Two- and Three-particle azimuthal
correlations from STAR

as a measure of viscous and non-linear
effects and what they tell us about the
ridge in p+A and A+A collisions
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Things we think we understand about
flow but don’t

Thing number 1: v, is just due to
fluctuations

BROOKHIAVEN Paul Sorensen (BNL) for the STAR Collaboration is\.{AR



Overlap Geometry Leads to Strong
Correlations Between Harmonic Planes

In-plane fluctuation: large impact Out-of-plane fluctuation: no impact
creating higher harmonics especially €,
p+Aon the %

& N

We should expect the 3 and 1st plane to be
correlated with the 2nd
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If they aren’t: we don’t have a clue about
what’s happening

0 /2 n 3n/2 2n

Vi 3-¥g We can measure this with (cos(1¢,+2¢,-3¢;)

We need to understand these correlations to understand the
relationship between v, and the ridge in p+A and A+A




Motivation for 3-particle correlations

pt+Aon the
edge of A+A

Map out geometry that causes v; and the ridge

Better understand relationship between the ridge in p+A and
A+A

Map out the distribution of particle pairs relative to the
reaction plane

Over-constrain hydro models to extract n/s vs T

We compare models to 2- and 4-particle correlations: why
not 37

Gain insight into the source of two-particle correlations



STAR Detector and Data Set

Full azimuthal coverage
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t counts reflect stringent selection
ria required for analysis and
sptance corrections

by Maria & Alex Schmah

We’'ve measured the efficiency and acceptance corrected 2- and 3-particle

correlations using Q-cumulants for pT>O.2 GeV Bilandzic, et. al. Phys. Rev. C 83: 044913,2011
Bilandzic, et. al. arxiv.org/1312.3572
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Measured Correlations
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We see a correlation of harmonic 1, 2, and 3 as expected from geometry
fluctuations (p+A on the edge of A+A)

Hydro model with n/s=1/41 describes the data well
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Exploration of other harmonics
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Poorer agreement especially with the higher harmonics; lowest harmonics are the
most robust in the model. Model uncertainties need to be evaluated



Energy Dependence
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The <(cos(1¢,+29,-3¢;)) correlation becomes negative at lower beam energies

Robust observation across all centralities
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Energy Dependence

back-to-back pairs lead
to negative (cos(®,-@,)
€—>
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The (cos(1¢,+29,-3¢)) correlation becomes negative at lower beam energies

This also shows up in <cos(@-¢,)): likely related to momentum conservation
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Energy Dependence
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Even More Data...

x10°® 0.063 0°
14__(cos(2¢1+2¢2-4¢3)) * 0-5% T (cos(2¢1+2¢2-4¢3)) *30-40%
- 410-20% v50-60%
10r 0.04(
8 i
6 0.031
“r 0.02(
o _
o Tt ] 0.01— 1
B 1 1 1 1 | S-II-ARIPr.IeIirI'r]iIr-]Iar:yl | C 1 1 1 1 | 1 STIARI Plrellimirllary
10 . 10 10 — 10
] \'snn (GeV) ] \'sny (GeV)
x10° x10
251 (cos(20 +30,-50,)) . 0-5% "4 (cas(20 +30,-50,)) +30-40%
i +10-20% 12~ v50-60%
2__ 10(—
1.5~ 8~
i o
1 -
0.5 2
- O_
o 1 STAR Preliminary 21— 1 STAR Preliminary
10 : 10° 10 , 10°
4/07/14 \ S (GeV) Winter Workshop \ Sun (GeV)

11



What does it mean?

cos(1.*x-3.*y)

=

1
I0.8

—0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

n=2 is dominated by the reaction plane so
taking ¢’=¢-¥,
(cos(1@+2¢p-3¢)) = (cos(1¢’-3¢’)
(cos(1@+1p-2¢)) = (cos(1p’+1¢’))

