¹ **Collision Energy Dependence of Hypertriton Production in** ² **Au+Au Collisions at RHIC**

³ *Xiujun* Li^{1,[∗](#page-0-0)}, for the STAR Collaboration

⁴ ¹University of Science and Technology of China

⁵ **Abstract.** Hypernuclei are bound states of nucleons and at least one hyperon. $6 \text{ In particular, the hypertriton } {}^{3}_{\Lambda}H$, a bound state consisting of a proton, neutron ⁷ and hyperon, is the lightest known hypernucleus. Precise measurements on the energy dependence of ${}_{\Lambda}^{3}$ H production will give invaluable information on hy-⁹ pernuclei production mechanisms due to its unique intrinsic properties. The ¹⁰ second phase of the Beam Energy Scan (BES-II) at RHIC provides a great op-¹¹ portunity to study hypernuclei production. In these proceedings, we present p_T −integrated yields (dN/dy) at mid-rapidity, yield ratios and average trans-
verse momentum $((p_T))$ of ³H as a function of collision energy in Au+Au colverse momentum $(\langle p_T \rangle)$ of ${}^3_\Lambda$ H as a function of collision energy in Au+Au collisions from $\sqrt{s_{NN}}$ = 3 to 27 GeV. These results are compared with phenomeno-¹⁵ logical model calculations, and physics implications on production mechanism ¹⁶ are discussed.

¹⁷ **1 Introduction**

¹⁸ Despite extensive measurements of light nuclei production in heavy-ion collisions, the ¹⁹ precise mechanisms underlying their formation remain an open question. Unlike ordinary ²⁰ nuclei, hypernuclei, which contain strange quarks, offer an additional dimension to these ²¹ studies, while their production mechanisms are not well understood. The equation-of-state ²² (EoS) with the presence of strangeness is crucial for probing the dense neutron star interi-23 ors, but the hyperon-nucleon (Y–N) interaction, essential for constraining this EoS, remains ²⁴ poorly understood [\[1\]](#page-3-0). Hypernuclei serve as a natural laboratory to study the Y−N interac-²⁵ tion. Precise measurements of hypernuclei properties and production yields can shed light on ²⁶ the production mechanisms and the role of Y−N interactions play at neutron stars densities. ²⁷ The hypertriton ${}^{3}_{\Lambda}$ H, a bound state of a proton, neutron, and Λ hyperon, is the lightest ²⁸ known hypernucleus [\[2\]](#page-3-1). A prominent enhancement of the strangeness population factor, $S_3 = \frac{3}{\Lambda} H/({}^3He \times \frac{\Lambda}{p})$, has been proposed as a probe for deconfinement [\[3\]](#page-3-2). Detailed studies of 30 the energy dependence of ${}_{\Lambda}^{3}$ H production could provide valuable insights into the mechanisms 31 of hypernuclei formation.

³² Notably, light hypernuclei are predicted by thermal models to be abundantly produced at ³³ low collision energies due to the high baryon density [\[4\]](#page-3-3). A fixed target mode in the STAR ³⁴ (Solenoidal Tracker At RHIC) experiment was specifically implemented during the BES-II ³⁵ running period to reach lower center-of-mass energies, which corresponds to higher baryon 36 *density. The low* $\sqrt{s_{NN}}$ *, enhanced detector capabilities, and high statistics datasets collected* 37 during BES-II offer great opportunity for hypernuclei study.

∗ e-mail: lixiujun@mail.ustc.edu.cn

³⁸ **2 Analysis Details**

39 The measurements of ${}_{\Lambda}^{3}H$ production in this analysis are carried out by utilizing the Au+Au collision datasets in at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5, 3.9, 4.5 and 5.2 GeV collected with the
40 **SOME SEXT** mode and data at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.6, 19.6 and 27 GeV collected in collider mode FXT mode, and data at $\sqrt{s_{NN}} = 7.7, 11.5, 14.6, 19.6$ and 27 GeV collected in collider mode
41 **FXT** mode, and data at $\sqrt{s_{NN}} = 7.7, 11.5, 14.6, 19.6$ and 27 GeV collected in collider mode ⁴² from STAR experiment during BES-II . The hypertriton ${}_{\Lambda}^{3}H$ is reconstructed via its two-body decay channel $({}^3_\Lambda H \rightarrow \pi^- + {}^3He)$ using the KFParticle package [\[5\]](#page-3-4). Particle identification of
A daughters (π^- and 3He) is done by using energy loss information from the Time Projection daughters (π^{-} and ³He) is done by using energy loss information from the Time Projection
 ϵ Chamber (TPC). The decay topology is used for ³H reconstruction ⁴⁵ Chamber (TPC). The decay topology is used for ${}_{\Lambda}^{3}$ H reconstruction.

