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Calculation of Drift Distortion Due to Imperfections in a 
TPC Cylindrical Field Cage

H. Wieman
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Abstract

We derive a formula for the radial drift distortion using a solution to Laplace’s equation for the 
standard solenoidal TPC (Time Projection Chamber) field cage design with two concentric cylinders 
with closed ends.   The calculation method is applied to the STAR TPC to study  a variety of 
possible defects.  One real defect caused by reduced insulator resistance is also examined.  The 
distortion induced by measured errors in this case is shown to be within the allowed distortion 
tolerance.  We also study the effects of finite stripe width, random resistor chain error, shorted 
equipotential rings and potential mismatch at the end cap surface.  The calculation method that we 
have developed works for rotationally symmetric errors in the potential along either the inner or outer 
filed cage cylindrical walls.  This document is written in Mathcad+6.0 and is available as a program 
for calculating other drift distortion problems.

1. Introduction

In a TPC the momentum resolution depends on the spacial resolution which in turn depends directly 
on the precision with which electrons drift through the gas in the electric field generated by the field 
cage.  The errors in the electron drift path must be well under a mm for drift lengths on the order of 2 
m.  This imposes stringent limits on the field cage design and construction and requires calculations 
relating errors in the potential on the field cage surface to distortions in the electron drift path.  The 
standard cylindrical TPC field cage, shown in Figure 1, is composed of two concentric cylinders 
closed at both ends with planes at right angles to the axis.  A uniform field in the z direction is 
generated by linearly grading the potential from one end to the other with equipotential rings spaced 
uniformly along the inner and outer cylinder.   Errors in the grading of the potential or in matching the 
potential on the cylinder with the end caps generate a radial component in the E field which causes 
a radial distortion in the electron drift path. More importantly, the radial E field causes a distortion in 
the azimuthal direction through the  EXB term in the electron drift velocity.  This azimuthal distortion 
to the drift path affects the sagitta measurement, thus limiting the momentum resolution.  The types 
of errors of concern are those in the resistor chain coupling the grading rings or in reduced 
resistance in the field cage insulator, which has the same effect.  The particular example calculated 
in this document addresses a measured reduced resistance in one of the insulating structures in the 
STAR TPC field cage.

The calculation and program presented here provide a quick and convenient method for determining 
the radial distortion from errors in the potential of the type just described.  The examples that appear 
in this document required only a few seconds to calculate on a 90 MHz Pentium processor.

Our general approach, which works with an arbitrary rotationally symmetric error potential, expands 
on the method used by Blum and Rolandi 1 for calculating distortions that occur with a single cylinder 
geometry. 

1



fldnote3.MCD STAR note253
8/5/96

Figure 1. Diagram of the field cage geometry.  The electrons drift parallel to the z axis and arrive at 
the read out plane on the end at z = 0.  The electrons drift varying distances depending on their point 
of origin and have a maximum possible drift length of L.  The potential is 0 at the z = 0 end and the 
end plate at z = L has a potential of V.  The potential is graded along the inner cylinder at ρ = ρir 
and the outer cylinder at ρ = ρor.  In this note we calculate the effects of deviation from a perfect 
linear boundary condition along the cylinder walls. 

2. Method for Determining Drift Distortion

In calculating the drift distortion we assume that the distortion is relatively small so that we can 
integrate along a straight path and also ignore errors in E z, the field component in the normal drift 
direction.  With this caveat the deviation in the electron path in both the ρ and the azimuthal  
direction is proportional to the following integral 2 (Radial Distortion Integral, RDI):

∆ρ( ),ρ z d

z

0

z
E ρ( ),ρ z

E z
(1)
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where the integration starts at z, the point of electron creation, and stops at the end of the cylinder, 
z =0.  In the absence of a magnetic field the deviation from a straight path parallel to the z axis is 
equal to ∆ρ of Eq. 1.  and is directed radially in the ρ direction.  For the normal case with a 
magnetic field parallel to the z axis the drift distortion has a component in the ρ direction which is 

δρ .1

1 ( ).ω τ 2
∆ρ

(2)

and a component in the azimuthal direction

δρφ .
.ω τ

1 ( ).ω τ 2
∆ρ (3)

that comes from the EXB term in the drift velocity expression.  In the STAR experiment with a drift 
gas mixture of 10% CH4 + 90% Ar and a magnetic field of 0.5 Tesla ωτ = 3.  

