
Nuclear Physics A 00 (2020) 1–4

Nuclear
Physics A

www.elsevier.com/locate/procedia

XXVIIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
(Quark Matter 2019)

Measurement of global spin alignment of K∗0and φ vector
mesons using the STAR detector at RHIC

Subhash Singha (for the STAR Collaboration)
Institute of Modern Physics Chinese Academy of Sciences, Lanzhou, Gansu, China 73000

subhash@impcas.ac.cn

Abstract

We report the transverse momentum (pT) and centrality dependence of global spin alignment (ρ00) of K∗0 vector meson
at midrapidity (|y| < 0.5) in Au + Au collisions at

√
sNN = 54.4 and 200 GeV with the STAR experiment at RHIC.

The K∗0 results are compared to that of φ meson. At low-pT region and midcentral collisions, the K∗0 ρ00 is found to
be smaller than 1/3 with about 4σ significance, while that of φ meson is observed to be larger than 1/3 with about 3σ
significance. The ρ00 results are compared between RHIC and LHC energies. The physics implication of our results is
also discussed.
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1. Introduction1

In non-central heavy-ion collisions, a large initial global angular momentum (∼ 104} ) is expected [1].2

This can induce a non-vanishing polarization for hadrons with non-zero spin via spin-orbit coupling. The3

measurement of spin polarization can offer new insight into the initial conditions and dynamics of the Quark-4

Gluon Plasma (QGP) [2, 3]. The STAR Collaboration reported significant non-zero Λ polarization at RHIC5

energies [4, 5]. This provides the first experimental evidence of the vorticity of the QGP medium induced6

by the initial angular momentum. The spin alignment of vector mesons can also be used to probe the7

vorticity [6]. The vector meson global spin alignment is quantified by the diagonal element of the spin8

density matrix (ρ00) [7]. It is measured from the angular distribution of the decay daughter of the vector9

meson:10

dN
dcosθ∗

∝
[
(1 − ρ00) + (3ρ00 − 1)cos2θ∗

]
, (1)

where θ∗ is the angle between the polarization axis and momentum direction of the daughter particle in11

the rest frame of parent particle. For global spin alignment, the polarization axis is chosen as the direction12

perpendicular to the reaction plane which is correlated with the direction of the angular momentum of the13

colliding system. In the absence of spin alignment, the value of ρ00 is expected to be 1/3. Any deviation14
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of ρ00 from 1/3 indicate a net spin alignment of vector mesons. Recent model calculations indicated that15

the ρ00 due to vorticity of the medium is expected to be smaller than 1/3, while that induced by the initial16

magnetic field can be larger or smaller than 1/3 depending on the electric charge of the vector meson [8].17

It is also been predicted that different hadronization scenarios, such as the fragmentation and coalescence18

mechanisms can cause ρ00 to be larger and smaller than 1/3 [6]. The vector mesons, K∗0 and φ, are expected19

to be produced predominantly from primordial production, unlike hyperons which are expected to have large20

resonance decay contribution. Another advantage is that the spin alignment of vector mesons are generally21

additive, whereas hyperons polarization are subject to local cancellation effects. Moreover, the lifetime of22

these vector mesons differ by a factor of ten, so they can carry informations of the medium from different23

time scale during its evolution.24

2. Analysis method25

This proceedings report the measurement of K∗0 ρ00 at midrapidity (|y| < 0.5) in Au+Au collisions26

at
√

sNN = 54.4 and 200 GeV. The minimum-bias events are selected by coincidence of east and west27

Vertex Position Detectors [9]. The charge particle tracking is performed using the Time Projection Chamber28

(TPC) [10]. The collision centrality is determined from the number of charged particles within |η| < 0.529

and corrected for triggering efficiency using a Monte Carlo Glauber simulation [11]. The 2nd-order event30

plane (experimental approximate of reaction plane) is reconstructed using tracks inside the TPC. The particle31

identification is done using the specific ionization energy loss in TPC gas volume and the velocity of particles32

