Probing QCD matter via $K^{*0}(892)$ and $\phi(1020)$ resonance production at RHIC

Md Nasim (for the STAR Collaboration)

Indian Institute of Science Education and Research Berhampur, Odisha 760010, India. nasim@iiserbpr.ac.in

Abstract. We present the measurements of invariant yield of K^{*0} and ϕ resonances at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ - 200 GeV using the STAR detector. The transverse momentum (p_T) spectra and p_T integrated yield of K^{*0} and ϕ has been studied. The ratios between resonance (K^{*0}) and ϕ) to non-resonance particles (K) is presented as a function of centrality. It is found that K^{*0}/K^- ratios are suppressed in more central collisions compared to peripheral in all centre-of-mass energies studied. On the other hand, ϕ/K^- ratios are found to be almost independent of centrality. These results can be understood by considering the effect of more hadronic re-scattering for K^{*0} (lifetime ~ 4 fm/c) 10 compared to ϕ (lifetime $\sim 42 \text{ fm/c}$). We have also presented the measure-11 ment of first-order azimuthal anisotropy (known as directed flow, v_1) of 12 ϕ meson as a function of rapidity (y) at mid-rapidity in Au+Au collisions 13 at $\sqrt{s_{NN}} = 7.7$ - 200 GeV. The slope of ϕ -meson v_1 (dv_1/dy) has been 14 compared to other identified particle. We have found that all particles 15 that consist of produced quarks show similar behaviour for $\sqrt{s_{NN}} > 14.5$ 17 GeV.

Keywords: Hadronic rescattering, resonances, directed flow, heavy-ion collisions

20 1 Introduction

18

19

The aim of the STAR experiment at Relativistic Heavy Ion Collider (RHIC) is 21 to study the QCD matter by colliding nuclei at ultra-relativistic speeds [1]. The 22 study of K^{*0} (lifetime ~ 4 fm/c) and ϕ (lifetime ~ 42 fm/c) production in heavyion collisions can be used to probe the medium created after the collision [2]. The K^{*0} resonance has a short lifetime, therefore it may decay during the hadronic phase and its decay products may undergo elastic or pseudo-elastic scatterings. 26 Due to elastic or pseudo-elastic scatterings, the final yield of K^{*0} resonance may 27 get changed. The K^{*0} resonance yields may get reduced due to re-scattering of its daughters through elastic scattering or the yields may be regenerated through pseudo-elastic scattering between chemical and kinetic freeze-out [2]. However, due to longer lifetime, ϕ mesons mostly decay outside the fireball and hence its 31 daughters are not affected by late-stage hadronic scatterings. Hence, the study

of K^{*0} and ϕ resonances is useful to study the late-stage hadronic scatterings. In high energy heavy-ion collisions, particles are produced with an azimuthally anisotropic momentum distribution. Directed flow (v_1) is a measure of azimuthal angular anisotropy of the produced particles with respect to the first-order event plane [3]. The v_1 is an initial state effect and expected to be sensitive to the equation of state of the system formed in the collision. Since ϕ meson freeze-out early and is expected to have small hadronic interaction cross-section, the measured v_1 of ϕ meson can be as a clean probe to study the QCD matter [4].

⁴¹ 2 Data sets and methods

The results presented here are based on data collected at $\sqrt{s_{NN}}=7.7,\,11.5,\,14.5,\,19.6,\,27,\,39,\,62.4$ and 200 GeV in Au+Au collisions by the STAR detector using a minimum bias trigger. The Time Projection Chamber (TPC) [5] and Time of Flight (TOF) [6] detectors with full 2π coverage are used for particle identification in the central pseudo-rapidity (η) region $(|\eta|<1.0)$. K^{*0} and ϕ resonances are reconstructed from the following hadronic decay channel: $K^{*0} \longrightarrow K^{\pm} + \pi^{\mp}$ and $\phi \longrightarrow K^{+} + K^{-}$. Mixed event technique has been used for combinatorial background estimation [7]. Fig. 1 shows invariant mass distribution of $K^{\pm}\pi^{\mp}$ and $K^{+}K^{-}$ pairs after mixed event background subtraction. The first harmonic coefficient of the Fourier decomposition of azimuthal distri-

Fig. 1. Invariant mass distribution of $K^{\pm}\pi^{\mp}$ and $K^{+}K^{-}$ pairs after mixed event background subtraction for miminum bias (0-80%) Au+Au collision at $\sqrt{s_{NN}}$ =11.5 GeV for $0.4 < p_T < 0.6$ GeV/c.

bution with respect to the first-order event plane angle (ψ_1) can be expressed as $v_1 = \langle \cos(\varphi - \psi_1) \rangle$, where φ is the azimuthal angle of the produced particle. The first order event plane angles are calculated using a forward rapidity detector (Beam Beam Counter or Zero-Degree Calorimeter) [8]. The measured v_1 using first-order event plane was corrected by event plane resolution. The more details about v_1 measurement in STAR can be found at [9].

