

Study of Freeze-out Dynamics in STAR at RHIC Beam Energy Scan Program

Sabita Das

(for the STAR collaboration) Brookhaven National Laboratory, USA Institute of Physics, Bhubaneswar, India

- Motivation
 Beam Energy Scan (BES) program in STAR at RHIC
- Experimental setup STAR
- Particle identification method TPC+TOF
- Transverse momentum spectra
- Energy and centrality dependence of identified particle ratios
- Results on chemical freeze-out parameters
- Summary

Motivation

QCD Phase Diagram STAR BES proposal: arXiv:1007.2613

- The main goals of RHIC BES program
- To search the possible QCD phase boundary
- To search the possible QCD critical point

Year	√s _{NN} (GeV)	Minimum bias events (Million)
2010	7.7	~4 M
2010	11.5	~12 M
2010	39	~ 130 M
2011	27	~ 70 M
2011	19.6	~ 36 M

 The STAR data from BES are used to extract the freeze-out parameters
 T and µ_B from particle ratios to map the QCD phase diagram

BEMC

Magnet

TPC

upVPD

BBC

EEMC

Full azimuthal particle identification.

TOF

Data (2010): Au+Au 39GeV, 11.5 GeV and 7.7 GeV. Data (2011): Au+Au 27GeV, 19.6 GeV. Particles used 1 π , K, p, A, Ξ and K⁰s

22nd-27th July

SQM

Particle Identification

STAR Transverse Momentum Particle Spectra

SQM

Energy Dependence of Particle Ratios

OM

Star Centrality Dependence of Particle Ratios

Statistical and systematic errors added in quadrature

- π/π⁺ ratio is consistent with unity for energies above 11.5 GeV and it slightly increases with decrease in energy below 27 GeV
- $\rightarrow \overline{p}/p$ and K⁻/K⁺ increases with increase in energy
- $\ge \overline{p}/p$ ratios decreases from peripheral to central bins at all energies

STAR Centrality Dependence of Particle Ratios

Statistical and systematic errors are added in quadrature

- > K^{-}/π^{-} ratio increases with increase in energy and also it increases from peripheral to central bins
- $> \overline{p}/\pi^{-}$ ratio increases with increase in energy

Chemical Freeze-out : Inelastic collision ceases Particle ratios get fixed

***THERMUS** : Statistical thermal model Ensemble used – Grand Canonical and Strangeness Canonical

For Grand Canonical: Quantum numbers (B, S, Q) conserved on average

$$n_{i} = \frac{Tm_{i}^{2}g_{i}}{2\pi^{2}} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\frac{k\mu_{i}}{T}}\right) K_{2}\left(\frac{km_{i}}{T}\right)$$

To consider incomplete strangeness equilibration:

$$n_i \rightarrow n_i \gamma_S^{|S_i|}$$

For Strangeness Canonical: Strangeness quantum number (S) conserved exactly

Extracted thermodynamic quantities: $T_{ch,}~\mu_{B,}~\mu_{s}$ and γ_{S} (strangeness saturation factor)

•Thermus, S. Wheaton & Cleymans, Comput. Phys. Commun. 180: 84-106, 2009.

Chemical Freeze-out

- ✓ Particles used : π , K, p, Λ , Ξ, and K⁰_s
- ✓ Ensemble used: Grand canonical and Strangeness canonical
- ✓ Fit parameters: $T_{ch,} \mu_{B,,} \mu_{s}$ and γ_{s}
- ✓ BES energies used: 39, 27, 11.5, and 7.7 GeV
 Au+Au 7.7 GeV
 Grand Canonical
 Strangeness Canonical
 STAR Preliminary
 Strangeness Canonical
 5
 5
 6
 5
 7
 6
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9

〈 N_{part} ,

Chemical Freeze-out

Au+Au 200 GeV : Phys. Rev. C 83 (2011) 24901

- \succ Particles used in the fit: π , K, p, Λ , Ξ and K⁰_s
- Freeze-out results shown from : Grand canonical ensemble
- > As collision energy increases chemical freeze-out temperature increases
- Baryon chemical potential decreases with increase in collision energy.

OM

Chemical Freeze-out

- \succ Particles used in the fit : π , K, p, Λ , Ξ and K⁰_s
- Freeze-out results shown from : Grand canonical ensemble
- Strangeness chemical potential decreases with increase in collision energy
- Strangeness saturation factor increases from peripheral to central collisions for all energies

Chemical Freeze-out: T_{ch} vs. μ_B

> We observe a centrality dependence of chemical freeze-out parameters ($T_{ch,} \mu_B$) at lower energies.

We are investigating the difference in peripheral region between GCE and SCE and work is going on using particle yields.

Summary

- Particle ratios are used to extract the chemical freeze-out parameters which can be used to map the QCD phase diagram
- ✓ The energy and centrality dependence of particle ratios ♀ at BES energies have been presented
- ✓ New measurements for BES energies (39, 27, 11.5 and 7.7 GeV) at RHIC extend μ_B range from 20 400 MeV of the QCD phase diagram
- ✓ Chemical Freeze-out: Thermus model and particle ratios

Observation of centrality dependence of chemical freeze-out parameters at lower energies

- Central collisions: T_{ch} is comparable in GCE and SCE
- Peripheral collisions: T_{ch} shows disagreement between GCE and SCE. More detailed study is going on.

Thank you