(1/β) measured by the Time-of-Flight (TOF) detector [12]. The K∗0 (K∗0) is reconstructed via hadronic33

decay channel: K∗0(K∗0) → K+π− (K−π+) (branching ratio: 66%) [13]. Measurement of K∗0 and K∗0 are34

averaged and they are collectively referred to as K∗0. The combinatorial background is estimated from a35

pair rotation technique. The invariant mass signal is obtained after the subtraction of the combinatorial36

background. The signal is fitted with a Breit-Wigner distribution and a second-order polynomial function37

to take care of residual background. The yield is estimated by integrating signal histogram bins within the38

range: (m0 − 3Γ,m0 + 3Γ), where m0 and Γ are the invariant mass peak position and width of K∗0. The39

K∗0 yield is obtained in five cosθ∗ bins, where the θ∗ is the angle between the direction perpendicular to the40

2nd-order event plane and the momentum direction of daughter kaon in the rest frame of K∗0. The yield in41

each cosθ∗ bin is then corrected for detector acceptance and efficiency using a Monte Carlo embedding. We42

extract the observed ρ00 (denoted as ρobs
00 ) by fitting the yield vs. cosθ∗ distribution using Eq. 1. The ρobs

00 is43

then corrected for event plane resolution, following method detailed in [14], to obtain ρ00:44

ρ00 −
1
3

=
4

1 + 3R
(ρobs

00 −
1
3

), (2)

where R is the TPC 2nd-order event plane resolution, estimated from the correlation of two sub-events [15].45

3. Results and discussions46

3.1. Transverse momentum (pT) dependence47

The solid star and circle markers in the left panel of Fig. 1 present the K∗0 ρ00 measured using the 2nd-48

order event plane as a function of pT for 10-60% central Au+Au collisions at
√

sNN = 54.4 and 200 GeV. The49

open markers present the ρ00 with respect to a three-dimensional (3D) random plane which is not expected50

to be correlated with the angular momentum direction. We observe that the ρ00 for pT < 2.0 GeV/c is51

smaller than 1/3 with about 4σ significance, while for higher pT region the ρ00 is consistent with 1/3 within52

uncertainties. The ρ00 with respect to the 3D random plane is found to be consistent with 1/3 as expected.53

The observed deviation of K∗0 ρ00 in low-pT region can be qualitatively explained by models that consider54

the hadronization of polarized quarks via coalescence mechanism [6]. But to date, there is no quantitative55

estimate of K∗0 ρ00 available from such models. The ρ00 of φ meson for pT=1.0–2.0 GeV/c in midcentral56

Au+Au collisions at
√

sNN = 200 GeV (presented in QM2018) [16] is observed to be larger than 1/3. The φ57

ρ00 measurement does not fit into the naive quark coalescence or fragmentation model.58
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Fig. 1. Left panel: The solid circles and star markers present the K∗0 ρ00 using the 2nd-order event plane as function of pT for 10-60%
central Au+Au collisions at

√
sNN = 54.4 and 200 GeV, respectively. The open markers present the same using a three-dimensional

(3D) random plane. Right panel: The solid circles and star markers present the K∗0 ρ00 using the 2nd-order event plane as function of
〈Npart〉 for 1.0 < pT < 1.5 GeV/c. The vertical bars and caps denote statistical and systematic uncertainties, respectively.

3.2. Centrality (〈Npart〉) dependence59

The right panel in Fig. 1 shows the K∗0 ρ00 as function of average number of participating nucleons60

(〈Npart〉) for 1.0 < pT < 1.5 GeV/c in Au+Au collisions at
√

sNN = 54.4 and 200 GeV. We observed a clear61

centrality dependence with the maximum deviation of ρ00 from 1/3 in midcentral collisions. For peripheral62

collisions, the K∗0 ρ00 is consistent with 1/3 while for most central collisions it is close to 1/3. The ρ00 of φ63

mesons (presented in QM2018) [16] shows similar centrality dependence, but with an opposite trend and the64

ρ00 is larger than 1/3 in midcentral collisions. Current models can not simultaneously explain the observed65

centrality dependence of ρ00 of K∗0 and φ mesons.66
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Fig. 2. Left panel: beam-energy dependence of K∗0 ρ00 in midcentral collisions. Right panel: beam-energy dependence of φ ρ00 in
midcentral collisions. In both panels, the vertical bars and caps denote statistical and systematic uncertainties, respectively.