58 3 Results

Figure 2 shows K^{*0}/K^- and ϕ/K^- ratios as a function of $(dN_{ch}/d\eta)^{1/3}$ (the cube root of the charged-particle multiplicity density measured at mid-rapidity) in Au+Au at various centre-of-mass energies measured by STAR experiment [7, 10–13]. The results are also compared to measurements done at $\sqrt{s_{NN}} = 2.76$ TeV in Pb+Pb collision by ALICE collaboration. We can see in all energies, K^{*0}/K^- ratios are decreasing with increase in $(dN_{ch}/d\eta)^{1/3}$ (proxy for system size). On the other-hand, ϕ/K^- ratios are almost independent of $(dN_{ch}/d\eta)^{1/3}$. The observed suppression of the K^{*0}/K^- ratios could be due to re-scattering effect as discussed earlier.

Fig. 2. Ratios K^{*0}/K^- and ϕ/K^- as a function of $(dN_{ch}/d\eta)^{1/3}$ in Au+Au and Pb+Pb collision at various $\sqrt{s_{NN}}$ [7, 10–13].

Directed flow slope dv_1/dy versus beam energy for ϕ , $\bar{\Lambda}$, p and \bar{p} is presented in Fig. 3 for 10-40% centrality in Au+Au collisions [9]. The slope for $\bar{\Lambda}$ is negative for all energies and is consistent within errors with that for \bar{p} . Antiprotons , ϕ and $\bar{\Lambda}$ are seen to have similar $v_1(y)$ for $\sqrt{s_{NN}} > 14.5$ GeV. All these species are composed of three constituent quarks all produced in the collision. For $\sqrt{s_{NN}} < 14.5$ GeV, current statistical uncertainty is too large to make any conclusion.

$_{4}$ 4 Summary

We report the measurement of K^{*0} and ϕ resonances production at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}}=7.7\text{-}200$ GeV recorded by the STAR detector. The K^{*0}/K^- and ϕ/K^- ratios as a function of $(dN_{ch}/d\eta)^{1/3}$ is presented for different centre-of-mass energies. The K^{*0}/K^- ratios are found to be decreasing with increasing $(dN_{ch}/d\eta)^{1/3}$. Whereas, ϕ/K^- ratios are nearly independent of $(dN_{ch}/d\eta)^{1/3}$. The observed suppression on K^{*0}/K^- ratios in central collisions could be due to the effect of hadronic re-scattering which reduced the measured yield of very short-lived resonances. The directed flow of ϕ meson is presented

4 Md Nasim

Fig. 3. Directed flow slope (dv_1/dy) versus beam energy for 10-40% centrality in Au+Au collisions for ϕ , $\bar{\Lambda}$, p and \bar{p} [9].

- for different centre-of-mass energies. Directed flow slope (dv_1/dy) of ϕ meson are
- found to be consistent within errors with that of $\bar{\Lambda}$ and \bar{p} for $\sqrt{s_{NN}} > 14.5$ GeV.

85 References

- 1. (STAR Collaboration) J. Adams et. al. Nucl. Phys. A 757, (2005) 102.
- 2. (STAR Collaboration) J. Adams et. al. Phys. Rev. C 71 (2005) 64902.
- 3. A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58 (1998)1671.
- 4. A. Shor, Phys. Rev. Lett. 54, (1985) 1122.
- 5. M. Anderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 659 (2003).
- 6. W. J. Llope (STAR TOF Group), Nucl. Instrum. Methods Phys. Res., Sect. B 241,
 306 (2005).
- 93 7. (STAR Collaboration) L. Adamczyk et.al. Phys. Rev. C 93 (2016) 21903.
- 8. G. Wang (PhD thesis, Kent State University) (2005).
- 95 9. (STAR Collaboration) L. Adamczyk et.al. Phys. Rev. Lett. 120 (2018) 62301.
- 96 10. (STAR Collaboration) L. Adamczyk et.al. Phys. Rev. C 96 (2017) 44904.
- 97 11. (STAR Collaboration) M. M. Aggarwal et.al. Phys. Rev. C 84, (2011) 034909.
- 98 12. (STAR Collaboration) B. I. Abelev et.al. Phys. Rev. C 79 (2009) 64903.
- 99 13. (ALICE Collaboration) J. Adam et. al. Phys. Rev. C 91 (2015) 024609.