Recent STAR Results from Neutral Pion Production in Polarized p+p Collisions at  $\sqrt{s} = 200$ GeV at RHIC.

> Alan Hoffman for the STAR Collaboration

### Motivation

How is the spin of the proton distributed?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(Q^2) + \Delta g(Q^2) + L_q(Q^2) + L_g(Q^2)$$
$$\Delta g(x, Q^2) = g^+(x, Q^2) - g^-(x, Q^2)$$



de Florian et al., PRL **101**, 072001 (2008)



# Accessing $\Delta G$ from $A_{LL}$

Polarized p+p collisions give access to the gluon polarization through the observable A<sub>LL</sub>
A<sub>LL</sub> predictions for neutral pion production dependent on fragmentation functions.



 $A_{LL} = \sum_{f_A f_B f_C} \frac{\Delta f_A \Delta f_B \times \Delta \sigma_{AB \to CX} \times D_C}{f_A f_B \times \sigma_{AB \to CX} \times D_C}$ 



Spin 2008: Charlottesville, VA.

# The RHIC Complex



Two rich QCD programs: spin and heavy ion

- Bunch-to-bunch spin control
- Siberian Snakes
- Spin rotators
- Polarimetry



# STAR Detector

### Notable Subsystems:

Beam Beam Counters
 Triggering and luminosity

#### • TPC

- Central tracking and vertexing

 Barrel EMC

 Triggering and final state reconstruction



1111

STAR

# Barrel EMC



Spin 2008: Charlottesville, VA.

- Lead-scintillator sampling calorimeter (~20 X<sub>0</sub>)
- 2π azimuthal coverage
- -I < η < I (Run 6)
- Segmented into 4800 towers, .05 x .05 in η-φ
- Shower Max Detector located at a depth of  $\sim 5 X_0$







# Pion Reconstruction

- New trigger for Run 6. Specifically designed to find more  $\pi^{0}s.$
- 2 stage trigger: High Tower + Trigger Patch.
- ~3.7 pb<sup>-1</sup> Triggered Luminosity



#### **Event Selection**

- Found Vertex
- Require good SMD information in both planes
- Veto calorimeter hits with a charged track pointing to tower
- $\bullet~\pi^{0}$  candidates w/  $P_{T}$  above 5.2 GeV/c



- $\pi^0$  invariant mass:  $M^2_{inv} = 2E_1E_2(1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$
- $Z_{YY} \leq 0.8$
- 0.08 GeV/ $c^2 \le M_{inv} \le 0.25$  GeV/ $c^2$
- $\pi^0$  mass spectrum well described by MC simulation of single  $\pi^0$ , single  $\eta$ , and background (more later)



# Pion Reconstruction

- New trigger for Run 6. Specifically designed to find more  $\pi^0$ s.
- 2 stage trigger: High Tower + Trigger Patch.
- ~3.7 pb<sup>-1</sup> Triggered Luminosity



#### **Event Selection**

- Found Vertex
- Require good SMD information in both planes
- Veto calorimeter hits with a charged track pointing to tower
- $\bullet~\pi^{0}$  candidates w/  $P_{T}$  above 5.2 GeV/c



- $\pi^0$  invariant mass:  $M^2_{inv} = 2E_1E_2(1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$
- $Z_{YY} \leq 0.8$
- 0.08 GeV/ $c^2 \le M_{inv} \le 0.25$  GeV/ $c^2$
- $\pi^0$  mass spectrum well described by MC simulation of single  $\pi^0$ , single  $\eta$ , and background (more later)





ata/MC 0

0.2 0.4

# Pion Reconstruction

- New trigger for Run 6. Specifically designed to find more  $\pi^0$ s.
- 2 stage trigger: High Tower + Trigger Patch.
- ~3.7 pb<sup>-1</sup> Triggered Luminosity

ackground Background 4 1.6 1.8 2 ass [GeV/c^2]

#### **Event Selection**

- Found Vertex
- Require good SMD information in both planes
- Veto calorimeter hits with a charged track pointing to tower
- $\bullet~\pi^{0}$  candidates w/  $P_{T}$  above 5.2 GeV/c



- $\pi^0$  invariant mass:  $M^2_{inv} = 2E_1E_2(1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$
- $Z_{YY} \leq 0.8$
- 0.08 GeV/ $c^2 \le M_{inv} \le 0.25 \text{ GeV}/c^2$
- $\pi^0$  mass spectrum well described by MC simulation of single  $\pi^0$ , single  $\eta$ , and background (more later)





ata/MC 0

0.2 0.4

# 2005 $\pi^0$ Cross Section



- L<sub>sampled</sub>: 0.4 pb<sup>-1</sup> (HT triggers) 44µb<sup>-1</sup> (MB)
- $0.1 \le \eta \le 0.9; \ 0 \le \varphi \le 2\pi$
- Systematics dominated by 5% uncertainty in BEMC energy scale
- Good agreement to NLO pQCD predictions.

Spin 2008: Charlottesville, VA.



# 2005 $\pi^0$ Cross Section



- L<sub>sampled</sub>: 0.4 pb<sup>-1</sup> (HT triggers) 44µb<sup>-1</sup> (MB)
- 0.1  $\leq \eta \leq$  0.9; 0  $\leq \varphi \leq 2\pi$
- Systematics dominated by 5% uncertainty in BEMC energy scale
- Good agreement to NLO pQCD predictions.