⁴⁶ **3 Results and discussion**

The transverse momentum (p_T) spectra of ${}^3_\Lambda$ H are measured in 0-10% and 10-40% central Au+Au collisions at $\sqrt{s_{NN}}$ = 3 to 27 GeV. Figure [1](#page-1-0) provides an example of the p_T spectra of ³/₄₉ $\frac{3}{\Lambda}$ H at $\sqrt{s_{NN}}$ = 7.7 to 27 GeV, with the dotted lines indicating fits to the data.

Figure 1. The ${}_{\Lambda}^{3}H p_T$ spectra in 0-10% (red circles) and 10-40% (blue circles) central Au+Au collisions. Systematic uncertainties are represented by boxes. The dotted lines are m_T exponential fits to data.

50 The *p*_{*T*}-integrated yields *dN*/*dy* for hypertriton are calculated from the *p*_{*T*} spectra by
51 combining data in the measured *p_T* range and function-fitting extrapolation in the unmeacombining data in the measured p_T range and function-fitting extrapolation in the unmea-s[2](#page-2-0) sured *p_T* range. Figure 2 presents the energy dependence of the dN/dy for ${}_{\Lambda}^{3}$ H at mid-rapidity $(y| < 0.5)$ in 0-10% central Au+Au collisions across a range of $\sqrt{s_{NN}}$ from 3 to 27 GeV. Two
 s_{max} oredictions from HItra-relativistic Quantum Molecular Dynamics (HrOMD)+coalescence ⁵⁴ predictions, from Ultra-relativistic Quantum Molecular Dynamics (UrQMD)+coalescence ⁵⁵ [\[6\]](#page-3-5) and the thermal model [\[6\]](#page-3-5) are plotted for comparison. In the UrQMD+Coalescence ⁵⁶ model, the UrQMD transport model generates hadron phase space distributions at freeze-out. 57 A coalescence procedure is then applied, where light nuclei and hypernuclei are formed if the ⁵⁸ relative momentum and spatial distance of their constituents are within specified thresholds ⁵⁹ [\[6\]](#page-3-5). The thermal model assumes that the chemical freeze-out of light nuclei and hypernu- $\frac{60}{10}$ clei happens simultaneously with hadrons [\[6\]](#page-3-5). The *dN*/*dy* increases as the collision energy
 $\frac{61}{100}$ decreases, peaking around 3-4 GeV. Both the UrOMD+Coalescence and thermal model cal-⁶¹ decreases, peaking around 3-4 GeV. Both the UrQMD+Coalescence and thermal model cal-⁶² culations capture the overall trend. While the thermal model significantly overestimates the ⁶³ experimental data at all energies, the UrQMD+Coalescence model matches the experimental ⁶⁴ data below 11.5 GeV.

Figure [3](#page-2-1) presents the particle ratios of (hyper)nucleus to hadron $(d/p, t/p, \text{ and } {}^3_\Lambda H/\Lambda)$
65 As a function of collision energy. The thermal model results indicated by dashed/ dash-⁶⁶ as a function of collision energy. The thermal model results, indicated by dashed/ dash-⁶⁷ dotted lines, overestimates the ${}_{\Lambda}^{3}H/\Lambda$ and *t*/*p* ratios by a factor of approximately 2, while it successfully describes the *d*/*n* ratio in the data. These indicate ³H and triton (*t*) yields are successfully describes the d/p ratio in the data. These indicate ${}^{3}_{\Lambda}H$ and triton (*t*) yields are
not in equilibrium and fixed at chemical freeze-out along with other light hadrons 69 not in equilibrium and fixed at chemical freeze-out along with other light hadrons.

Figure 2. Measured mid-rapidity yields of $^{3}_{\Lambda}$ H in 0-10% central Au+Au collisions as function of the center of mass collision energy [\[7,](#page-3-6) [8\]](#page-3-7). The dashed line is from thermal model calculations [\[6\]](#page-3-5). The solid line is from transport model calculations with coalescence as an afterburner [\[6\]](#page-3-5).

Figure 3. d/p , t/p , and $^{3}_{\Lambda}H/\Lambda$ yield ratios in 0-10% center central Au+Au collisions as function of the center of mass collision energy. The thermal model results are shown by dashed and dash-dotted lines [\[6\]](#page-3-5). Experimental measurements are shown as symbols [\[9,](#page-3-8) [10\]](#page-3-9).

Figure 4. Energy dependence of S_3 from experiments $[8, 11-13]$ $[8, 11-13]$ $[8, 11-13]$ and models $[3, 4, 6]$ $[3, 4, 6]$ $[3, 4, 6]$ $[3, 4, 6]$ $[3, 4, 6]$. The UrQMD+coalescence results with $\Delta r = 9.5$ fm are shown as orange line, while the results of ∆*r*= 4.3 fm are shown as magenta line [\[6\]](#page-3-5). The black and grey solid lines correspond to thermal model with/without feed down from unstable nuclei.

Figure 5. Energy dependence of $\langle p_T \rangle$ for ${}_{\Lambda}^3$ H, t, Λ , and *p* in 0-10% most central collisions. In addition, the calculations by fitting the experimental spectra of π , K , p with a blast-wave model are shown as the dashed/solid lines corresponding to the marker color.

