Recent Heavy-Flavor Results from STAR

Guannan Xie (for the STAR Collaboration)

Lawrence Berkeley National Laboratory, Berkeley CA 94706, USA xieguannanpp@gmail.com

Abstract. Because of the large mass, heavy quarks (charm and bottom) are predominately created through initial hard scatterings in heavy-ion collisions at RHIC and the LHC. They are suggested to be an important tool for studying the properties of the Quark Gluon Plasma (QGP) produced in heavy-ion collisions. In these proceedings, we report on the production of various open heavy-flavor hadrons and quarkonia in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV from the STAR experiment.

Keywords: quark-gluon plasma, open heavy-flavor hadrons, quarkonia

13 **1** Introduction

1

2

3

4

5

6

7

8

q

10

11

12

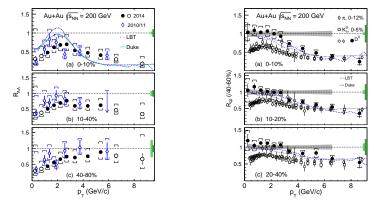
¹⁴ Measurements of heavy flavor production (open heavy-flavor hadrons and quarko-¹⁵ nia) are an important tool for studying the properties of the QGP formed in ¹⁶ relativistic heavy-ion collisions. The modification of their distributions in trans-¹⁷ verse momentum (p_T) due to energy loss and in azimuth due to anisotropic flows ¹⁸ is sensitive to heavy-quark dynamics in the partonic QGP phase [1, 2].

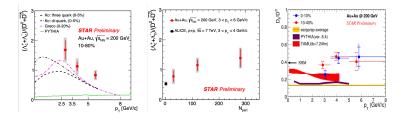
In these proceedings we present measurements of the D^0 nuclear modification 19 factors and elliptic flow in Au+Au collisions from STAR, and compare to similar 20 measurements for light-flavor hadrons. The Λ_c^{\pm} and D_s^{\pm} production are presented 21 to study the coalescence mechanism for charm quark hadronization. The mea-22 surements of open bottom production through the reconstruction of their dis-23 placed decay daughters $(B \rightarrow J/\psi, D^0, e)$ are performed to test the mass depen-24 dence of parton-medium interactions in the QGP. The strong J/ψ suppression in 25 heavy-ion collisions has a complicated interpretation as not only color-screening, 26 but also the cold nuclear matter effects and the regeneration mechanism play a 27 role. Υ measurements are a cleaner probe of the color-screening effect at RHIC 28 energies and the suppression pattern of different bottomonium states will help 29 to constrain the temperature of the medium. The J/ψ measurements as well as 30 the Υ are also presented in these proceedings. 31

³² 2 Nuclear modification factors for D^0

Figure 1 left panel shows the $D^0 R_{AA}$, which is the yield ratio between Au+Au and p+p scaled by the number of binary collisions [3]. From low to intermediate p_T region, the $D^0 R_{AA}$ shows a characteristic structure which is qualitatively

2 Guannan Xie




Fig. 1. (Left) $D^0 R_{AA}$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV for different centrality bins. (Right) $D^0 R_{CP}$ with the 40–60% spectrum as the reference.

consistent with the expectation from model predictions in which charm quarks 36 gain sizable collective motion during the medium evolution. In order to take ad-37 vantage of the precision of the Au+Au spectra and avoid the large uncertainties 38 from the p+p baseline, we construct the $R_{\rm CP}$ which is the yield ratio between 39 central and peripheral Au+Au collisions. The right panel shows the $D^0 R_{\rm CP}$ for 40 different centralities as a function of p_T with the 40–60% centrality spectrum as 41 the reference. The measured $D^0 R_{\rm CP}$ in central 0–10% collisions shows a signif-42 icant suppression at $p_T > 5 \,\mathrm{GeV}/c$. The suppression level is similar to that of 43 light-flavor hadrons and strange mesons and the suppression gradually decreases 44 from central to mid-central and peripheral collisions, similarly as R_{AA} . The D^0 45 $R_{\rm CP}$ for $p_T < 4 \,{\rm GeV}/c$ does not show a modification with centrality, in contrast 46 to light-flavor hadrons. Calculations from the Duke group and the Linearized 47 Boltzmann Transport (LBT) model match the data well [5,6], while the im-48 proved precision of the new measurements is expected to further help constrain 49 the theoretical model calculations. 50

