Transverse Single Spin Asymmetries of Forward π^0 and Jet-like Events in \sqrt{s} = 500 GeV Polarized Proton Collisions at STAR

Yuxi Pan

Department of Physics & Astronomy University of California, Los Angeles

The 21st International Symposium on Spin Physics

Outline

Transverse Single Spin Asymmetries in SIDIS & Polarized pp Collisions

Forward Transverse Single Spin Asymmetry Measurements at RHIC/STAR

TSSA in SIDIS & Polarized pp Collisions

 The observation of non-trivial transverse spin asymmetries of particle productions in SIDIS and polarized pp collisions provides a good testbed for our knowledge of QCD at amplitude level.

TMD factorization: hadrons in SIDIS, W/Z, di-jet in pp twist-3 collinear factorization: direct γ , inclusive

twist-3 collinear factorization: direct γ , inclusive jet/hadron in pp

$$T_F^q(\mathbf{x}, \mathbf{x}) = -\int d^2 \vec{p}_{\perp} \frac{\vec{p}_{\perp}^2}{M} f_{1T}^{\perp q}(\mathbf{x}, \vec{p}_{\perp}^2)|_{SIDIS}$$

$$f_{1T}^{\perp q}(x, \overrightarrow{p}_{\perp}^2)|_{SIDIS} = -f_{1T}^{\perp q}(x, \overrightarrow{p}_{\perp}^2)|_{DY} = -f_{1T}^{\perp q}(x, \overrightarrow{p}_{\perp}^2)|_{W^{\pm}/Z^0}$$

• The origin of transverse spin asymmetries provides insights into the spin structure of nucleon

$$\sigma(p_h, s_\perp) \propto f_{a/A^\uparrow}(x, k_\perp) \otimes \hat{\sigma}_{parton} \otimes D_{h/c}(z, p_\perp)$$

$$\sigma(s_{T}) \sim \left| \begin{array}{c} \frac{p}{q_{T}} \\ \downarrow \\ (a) \end{array} + \begin{array}{c} \frac{p}{q_{T}} \\ \downarrow \\ (c) \end{array} + \begin{array}{c} \frac{p}{q_{T}} \\ \downarrow \\ (c) \end{array} \right|^{2} - \Delta\sigma(s_{T}) \sim \operatorname{Re}[(a)] \operatorname{Im}[(c)]$$

二日 人口 アスロット 日本

Transverse Single Spin Asymmetries in SIDIS & Polarized pp Collisions

Forward Transverse Single Spin Asymmetry Measurements at RHIC/STAR Summary

Forward TSSA in Polarized pp Collisions

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

Outline

Forward Transverse Single Spin Asymmetry Measurements at RHIC/STAR

- Colliding Polarized Protons at RHIC
- STAR Detector
- Transverse Single Spin Asymmetries of π^0 and jet-like events

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

The Relativistic Heavy Ion Collider

- Alternating spin orientations bunch-by-bunch
- Different spin patterns fill-to-fill
- Helical magnets in AGS & RHIC to preserve polarization
- Spin rotators in each IP to choose transverse/longitudinal pol.

STA

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

Outline

Porward Transverse Single Spin Asymmetry Measurements at RHIC/STAR

- Colliding Polarized Protons at RHIC
- STAR Detector
- Transverse Single Spin Asymmetries of π^0 and jet-like events

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

STAR Detector

Detector capabilities

- Central (-1 < η < 1): π^{\pm} /K/p ID by TPC dE/dX and TOF, e^{\pm}/γ by EMCAL
- Mid-Forward (1 < η < 2): π^0 , η , direct γ from Endcap-EMCAL
- Forward (2.5 < η < 4.0): π^0 , η , EM-jets by Forward Meson Spectrometer

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

STAR Forward Meson Spectrometer

- Pb Glass calorimeter provides EM coverage in 2.5 < η < 4.0
- small cells: 3.81x3.81cm² large cells: 5.81x5.81cm²
- detect π⁰, η and jet-like events

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

Outline

Porward Transverse Single Spin Asymmetry Measurements at RHIC/STAR

- Colliding Polarized Protons at RHIC
- STAR Detector
- Transverse Single Spin Asymmetries of π^0 and jet-like events

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

A_N of inclusive and isolated π^0

- 2011 dataset with $\sqrt{s} = 500 \, GeV$, $\mathcal{L} = 22 p b^{-1}$ and beam polarization 52.3%
- Isolation defined by anti-k_T jet algorithm with R = 0.7
- A_N of inclusive π⁰ is calculated by statistically subtracting off bkg. asymmetries from all possible photon pairs regardless of isolation

$$A_N^{tot} = f_{sig} A_N^{\pi^0} + (1 - f_{sig}) A_N^{bkg}$$

 Signal/bkg. shapes are derived from simulation but allowed to vary during the fit

