

Transverse Spin Transfer of Λ and $\overline{\Lambda}$ Hyperons in Polarized *p*+*p* Collisions at $\sqrt{s} = 200$ GeV at RHIC-STAR

Yike Xu (许一可)

for the STAR Collaboration

Shandong University

Office of Science

Outline

- Motivation
- RHIC & STAR Detector
- Λ and $\overline{\Lambda}$ Hyperon Selections
- Transverse Spin Transfer Results
 - $\checkmark D_{TT}$ vs. p_T $\checkmark D_{TT}$ vs. z in jet
- Summary

Motivation

• Transverse spin transfer D_{TT} for $\Lambda(\overline{\Lambda})$ in p+p collisions:

D_{TT} provides connections to the transversity distributions and transversely polarized fragmentation functions (FF).

Q. Xu, Z. T. Liang, E. Sichtermann, PRD73, 077503 (2006).

Experimentally, *D_{TT}* can be measured through Λ polarization, which can be determined from the angular distribution of its weak decay product (Λ → pπ⁻):

$$\mathrm{d}N \propto \left(1 + \alpha P_{\Lambda(\overline{\Lambda})} \cos\theta^*\right) \mathrm{d}\cos\theta^*$$

Relativistic Heavy Ion Collider

• RHIC is the world's first (and only) polarized hadron collider.

RHIC consists of two 3.8 km rings, one ("Blue") clockwise and the other ("Yellow") for counter-clockwise beams.

• RHIC can provide all 4 collision pattens: ++, --, +-, -+.

- For p+p, RHIC can run at $\sqrt{s} =$ 200 GeV and $\sqrt{s} =$ 510 GeV with beams longitudinally or transversely polarized.
- The data set used are from transversely polarized collisions at 200 GeV with an integrated luminosity of 18 pb⁻¹ in 2012 and 52 pb⁻¹ in 2015.
- 2012 beam transverse polarization: Blue beam: ~64% Yellow beam: ~58%
- 2015 beam transverse polarization: Blue beam: ~57%
 - Yellow beam: ~57%

Solenoidal Tracker At RHIC

- ✓ **TPC** is the main detector for tracking and PID. → covering $|\eta| < 1.3$ and $\phi \in [0,2\pi]$.
- ✓ **TOF** is used to improve PID of the tracks. → covering $|\eta| < 1.0$ and $\phi \in [0,2\pi]$.
- **EMC** include:
 - ▶ BEMC (Barrel EMC) : covering $|\eta| < 1.0$ and $\phi \in [0,2\pi]$.
 - ► EEMC(Endcap EMC): covering $1.086 < \eta < 2.00$ and $\phi \in [0, 2\pi]$.
- We select the hard scattering events by the Jet triggers which are based on energy depositions in the EMC.

Λ and $\overline{\Lambda}$ reconstruction

- Proton and pion tracks are paired to reconstruct the Λ and $\overline{\Lambda}$ candidates.
- A series of topological cuts are tuned to further reduce the background.
- **Side-band method** is used to estimate the residual background fraction, which is ~ 10%.
- The spin transfer signal is obtained by subtracting the contribution from residual background with:

$$D_{TT} = \frac{D_{TT}^{raw} - rD_{TT}^{bkg}}{1 - r}$$
 (*r* is the background fraction)

Examples of invariant mass distribution for D_{TT} of Λ and $\overline{\Lambda}$ in p_T 3~4 GeV

October 20, 2021

Yike Xu SPIN2021

October 20, 2021

Yike Xu SPIN2021

7

- In hard partonic scattering, the direction of transverse polarization is rotated along the normal direction of the scattering plane.
- D_{TT} measures the spin transfer to the final state Λ polarization along the polarization direction of outgoing quark.
- Jet axis is used as the surrogate of fragmenting parton to obtain the polarization direction after rotation.

 D_{TT} determination at STAR

- ✓ The anti- $k_{\rm T}$ algorithm with R = 0.6 to reconstruct jets.
- ✓ Require η_{jet} ~ (-0.7, 0.9), p_T > 5.0 GeV/c
- ✓ ΔR cone < 0.6 is used to correlate $\Lambda(\overline{\Lambda})$ candidate with a jet in D_{TT} vs. p_T measurement.