51 3 $D_s/D^0,\,\Lambda_c/D^0$ yield ratios

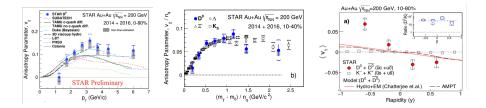
Figure 2 left panel shows the Λ_c/D^0 yield ratio as a function of p_T for the 10– 52 80% centrality class. The values show a significant enhancement compared to 53 the calculations from PYTHIA. The model calculations which include coales-54 cence hadronization of charm quarks can qualitatively reproduce the p_T depen-55 dence [7–9]. However, one needs measurements at low p_T to further differentiate 56 between different models. The middle panel shows the measured Λ_c/D^0 ratio 57 as a function of N_{part} in $3 < p_T < 6 \,\text{GeV}/c$. There is a clear increasing trend 58 towards more central collisions while the value in the peripheral collisions is 59 comparable with the measurement in p+p collisions at $\sqrt{s_{\rm NN}} = 7$ TeV from 60 ALICE [10]. The right panel shows the D_s/D^0 ratio for two centrality classes. 61

There is a strong enhancement compared to the PYTHIA fragmentation with
no significant centrality dependence [11].

Fig. 2. (Left) Λ_c/D^0 ratio as a function of p_T for the 10–80% centrality class. (Middle) Λ_c/D^0 ratio as a function of N_{part} in $3 < p_T < 6 \text{ GeV}/c$. (Right) D_s/D^0 ratio as a function of p_T for the 0–10% and 10–40% centralities.

Besides the D^0 , D_s and Λ_c^{\pm} , STAR also has performed measurements of D^{\pm} 64 in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. With these various charmed hadron 65 measurements, the total charm quark cross section per binary nucleon-nucleon 66 collision was obtained as listed in Table 1. The total $c\bar{c}$ cross section per binary 67 nucleon-nucleon collision in Au+Au collisions is consistent with that in p+p68 within uncertainties. However, as demonstrated by the Λ_c/D^0 and D_s/D^0 yield 69 ratios, the charm hadrochemistry is modified in heavy-ion collisions compared 70 to p+p collisions. 71

Table 1. Total charm cross-section per binary nucleon-nucleon collision at midrapidity in Au+Au and p+p collisions at 200 GeV.


Charm Hadron		Cross Section $d\sigma/dy(\mu b)$
Au+Au (10-40%)	D^0	$41 \pm 1 \text{ (stat)} \pm 5 \text{ (sys)}$
	D^+	$18 \pm 1 \text{ (stat)} \pm 3 \text{ (sys)}$
	D_s^+	$15 \pm 1 \text{ (stat)} \pm 5 \text{ (sys)}$
	Λ_c^+	$78 \pm 13 \; (\text{stat}) \pm 28 \; (\text{sys})$
	total $c\overline{c}$	$152 \pm 13 \; (\text{stat}) \pm 29 \; (\text{sys})$
p+p	total $c\overline{c}$	$130 \pm 30 \text{ (stat)} \pm 26 \text{ (sys)}$

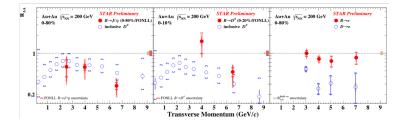
⁷² 4 D^0 elliptic flow (v_2) and directed flow (v_1)

Figure 3 left panel shows STAR results showing a large non-zero v_2 for D^0 mesons [12], which clearly follows the Number of Constituent Quarks (NCQ) scaling similarly as light flavor hadrons below p_T of 1 GeV/c as shown in the middle panel. This suggests that charm quarks gain significant flow trough interactions with the medium. The v_2 is compared to various model calculations and

4 Guannan Xie

⁷⁸ in particular the 3D viscous hydrodynamic model calculation can reproduce the ⁷⁹ results for $p_T < 4$ GeV/c. The other transport models with charm quark diffu-⁸⁰ sion in the medium are consistent with the data when incorporating a diffusion ⁸¹ coefficient $(2\pi T D_s)$ in the range of $2 \sim 5$ around T_c [13].