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

A_N of inclusive and isolated π^0 -event topology dependence

- Calculated A_N for jet-isolated π^0 , background subtracted A_N for inclusive π^0 and π^0 in EM-jet
- Isolation defined by anti-k_T jet algorithm with R = 0.7
- Longitudinal momentum fraction Z of π⁰ is calculated w.r.t the EM-jet as Z_{EM}
- Asymmetries of less exclusively produced π^0 ($Z_{EM} < 0.9$) is smaller than isolated π^0

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

イロト イポト イヨト イヨト

A_N of inclusive and isolated $\pi^0 - p_T$ dependence

• Uncertainties for inclusive π^0 is larger due to background subtraction process

• Possible hints of falling A_N at high p_T

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

A_N for forward jet-like events

- Apply Anti-k_T jet algorithm on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than EM-jet which contains more than two photons

Mriganka M. Mondal (DIS 2014)

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

A_N for forward jet-like events

- Apply Anti-k_T jet algorithm on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events
- Study dependence of *A_N* on number of photons and away-side jet activities

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

A_N for forward jet-like events

- Apply Anti-k_T jet algorithm on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events
- Study dependence of *A_N* on number of photons and away-side jet activities

with and without a central EM-jet $p_T^{EMjet} > 2.0 \text{ GeV}$

16/18

Colliding Polarized Protons at RHIC STAR Detector Transverse Single Spin Asymmetries of π^0 and jet-like events

Collins asymmetries for π^0 in EM-jets

- background asymmetries are subtracted statistically
- Z of π^0 is calculated w.r.t the EM-jet
- one-sided systematic uncertainty accounts for the reduction of amplitude due to Collins angle resolutions and the use of only EM components of the jet
- hints of possible non-zero Collins asymmetries of π^0

イロト イロト イヨト キヨト ヨ

Summary

- STAR has measured transverse single spin asymmetries for forward inclusive π^0 , which can be readily compared with theory predictions
- Observed event topology dependence of π^0 single spin asymmetries: isolated π^0 has significantly higher asymmetries than less exclusively produced π^0 ($Z_{EM} < 0.9$)

Z dependence of A_N is too dramatic to be explained by simple 2-2 hard scattering. Possible contributions from diffractive production?

• Both Sivers & Collins-type asymmetries are small and not enough to explain the size of inclusive $\pi^0 A_N$ twist3 FF? Describe SIDIS and pp at the same time?

Backup -Extract signal & background shapes from simulation

STAR

1/7

Backup -Inclusive $\pi^0 A_N$ and background asymmetries

$$A_N^{tot} = f_{sig} A_N^{\pi 0} + (1 - f_{sig}) A_N^{bkg}$$

Backup $-A_N$ for forward jet-like events

- Apply Anti-k_T jet algorithm on FMS photons, R = 0.7
- Isolated π⁰ has larger asymmetries than jet-like events
- Study dependence of *A_N* on number of photons and away-side jet activities

with and without a correlated central EM-jet on the away-side p_T^{EMjet} > 2.0 GeV

イロト イボト イヨト イヨ

Backup -Inclusive $\pi^0 A_{UT}$ and background asymmetries

STAR 《 마 > 《 큔 > 《 문 > 《 문 > 문 돈 이 및 (4/7

Backup -Direct γ with FMS + Preshower detector for Run15

- FMS lead glass was exposed to sunlight to recover from radiation damage
- first two layers of preshower provides γ /charged-track separation and (x,y)
- ullet 3rd layer of preshower separates electrons and γ from charged hadrons

비로 서로에 서로에 서랍에 서비해

Backup -Direct γA_N for Run15

- $p^{\uparrow} + p$ @ $\sqrt{s} = 200$ GeV, $\mathcal{L} = 40pb^{-1}$, pol. = 60%
- track matching between FMS and layer1 & 2 of preshower
- $E_{cluster} > 15$ GeV, $p_T > 2.0$ GeV

正式 スピット 日本 大臣 マイロト

Backup - Forward Tracking & Calorimeter System for 2020

- ECAL: W powder + scintillating filters σ_E / E = 0.11/ \sqrt{E} + 0.007
- HCAL: Lead plates + scintillating tiles σ_E / E = 0.58/ \sqrt{E} + 0.007
- Prototypes tested extensively at Fermilab

- Silicon micro-strip technology based on experience from STAR IST
- GEM technology from FGT design
- Still in early stage of development

