

Transverse Spin-dependent Azimuthal Correlations of Charged Pion Pairs Measured in p^{\uparrow}+p Collisions at \sqrt{s} = 500 GeV at STAR

Michael Skoby For the STAR Collaboration CEEM at Indiana University, Bloomington University of Michigan, Ann Arbor

Overview

• Why measure $\pi^+\pi^-$ correlations?

• Some analysis details

• Asymmetry measurements vs η , p_T and M_{Inv}

Conclusions

Motivation

Bacchetta, Courtoy, Radici, JHEP **1303** (2013) 119

- Di-hadron correlations allow point-to-point transversity measurements in SIDIS
- Measuring transversity from polarized p+p data
 - collinear framework
 - high precision, reduced u-quark dominance
 - test of universality (SIDIS vs p+p)
 - new kinematic regime

STAR

- 2011 polarized p+p collisions at 500 GeV with 25 pb⁻¹ integrated luminosity
- P_{beam} = 53%
- Solenoidal Tracker at RHIC (STAR)
- Charged pions measured in Time Projection Chamber
 - -2π azimuthal coverage
 - $-1 < \eta < 1$
- Endcap and Barrel electromagnetic calorimeters and vertex position detector used to select events

Asymmetry Observable

- Calculated for *P_B* as incident beam, *P_A* as target
- Incident beam is polarized and target unpolarized by summing over bunches
- Pion separation = $\sqrt{(\Delta \eta^2 + \Delta \phi^2)} < 0.7$
- $A_{UT} \propto h_1 \cdot H_1^<$
 - Transversity (h_1)
 - Interference
 Fragmentation Function
 (H[<]₁)
- A_{UT} is expected to depend on the invariant mass (M_{Inv}) and p_T of the pion pair

o(z)

Extract A_{UT}

- Particle $p_T > 1.5 \text{ GeV/c}$
- Pair p_T > 3.75 GeV/c
- Use dE/dx to identify pions
- For a given M_{Inv} , p_T bin the asymmetry is calculated for 8 ϕ_{RS} bins
- The asymmetry is the amplitude extracted from a single-parameter fit

 $A_{UT}(\varphi_{RS}) = \frac{1}{P} \frac{\sqrt{N \uparrow (\varphi_{RS})N \downarrow (\varphi_{RS} + \pi)} - \sqrt{N \downarrow (\varphi_{RS})N \uparrow (\varphi_{RS} + \pi)}}{\sqrt{N \uparrow (\varphi_{RS})N \downarrow (\varphi_{RS} + \pi)} + \sqrt{N \downarrow (\varphi_{RS})N \uparrow (\varphi_{RS} + \pi)}}$

Asymmetry (η,p_T)

- Transversity is manifested in forward pion pairs due to large x valence quarks of the incident proton
- Due to event selection bias, the signal may be enhanced up to 66% of the statistical uncertainty

Asymmetry (η,p_T)

- A_{UT} as a function of η plotted for 5 p_T bins
- Significant asymmetry seen at high η and high <p_T>

Asymmetry (M_{Inv},p_T)

- A_{UT} as a function of M_{Inv} plotted for 5 p_T bins
- Avg M_{Inv} in each M_{Inv} bin decreases with decreasing <p_T>
- Significant asymmetry seen at mid-M_{Inv} and high <p_T>

Asymmetry (M_{Inv},p_T)

- A_{UT} as a function of M_{Inv} plotted for 5 p_T bins
- Avg M_{Inv} in each M_{Inv} bin decreases with decreasing <p_T>
- Significant asymmetry seen at mid-M_{Inv} and high <p_T>

Theoretical Comparison

- p_T ranges sample similar $x_T = 2 p_T / \sqrt{s}$
- 500 GeV: <p_> = 13 GeV/c
- Run 2012, 200 GeV: <p_> = 6 GeV/c
- 200 GeV sensitive to higher x

- Theoretical prediction from fitting SIDIS and e⁺e⁻ data
- Above convention η < 0 corresponds to η > 0 for STAR
- Large increase around the ho mass
- 3 < p_T < 13 GeV/c

Asymmetry (p_T,M_{Inv})

- A_{UT} as a function of p_T plotted for 5 M_{Inv} bins
- Avg p_T in each p_T bin slightly decreases with decreasing <M_{Inv}>
- Asymmetry rises significantly for high p_T and high M_{Inv}

Asymmetry (p_T,M_{Inv})

- A_{UT} as a function of p_T plotted for 5 M_{Inv} bins
- Avg p_T in each p_T bin slightly decreases with decreasing <M_{Inv}>
- Asymmetry rises significantly for high p_T and high M_{Inv}

<x> Coverage at STAR

 High precision asymmetries measured at relatively high <x> and high effective Q²

Conclusions

- Preliminary STAR data show high precision pion pair correlation asymmetries at large p_T and M_{Inv} for $\eta^{\pi+\pi-} > 0$
- These results are at much higher Q² and sample a different mixture of quark flavors than SIDIS
- Results may be used to test universality of transverse polarization dependent quantities (SIDIS vs p+p)
- Recorded twice the 2012 figure of merit during 2015 for Vs = 200 GeV. Errors will be reduced by sqrt(3) once the 2012 and 2015 data are combined

Backup

Results for $\eta^{\pi^+\pi^-} < 0$