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}; \ \Delta \phi = \phi_{\Lambda} - \phi_{jet}; \ \Delta \eta = \eta_{\Lambda} - \eta_{jet}$$

Λ in jet and z determination

- D_{TT} vs. z provides the direct information of transversely polarized fragmentation function.
- z is defined as :

$$z = \frac{p_{\Lambda} \cdot p_{jet}}{|p_{jet}|^2}$$

- \checkmark Jets are reconstructed using TPC tracks and EMC energy deposits. \rightarrow detector z
- \checkmark In theoretical calculations, all the particles are used for the jet. \rightarrow particle z
- Measuring D_{TT} vs. particle z
 - ✓ Obtain the detector z and calculate the D_{TT} in each detector z bin.
 - Correct the average detector z to particle z, using correction factors obtained from MC simulation based on Pythia6 + Geant.

Cross-ratio method for D_{TT}

• D_{TT} is extracted from a **cross-ratio asymmetry** using Λ counts with opposite beam polarization configurations within a small interval of $cos\theta^*$

$$D_{TT} = \frac{1}{\alpha P_{beam} \langle cos\theta^* \rangle} \frac{\sqrt{N^{\uparrow}(cos\theta^*)N^{\downarrow}(-cos\theta^*)} - \sqrt{N^{\uparrow}(-cos\theta^*)N^{\downarrow}(cos\theta^*)}}{\sqrt{N^{\uparrow}(cos\theta^*)N^{\downarrow}(-cos\theta^*)} + \sqrt{N^{\uparrow}(-cos\theta^*)N^{\downarrow}(cos\theta^*)}}$$

STAR, PRD 98, 091103R (2018)

- ✓ $N^{\uparrow/\downarrow}$: the number of Λ hyperon when the beam polarization is \uparrow/\downarrow
- $\checkmark \alpha$: decay parameter
- $\checkmark P_{beam}$: beam polarization
- The relative luminosity and the detector acceptance are both canceled.
- K_S^0 was used to do a null check. α of K_S^0 is assumed equal to 1.

D_{TT} vs. p_T results from STAR 2012 data

Note: The Λ results have been offset to slightly smaller p_T values for clarity.

- First measurement of D_{TT} for Λ(Λ) in transversely polarized p+p collisions at 200 GeV using STAR 2012 data.
- D_{TT} results are consistent with the model predictions, and also consistent with zero.
 - ✓ The measurement precision needs to be improved.

D_{TT} vs. p_T results from STAR 2015 data

Note: The Λ results have been offset to slightly smaller p_T values for clarity.

- In 2015, STAR collected the largest transversely polarized p+p collision data sample at $\sqrt{s} = 200$ GeV.
- 2015 data set is twice as large as the 2012 data set.
- D_{TT} of Λ is consistent with $\overline{\Lambda}$, and also consistent with zero.
- D_{TT} from STAR 2015 data is also consistent with the model prediction.

Results: 2012 vs. 2015 data

- The D_{TT} results from 2 data sets are consistent.
- The new measurements have a factor of $\sim \sqrt{2}$ improvement in statistical precision.

Note: The previously published results have been offset to slightly larger p_T values.

 D_{TT} vs. z results from STAR 2015 data

$$z = \frac{p_{\Lambda} \cdot p_{jet}}{|p_{jet}|^2}$$

- First measurement of D_{TT} vs. z for $\Lambda(\overline{\Lambda})$ in p+p collisions.
- Results are consistent with zero within uncertainties.
- D_{TT} vs. z directly probes the transversely polarized FF of the $\Lambda(\overline{\Lambda})$.

- The transverse spin transfer D_{TT} for the $\Lambda(\overline{\Lambda})$ in p+p collisions can provide access to transversely polarized fragmentation function and transversity distributions in the proton.
- New preliminary results of D_{TT} in p+p collisions at $\sqrt{s} = 200$ GeV with STAR 2015 data, which is about two times larger in statistics than 2012 data.
- The first measurement of D_{TT} versus z, which provides direct information on the transversely polarized fragmentation functions.
- STAR forward detector upgrade enables Λ measurements in the forward rapidity region. More transversely polarized p+p data will be collected at STAR in 2022 and 2024.

- The transverse spin transfer D_{TT} for the $\Lambda(\overline{\Lambda})$ in p+p collisions can provide access to transversely polarized fragmentation function and transversity distributions in the proton.
- New preliminary results of D_{TT} in p+p collisions at $\sqrt{s} = 200$ GeV with STAR 2015 data, which is about two times larger in statistics than 2012 data.
- The first measurement of D_{TT} versus z, which provides direct information on the transversely polarized fragmentation functions.
- STAR forward detector upgrade enables Λ measurements in the forward rapidity region. More transversely polarized p+p data will be collected at STAR in 2022 and 2024.