Spin 2008: Charlottesville, VA.



# Measuring ALL at STAR

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

### Three Measurements

- Polarization
  - Coulomb-Nucleon Interference and H Polarimeters
  - ~55% avg. polarization
- Relative Luminosity
  - Beam-Beam Counters
- Spin Sorted Yields
  - Triggering on desired events
  - Final state reconstruction



# Measuring ALL at STAR

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

### Three Measurements

- Polarization
  - Coulomb-Nucleon Interference and H Polarimeters
  - ~55% avg. polarization
- Relative Luminosity
  - Beam-Beam Counters
- Spin Sorted Yields
  - Triggering on desired events
  - Final state reconstruction







# Measuring ALL at STAR

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

### Three Measurements

- Polarization
  - Coulomb-Nucleon Interference and H Polarimeters
  - ~55% avg. polarization
- Relative Luminosity
  - Beam-Beam Counters
- Spin Sorted Yields
  - Triggering on desired events
  - Final state reconstruction





Run number

# 2006 Preliminary ALL



Spin 2008: Charlottesville, VA.

10

STAR

### Photon Energy Uncertainty

- Reconstructed pion mass is P<sub>T</sub>-dependent.
- Numerous Effects
  - BEMC Resolution
  - $\pi^0$  Reconstruction Algorithm
  - Jet Background
- Recreated in Monte Carlo





- Effect on A<sub>LL</sub> consistent with statistical effect
- Uncertainty assigned (equal to observed shift) to be conservative

| Pt Range [GeV/c] | Error x10 <sup>-3</sup> |
|------------------|-------------------------|
| 5.2 - 6.75       | 1.5                     |
| 6.75 - 8.25      | 3.4                     |
| 8.25 - 10.5      | 0.7                     |
| 10.5 - 16.0      | 1.5                     |

Uth

STAR

### Combinatoric Background

- Modeled by mixing photons from different events (data)
- Careful about event topology
  - Rotating jets
  - Similar in jet  $\eta$  and z vertex
- Background shape fit to the data
- Uncertainty in A<sub>LL</sub>: 0.5×10<sup>-3</sup> 1.6×10<sup>-3</sup> (P<sub>T</sub> dependent)





### Split Clusters

- Above ~5 GeV/c in pion  $P_T$ , rely on SMD to separate and reconstruct decay photons.
- SMD hardware inefficiencies and energy fluctuations lead to 'split' photons.
- False positives at low M<sub>inv</sub>
- Modeled with single particle MC
- Error: 1.0x10<sup>-3</sup> 3.8x10<sup>-3</sup> (P<sub>T</sub> dependent)





# Summary

- Most recent measurement of A<sub>LL</sub> and the cross section for inclusive π<sup>0</sup> production have been presented.
- Maximum polarization scenario is excluded, measurement cannot at this time distinguish between other scenarios.
- Results consistent with PHENIX 2006 preliminary
- The run 6 π<sup>0</sup> result sees a significant increase in statistical precision as well as a greater reach in P<sub>T</sub> compared to run 5.
- STAR is planning for a long pp run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb<sup>-1</sup>



# Summary

- Most recent measurement of  $A_{LL}$  and the cross section for inclusive  $\pi^0$  production have been presented.
- Maximum polarization scenario is excluded, measurement cannot at this time distinguish between other scenarios.
- Results consistent with PHENIX 2006 preliminary
- The run 6 π<sup>0</sup> result sees a significant increase in statistical precision as well as a greater reach in P<sub>T</sub> compared to run 5.
- STAR is planning for a long pp run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb<sup>-1</sup>



# Summary

- Most recent measurement of  $A_{LL}$  and the cross section for inclusive  $\pi^0$  production have been presented.
- Maximum polarization scenario is excluded, measurement cannot at this time distinguish between other scenarios.
- Results consistent with PHENIX 2006 preliminary
- The run 6 π<sup>0</sup> result sees a significant increase in statistical precision as well as a greater reach in P<sub>T</sub> compared to run 5.
- STAR is planning for a long pp run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb<sup>-1</sup>



# Backup

| Spin 200 | 8: Char | lottesville | ,VA. |
|----------|---------|-------------|------|
|----------|---------|-------------|------|



# Systematics Summary

Run 5 Cross Section Measurement:

- Point-to-Point (yield extraction, background subtraction)
- Energy Scale (5% uncertainty on BSMD gain calibration)
- Correction Factor (variation of cuts, uncertainty in SMD gain (to a large extend built into MC, additional uncertainties included in systematics), statistical limitation of MC dataset)
- Acceptance Stability (changes in electronics status, modeling in MC)



#### Systematic Errors Assigned in Run 6 $\pi^0 A_{LL}$ Analysis (all errors $\times 10^{-3}$ )

- Non-Longitudinal Beam Components: 0.9
- Photon Energy Uncertainty:  $P_T$  Dependent from 0.7 to 3.4
- Backgrounds (from split clusters and combinatorics): P<sub>T</sub> Dependent from 1.1 to
   4.1