Fig. 3. D^0 elliptic flow v_2 vs p_T (Left) and the test of NCQ scaling (Middle) for D^0 and light-flavor hadrons. (Right) D^0 directed flow v_1 vs rapidity.


The *D*-meson directed flow v_1 is expected to be sensitive to the initial tilt of the bulk medium, while the difference between D^0 and $\overline{D^0}$ is suggested to be sensitive to the initial electromagnetic field. Figure 3 right panel shows the first observation of a non-zero *D*-meson v_1 slope which is much larger than that of kaons. The v_1 values measured separately for D^0 and $\overline{D^0}$ are consistent within uncertainties. Future measurements with improved precision are needed to investigate the potential influence of the electromagnetic field on the v_1 values [14].

⁸⁹ 5 Measurements of R_{AA} for B-decayed J/ψ , D^0 and e

⁹⁰ The STAR Heavy Flavor Tracker (HFT) provides the capability of using the ⁹¹ impact parameter method to distinguish the daughter particles from decays of ⁹² Bottom hadrons. Figure 4 shows the R_{AA} of $B \rightarrow J/\psi$, D^0 and e. Strong suppres-⁹³ sions for $B \rightarrow J/\psi$ and $B \rightarrow D^0$ at high p_T are observed. The production of $B \rightarrow e$ ⁹⁴ is less suppressed than that of $D \rightarrow e$ with a significance level of about 2σ , which ⁹⁵ is consistent with the expectation of mass hierarchy of parton energy loss [15].

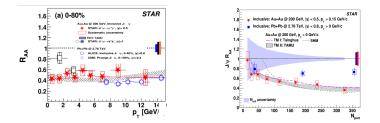

⁹⁶ 6 Measurements of J/ψ productions in Au+Au collisions

Figure 5 shows the J/ψ R_{AA} reconstructed through the di-muon channel us-97 ing the Muon Telescope Detector (MTD) as a function of p_T in Au+Au colli-98 sions [16]. As can be seen the J/ψ production is suppressed across the whole p_T 99 range. The suppression at low p_T is likely due to the combination of the cold 100 nuclear matter (CNM) effect, the regeneration and the dissociation in the QGP. 101 With increasing p_T the CNM effects are expected to diminish. The relative con-102 tribution from the b-hadron decays increases with p_T , and the suppression level 103 of J/ψ originating from these decays is expected to be smaller than that of the 104 prompt J/ψ . The centrality dependence of the J/ψ suppression is shown in the 105

Fig. 4. R_{AA} of different daughter particles from decays of B-hadrons including $B \to J/\psi$, $B \to D^0$ and $B \to e$.

right panel. The R_{AA} decreases from peripheral to central collisions. Comparing the Au+Au measurements at $\sqrt{s_{\rm NN}} = 200$ GeV to the Pb+Pb measurements at $\sqrt{s_{\rm NN}} = 2.76$ TeV from the LHC [17, 18], the STAR result shows more suppression in central and semi-central collisions, which is likely due to a smaller contribution from regeneration caused by the lower charm production cross-section at the RHIC energy. Models taking into account dissociation and regeneration can reasonably describe the data [19–21].

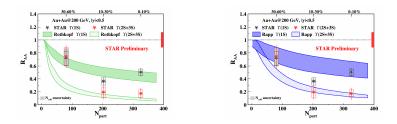


Fig. 5. (Left) $J/\psi R_{AA}$ as a function of p_T in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. (Right) $J/\psi R_{AA}$ as a function of N_{part} in Au+Au collisions, compared to that in Pb+Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV and model calculations.

