Two- and Three-particle azimuthal correlations from STAR

as a measure of viscous and non-linear effects and what they tell us about the ridge in p+A and A+A collisions

Things we think we understand about flow but don't

Thing number 1: v₃ is just due to fluctuations

Paul Sorensen (BNL) for the STAR Collaboration

Overlap Geometry Leads to Strong Correlations Between Harmonic Planes

In-plane fluctuation: large impact creating higher harmonics especially $\epsilon_{\rm 3}$

Out-of-plane fluctuation: no impact

We should expect the 3rd and 1st plane to be correlated with the 2nd

If they aren't: we don't have a clue about what's happening

We can measure this with $\langle cos(1\phi_1+2\phi_2-3\phi_3)\rangle$

We need to understand these correlations to understand the relationship between v_3 and the ridge in p+A and A+A

Motivation for 3-particle correlations

Map out geometry that causes v_3 and the ridge

Better understand relationship between the ridge in p+A and A+A

Map out the distribution of particle pairs relative to the reaction plane

Over-constrain hydro models to extract η /s vs T

We compare models to 2- and 4-particle correlations: why not 3?

Gain insight into the source of two-particle correlations

STAR Detector and Data Set

We've measured the efficiency and acceptance corrected 2- and 3-particle correlations using Q-cumulants for p_T>0.2 GeV Bilandzic, et. al. Phys. Rev. C 83: 044913,2011 Bilandzic, et. al. arxiv.org/1312.3572

Measured Correlations

We see a correlation of harmonic 1, 2, and 3 as expected from geometry fluctuations (p+A on the edge of A+A)

Hydro model with $\eta/s=1/4\pi$ describes the data well

Exploration of other harmonics

Poorer agreement especially with the higher harmonics; lowest harmonics are the most robust in the model. Model uncertainties need to be evaluated

Energy Dependence

The $\langle cos(1\phi_1+2\phi_2-3\phi_3) \rangle$ correlation becomes negative at lower beam energies Robust observation across all centralities

Energy Dependence

The $\langle \cos(1\varphi_1 + 2\varphi_2 - 3\varphi_3) \rangle$ correlation becomes negative at lower beam energies This also shows up in $(\cos(\phi_1-\phi_2))$: likely related to momentum conservation

Energy Dependence

Even More Data...

What does it mean?

 $\cos(1.*x-3.*y)$

n=2 is dominated by the reaction plane so taking $\varphi'=\varphi-\Psi_2$ $\langle cos(1\varphi+2\varphi-3\varphi)\rangle \approx \langle cos(1\varphi'-3\varphi')\rangle$ $\langle cos(1\varphi+1\varphi-2\varphi)\rangle \approx \langle cos(1\varphi'+1\varphi')\rangle$

The values we showed in the previous slide can be combined to conclude what configurations might explain the observed correlations

At low energies: cos112<0, cos123<0 and cos224>0

At high energies: cos112<0, cos123>0 and cos224>0

TWO PARTICLE CORRELATIONS

\boldsymbol{v}_n vs centrality, \boldsymbol{p}_T and energy:

In what follows, v_n^2 {2}= $\langle cosn\Delta \varphi \rangle$ with no assumptions about the underlying source of the correlations except where obvious short-range correlations can be isolated

Extracting v_n {2} from $\Delta \eta$ dependence

Energy Dependence of v_n^2 {2}

v₃{2} persists down to 7.7 GeV

Some interesting structure: under study

Energy Dependence of v_3^2 {2}

For N_{part} <50, v_3 {2} at 11.5 and 7.7 GeV is consistent with zero consistent with sharp transition in STAR Phys.Rev.C.86.064902

but at 7.7 GeV, minjets are not a likely source for the non-zero v_3 {2} in central

Conclusions

- Three-particle correlations show the expected geometry fluctuations (p+A next to A+A)
- Comparisons made with a hydro model
 - $\langle cos(\phi_1+2\phi_2-3\phi_3) \rangle$ agrees but others strongly deviate
 - models are sensitive to viscosity, freeze-out temperature, etc. and vary a lot: lack of predictive power? vs data are highly sensitive to parameters? We need a better evaluation of model systematics.
 - overconstrains and challenges the models
- v_2 measured out to almost 20 GeV vs centrality. Data shows a flat high p_T region
- v_n measured vs energy: v₃ persists down to 7.7 GeV in sharp contrast to a mini-jet picture

REFERENCE SLIDES

New Calculations, now w/Non-linear Terms

Very sensitive probe of viscous and non-linear effects in the evolution →Chance to over-constrain models and pin down the characteristics of the expansion