilon_{3,part}^2$ follows a simple trend with N_{part} : consistent with fits to v_3^2 {2} vs $\Delta \eta$ Slope of $v_3^2/\epsilon_{3,part}^2$ is increasing with beam energy: what about the difference between v_2^2 {2}- v_2^2 {4}

 v_2^2 {2}- v_2^2 {4} $\approx \delta$ +2 σ_v^2 also shows an intriguing energy dependence: rise of jets or increase in conversion of initial anisotropy into momentum space?

Possible sensitivity to EOS needs to be further investigated

Data at 5, 19.6 (taken) and 27 GeV are needed

Conclusions

We presented the 2 & 4 particle cumulants for v_n up to n=6: results are consistent with $v_n \propto \epsilon_{part,n}$ and/or non-flow

STAF

Indications of higher harmonic flow seen in RAW dihadron correlations (consistent with initial density fluctuation models)

We examined the $\Delta\eta$ dependence of v_3^2 {2} and decomposed it into a narrow and wide Gaussian: the centrality evolution of the amplitude of the wide Gaussian follows $N_{part}\epsilon^2_{part,n}$

In central collisions, v_3 {2} at intermediate p_T becomes larger than v_2 {2} also constistent with models of fluctuating initial conditions

Data appear to favor $v_n^2 \propto \epsilon_{part,n}^2$ and non-neglible higher harmonics; where v_n^2 drops with n as a Gaussian. Other non-flow interpretations are also being pursued