Baryon-antibaryon Production in Au+Au Ultra-Peripheral Collisions at RHIC

Xin Wu

(for the STAR Collaboration)
University of Science and Technology of China

Motivation

The vacuum is not empty!
\rightarrow Zero point energy

Indirect
observables:

Lamb shift Casimir effect

The Schwinger mechanism

J. Schwinger, PR 82 (1951) 664

Extreme external field to spark the vacuum!

Motivation

The vacuum is not empty!
\rightarrow Zero point energy

Indirect
observables:

Lamb shift Casimir effect

The Schwinger mechanism

J. Schwinger, PR 82 (1951) 664

Extreme external field to spark the vacuum!

Can we directly "see" the vacuum quantum fluctuation?

Motivation

The vacuum is not empty!
\rightarrow Zero point energy

Indirect observables:

Lamb shift Casimir effect

The Schwinger mechanism

J. Schwinger, PR 82 (1951) 664

Extreme external field to spark the vacuum!

Can we directly "see" the vacuum quantum fluctuation?

Motivation

The vacuum is not empty!
\rightarrow Zero point energy

Indirect observables:

Lamb shift Casimir effect

The Schwinger mechanism

J. Schwinger, PR 82 (1951) 664

Extreme external field to spark the vacuum!

How about higher-order QED vacuum excitaion?

M. Kłusek-Gawenda et al., PRD107 (2023) 036020

Baryon/Antibaryon: more complex system

Measurement of Proton-anti-proton at STAR

- Dataset: 200 GeV Au+Au taken in 2010, 2011 and 2014
- Ultra-peripheral collisions with Coulomb excitation

$$
\begin{aligned}
& n \sigma_{x}=\frac{1}{\sigma} \log \frac{\langle\mathrm{dE} / \mathrm{dx}\rangle^{\text {Measured }}}{\langle\mathrm{dE} / \mathrm{dx}\rangle_{x}^{\text {Theory }}} \\
& \chi_{p_{1} p_{2}}^{2}=n \sigma_{p_{1}}{ }^{2}+n \sigma_{p_{2}}{ }^{2}<4
\end{aligned}
$$

- Event with only two charged tracks
- Proton identified by Time Projection Chamber

Measurement of Proton-anti-proton at STAR

- The $p \bar{p}$ pairs produced at very low p_{T}

- Decreasing trend from 2 to $2.4 \mathrm{GeV} / \mathrm{c}^{2}$

First measurement of baryon-antibaryon production in ultra-peripheral collisions!

Low- $p_{\mathrm{T}} \mathrm{p} \overline{\mathrm{p}}$ Production Mechanism

- Vacuum Excitation

- Background: γ A interaction

S. Klein,

ARNPS55 (2005) 271

Vector mesons: J/Ч...

Comparison with Model Calculation

D. Shao, PRD107 (2023) 036020 and private communication W. Zha, PRC97 (2018) 044910 and private communication

- Drell-Soding process significantly lower than the measurement
- $\gamma \gamma \rightarrow p \bar{p}$ process is consistent to this data

Comparison with Model Calculation

- Drell-Soding process significantly lower than the measurement
- $\gamma \gamma \rightarrow p \bar{p}$ process is consistent to this data

Comparison with Model Calculation

- Drell-Soding process significantly lower than the measurement
- $\gamma \gamma \rightarrow \mathrm{p} \overline{\mathrm{p}}$ process is consistent to this data

Comparison with Model Calculation

- Drell-Soding process significantly lower than the measurement
- $\gamma \gamma \rightarrow \mathrm{p} \overline{\mathrm{p}}$ process is consistent to this data

First observation of the $\gamma \gamma$ to $\mathrm{B} \overline{\mathrm{B}}$ process in heavy ion UPC collisions!

Thank you for your attention!