The values we showed in the previous slide

can be combined to conclude what
configurations might explain the observed
correlations

At low energies:
cos112<0, cos123<0 and co0s224>0

O

At high energies:
co0s112<0, cos123>0 and co0s224>0
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4/07/14

TWO PARTICLE CORRELATIONS

v, vs centrality, p; and energy:
In what follows, v ?{2}=(cosnAd¢) with no assumptions about the

underlying source of the correlations except where obvious short-range
correlations can be isolated

Winter Workshop
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Extracting v {2} from An dependence
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HBT, track-merging and short-
range jet-like correlations
isolated and removed

Analysis technique:

Vz(pr

HBT and jet-like small An
correlations subtracted from
(cos2(p—;)>(An) for each py bin.
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1 <C052((pi 9 )>
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V,(p7): narrow jet-peak removed

0.08 Va(P;)
0.07
0.06

0.05 '/\ .
0.04 /

0.03

0.02

0.01 STAR Preliminary
0-5%

0

0 2 4 6 8 10 12 14 16 18 20
p, (GeV)

0.24 vy
0.90 2(pT)

0.2
0.18"
0.16
0.14
0.12-

0.1

0.08"

0.06-

0.04 STAR Preliminary

0.02 20-30%

00 2 4 6 8 10 12 14 16 18 20

p, (GeV)

4/07/14

200 GeV
Vz(pT)
0.12
b

0.1
0.08
0.06
0.04
0.02 STAR Preliminary

5-10%

% 2 4 6 8 10 12 14 16 18 20

p, (GeV)
025 Vo(Py)
0.2-
0.15-
0.1
0.05, o

STAR Preliminary
30-40%
% 2 4 6 8 10 12 14 16 18 20

p, (GeV)
Winter Workshop

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06

0.04 o
0.02 STAR Preliminary
10-20%
% 2 4 6 8 10 12 14 16 18 20
p, (GeV)

Vz(pT)

0.25F

0.2

0.15-

0.1

0.05 STAR Preliminary
40-50%
% 2 4 6 8 10 12 14 16 18 20
p, (GeV)

15



Energy Dependence of v {2}

V,{2} persists down to 7.7 GeV
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Some interesting structure:
under study
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Energy Dependence of v,%{2}
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0art <90, V5{2} at 11.5 and 7.7 GeV is consistent with zero

consistent with sharp transition in STAR Phys.Rev.C.86.064902

but at 7.7 GeV, minjets are not a likely source for the non-zero v,;{2} in central

4/07/14

Winter Workshop

17



Conclusions

Three-particle correlations show the expected
geometry fluctuations (p+A next to A+A)

Comparisons made with a hydro model

— (cos(P,+2d,-3d,), agrees but others strongly deviate

— models are sensitive to viscosity, freeze-out temperature,

etc. and vary a lot: lack of predictive power? vs data are highly sensitive to
parameters? We need a better evaluation of model systematics.

— overconstrains and challenges the models

v, measured out to almost 20 GeV vs centrality. Data
shows a flat high p- region

v, measured vs energy: v, persists down to 7.7 GeV in
sharp contrast to a mini-jet picture
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New Calculations, now w/Non-linear
Terms
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vn(pT)e—in\Iln — wn(pT)e—in*Pn 0-08

80 1. Up X Wn X £, and ii. &, = U,,.

0.06
Linear response neglects non-linear 0.04
terms
: . . 0.02
vle—z\lll _ wle—ui)l + w1(23)e—1(3d>3—2<1>2)
—14Wy —14dy —1i4P9 =
vs€ = wae + wy(22)€ Q=" \ \L

—i(3®q9+2%®5) L

-0.02-
Teaney and Yan: see for example, 1206.1905, 1210.5026

‘ideal + non-linear
| STAR Preliminary |
0 100 200 300
part

—i5¥ —i5®
vse 5 = wse ® + ws(a3)€

over-constrain models and pin down the charac
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