⁷⁰ Figure [4](#page-2-2) presents the energy dependence of the strangeness population factor *S* ³ from ⁷¹ experimental data and compares them with predictions from coalescence and thermal model approaches. The measured S_3 shows a mild increasing trend from $\sqrt{s_{NN}} = 3$ GeV to 2.76² τ_3 TeV. If feed down from unstable nuclei to stable protons and 3 He is included in the thermal 74 model, the S_3 is reduced and provides a better description of the experimental measurements. 75 In the UrQMD+coalescence results, the energy dependence of S_3 exhibits sensitivity to the ∞ coalescence parameter source radius (Δr), possibly due to the difficulty in forming ${}_{\Lambda}^{3}$ H with a 77 large radius in smaller systems [\[6\]](#page-3-5). $T₇₈$ Figure [5](#page-2-3) shows the energy dependence of $\langle p_T \rangle$ of hypertritons, tritons, Λ, and protons in ⁷⁸ Tigure 5 shows the energy dependence of *VPT* of hypertritons, trions, *A*, and protons in 0-10% central Au+Au collisions from $\sqrt{s_{NN}}$ = 3 to 27 GeV. The $\langle p_T \rangle$ of 3_A H and *t* shows

⁸⁰ a similar energy-dependence trend. The blast-wave fit using measured kinetic freeze-out ⁸¹ parameters from light hadrons (π, K, p) slightly overestimates the $\langle p_T \rangle$ for both ${}_{0}^3$ H and *t*. It suggests that 3 H and *t* do not follow same collective expansion as light hadrons, indicating $\frac{1}{2}$ suggests that ${}^{3}_{\Lambda}$ H and *t* do not follow same collective expansion as light hadrons, indicating \int_{a}^{∞} that ${}_{\Lambda}^{3}$ H and *t* decouples at different times compared to light hadrons.

⁸⁴ **4 Summary and outlook**

⁸⁵ In summary, we carry out the energy dependence study of hypertriton yields in Au+Au collisions from $\sqrt{s_{NN}}$ = 3 to 27 GeV in the high-baryon-density region. The 87 UrQMD+Coalescence calculations are consistent with data, but the thermal model with the ⁸⁸ freeze-out parameters determined by the light hadron yields over-predicts hypertriton yields. The over-predictions of the ${}_{\Lambda}^{3}H/\Lambda$ yield ratio by the thermal model, and the $\langle p_T \rangle$ of ${}_{\Lambda}^{3}H$ by
a helixt-wave model parametrized from light hadron data, suggest that the ³H is likely formed ⁹⁰ blast-wave model parametrized from light hadron data, suggest that the ${}^{3}_{\Lambda}H$ is likely formed ⁹¹ at or decouples from the system at a different temperature compared to the light hadrons.

⁹² The results in these proceedings utilize only a subset of the BES II datasets. STAR collected 2 billion Au+Au events at $\sqrt{s_{NN}}$ = 3 GeV in Run 21, and is projected to collect 18 ⁹⁴ billion Au+Au events at $\sqrt{s_{NN}}$ = 200 GeV in Run 23-25, much larger than the datasets ⁹⁵ presente in these proceedings. The huge datasets would enable precise light hypernuclei ⁹⁶ measurements and offer great opportunity to the measurements of heavier hypernuclei with $97 \quad A > 3.$

⁹⁸ **References**

- 99 [1] D. Chatterjee, I. Vidana, Eur. Phys. J. A 52, 1 (2016)
- ¹⁰⁰ [2] J. Chen, X. Dong, Y.G. Ma, Z. Xu, Sci. Bull. 68, 3252 (2023)
- ¹⁰¹ [3] S. Zhang et al., Phys. Lett. B 684, 224 (2010)
- ¹⁰² [4] A. Andronic et al., Phys. Lett. B 697, 203 (2011)
- ¹⁰³ [5] X.Y. Ju et al., Nucl. Sci. Tech. 34, 158 (2023)
- ¹⁰⁴ [6] T. Reichert et al., Phys. Rev. C 107, 014912 (2023)
- ¹⁰⁵ [7] M.S. Abdallah et al. (STAR Collaboration), Phys. Rev. Lett. 128, 202301 (2022)
- ¹⁰⁶ [8] J. Adam et al. (ALICE Collaboration), Phys. Lett. B 754, 360 (2016)
- ¹⁰⁷ [9] M.I. Abdulhamid et al. (STAR Collaboration), Phys. Rev. Lett. 130, 202301 (2023)
- ¹⁰⁸ [10] M.I. Abdulhamid et al. (STAR Collaboration) (2023), arXiv:2311.11020
- ¹⁰⁹ [11] T.A. Armstrong et al. (E864 Collaboration), Phys. Rev. C 70, 024902 (2004)
- ¹¹⁰ [12] B. Abelev et al. (STAR Collaboration), Science 328, 58 (2010)
- ¹¹¹ [13] M.I. Abdulhamid et al. (STAR), Nature 632, 1026 (2024)