3.3. Beam-energy (
√

sNN) dependence67

The left panel in Fig. 2 presents the beam-energy dependence of K∗0 ρ00 in midcentral collisions. The68

new measurements for Au+Au collisions at
√

sNN = 54.4 and 200 GeV are compared to those from Au+Au69

collisions at
√

sNN = 11.5 – 39 GeV reported in [16] and from Pb+Pb collisions at
√

sNN = 2.76 TeV [17].70

The K∗0 ρ00 for low pT and midcentral collisions is found to be smaller than 1/3 and within the present71

uncertainties no beam-energy dependence is observed. The right panel in Fig. 2 presents the beam energy72

dependence of φ ρ00. The STAR results [16] from Au+Au collisions at
√

sNN =11.5–200 GeV are compared73

to the measurements from LHC energies [17]. While the φ ρ00 in midcentral collisions at RHIC energies74
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Table 1. Sumary of ρ00 and PH measurements at RHIC and LHC
Species Quark content JP ρ00/PH at top-RHIC ρ00/PH at LHC
K∗0 ds̄ 1− ρ00 < 1/3 (∼ 4σ) ρ00 < 1/3 (∼ 3σ)
φ ss̄ 1− ρ00 > 1/3 (∼ 3σ) ρ00 < 1/3 (∼ 2σ)
Λ uds 1/2+ PH > 0; (∼ 4σ) PH ∼ 0 (∼ 1σ)

is observed to be larger than 1/3 (about 3σ significance at 39 and 200 GeV), it is found to be smaller than75

1/3 at the LHC energy (about 2σ significance). The trend of φ ρ00 at RHIC energies can be explained76

by a recent model calculation that considers the existence of coherent mesonic field [18]. Note that the77

calculation mentioned above does not exist for the K∗0 meson.78

4. Summary and conclusion79

We presented pT and centrality dependence of ρ00 of K∗0 meson for Au+Au collisions at
√

sNN= 54.480

and 200 GeV. At low pT and midcentral collisions, the K∗0 ρ00 is observed to be smaller than 1/3 with 4σ81

significance for both beam energies. This is an indication of K∗0 spin alignment for both beam energies.82

For midcentral collisions, while the K∗0 ρ00 is found to be smaller than 1/3, the φ ρ00 is observed to be83

larger than 1/3. It could be due to the different lifetime of these vector mesons and different responses to the84

vorticity of the medium at different time scales. No current theoretical model can explain simultaneously85

the trend of K∗0 and φ ρ00. Within the current precision, no significant beam-energy dependence is observed86

for K∗0 ρ00. The data from the 2nd phase of the Beam Energy Scan in RHIC will improve the precision of87

the low energy data. The pT and centrality dependence of ρ00 of K∗0 is qualitatively similar between RHIC88

and LHC energies.89

From the current theoretical understanding, the global hyperon polarization (PH) is proportional to the90

quark polarization (Pq): PH ∝ Pq, while the spin alignment, ρ00 ∝ P2
q. Based on the above assumptions and91

the input of Pq from Λ polarization measurement, the expected ρ00 is close to 1/3. Hence, the current large92

deviation of ρ00 is surprising and poses challenges to theoretical understanding. Given the ρ00 can depend93

on multiple physics mechanisms, e.g. the vorticity, magnetic field, hadronization scenarios and mesonic94

fields, more theoretical efforts are required for understanding of the data.95
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