¹¹³ 7 Measurements of Υ productions in Au+Au collisions

Figure 6 shows the $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ R_{AA} as a function of N_{part} in Au+Au collisions from the combined dielectron and dimuon results. The R_{AA} shows a decreasing trend from peripheral to central collisions for both ΥR_{AA} , while the $\Upsilon(2S+3S)$ are more suppressed than $\Upsilon(1S)$ in the most central collisions. This is consistent with the "sequential melting" expectation. The data are also compared with two model calculations. In the Rothkopf model [22] the Υ behavior in the QGP medium is described using a complex potential from lattice QCD

6 Guannan Xie

Fig. 6. $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ R_{AA} as a function of N_{part} in Au+Au collisions, compared to two model calculations.

calculations and there is no CNM or regeneration effects. While in the Rapp model [23], both CNM and regeneration effects are taken into account. These two models can describe well the measurements for the $\Upsilon(1S)$ and $\Upsilon(2S + 3S)$ in mid-central and central collisions.

125 8 Summary

We have presented the recent measurements of various open heavy-flavor hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV utilizing the HFT at STAR. We have also reported on the measurements of the J/ψ and Υ productions in Au+Au

¹²⁹ collisions at $\sqrt{s_{\rm NN}} = 200$ GeV enabled by the MTD.

130 References

- 131 1. G. Moore and D. Teaney, Phys. Rev. C **71**, 064904 (2005).
- ¹³² 2. M. Cacciari *et al.* Phys. Rev. Lett. **95**, 122001 (2005).
- ¹³³ 3. J. Adam *et al.* (STAR Collaboration), Phys. Rev. C **99**, 034908 (2019).
- ¹³⁴ 4. L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. D **86**, 072013 (2012).
- ¹³⁵ 5. Y. Xu *et al.* Phys. Rev. C **97**, 014907 (2018).
- ¹³⁶ 6. S. Cao *et al.* Phys. Rev. C **94**, 014909 (2016).
- ¹³⁷ 7. I. Kuznetsova *et al.* The European Physical Journal C **51** 113133 (2007).
- ¹³⁸ 8. S. H. Lee *et al.* Phys. Rev. Lett. **100**, 222301 (2008).
- ¹³⁹ 9. S. Ghosh *et al.* Phys. Rev. D **90(5)**, 2-7 (2014).
- 140 10. S. Acharya et al. (ALICE Collaboration) JHEP 04 108 (2018)
- 141 11. L. Zhou (STAR Collaboration), Nuclear Physics A 967, 620-623 (2017)
- 142 12. L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 118, 212301 (2017)
- 143 13. X. Dong, V. Greco, Progress in Particle and Nuclear Physics, 104, 97 (2019)
- 144 14. J. Adam et al. (STAR Collaboration), arXiv:1905.02052
- 145 15. S. Zhang. (STAR Collaboration), Int. J. Mod. Phys. Conf. Ser. 2018.46
- 146 16. J. Adam et al. (STAR Collaboration), Phys. Lett. B **797** 134917 (2019)
- 147 17. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 734 314 (2014)
- 148 18. S. Chatrchyan *et al.* (CMS Collaboration), JHEP **05** 063 (2012)
- 149 19. K. Zhou et al. Phys. Rev. C 89, 054911 (2014)
- ¹⁵⁰ 20. X. Zhao and R. Rapp. Phys. Rev. C 82, 064905 (2010)
- ¹⁵¹ 21. X. Zhao and R. Rapp. Nuclear Physics A **859**, 114-125 (2011)
- ¹⁵² 22. B. Krouppa *et al.* Phys. Rev. D **97**, 016017 (2018)
- ¹⁵³ 23. X. Du *et al.* Phys. Rev. C **96**, 054901 (2017)