To evaluate the line integral we can solve Laplace’s equation using just the error potential on the 
boundary conditions.  The full drift field potential does not have to be included since potentials and 
fields are additive.  The Bessel-Fourier expansion solution (see Appendix 1 for the derivation) is

∆ρ( ),ρ z .L

= 1

∞

n
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n
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..n π ρ

L
.b

n
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..n π ρ
L

cos
..n π z

L
1 (4)

where the terms 

I1
..n π ρ

L
and K1

..n π ρ
L

are modified Bessel functions of the first and second kind.

The coefficients an and bn are obtained from the error potential boundary conditions as shown in the 
following expressions. 
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Where sirn and sorn are the following integrals along the inner and outer boundary cylinders 
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with normalized error potentials

φ( ),ρir z
Φ( ),ρir z

V
and φ( ),ρor z

Φ( ),ρor z

V

V is the drift voltage on the z = L end plate of the field cage.

The error potential solution in the volume which was used to get the distortion integral is 
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The number of terms required in the sum, Eq. 4, to accurately calculate the distortion integral 
depends on the spacial frequency of the error potential on the boundary.  We use the potential 
expression , Eq. 9, to check the number of terms required to give a reasonable approximation of the 
input error potential boundary conditions. 
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3. Drift Distortion in the STAR Field Cage from Reduced Insulator Resistance 

During construction of the STAR TPC field cage we have found a region of reduced resistance 
caused by a particular application of epoxy on the outer field cage structure. The method developed 
above is used to evaluate the distortion that will result.  The resistance has been measured between 
the equipotential stripes by biasing adjacent stripes with 500 volts and measuring the current.  The 
measured resistance in parallel with the planed resistor chain value of 2 M Ω per stripe is used to 
calculate the error potential.  Figure 2 shows the resulting parallel resistance which at the low z end 
of the cylinder is below the optimum value of 2 M Ω 

kk ..0 Nk 1
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1.985

1.99

1.995

2

Rkk 1

MΩ

kk 1

Figure 2.  Resistance between stripes with the 2 MΩ resistors of the resistor chain plus the 
parallel resistance through the epoxy. 

Field cage dimensions to be used in the calculation

L .210 cm length of the field cage cylinder

ρor .200 cm outer cylinder radius

ρir .50 cm inner cylinder radius

Using the stripe to stripe resistance find the error potential

RT

k

R
k

Total field cage resistance
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running sum of resistance is proportional to potential at each 
equipotential ring (stripe)
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normalized true potential on each ring of the outer field cage
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normalized ideal potential

Scf 104 scaling factor to improve accuracy of numerical calculations
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integration
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using Eq. 5 and Eq. 6 
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using Eq. 9 to check the coefficients to see that the boundary conditions are reproduced
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Figure 3.  The red diamonds show the input error potential boundary conditions on the outer field 
cage along the full length of the field cage.  The blue line shows the reconstructed error potential 
on the outer field cage using the solution to Laplace’s equation.  The green line shows the 
reconstructed boundary condition on the inner field cage cylinder which is 0.
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As shown in Figure 3 the solution gives a reasonably good reproduction of the starting boundary 
conditions with 20 terms in the summation.  Having verified the solution we calculate the distortion 
integral using Eq. 4 and plot the distortion integral for the full drift length as a function of radius.
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Figure 4. The radial distortion integral is shown for the full drift length as a function of radius.  Note 
that the error is not a minimum at the inner field cage even though the potential error in this 
example is only on the outer field cage.  The maximum  allowed value, 0.7 mm, for the distortion 
integral is shown on the plot for comparison.

The curve in Figure 4  will generate a false sagitta when it is coupled into the azimuthal direction.  
Using Eq. 2 and ωτ = 3 we get a false sagitta value of 60 µm.
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The following prepares a plot of the distortion integral as a function of z for 4 values of ρ
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Figure 5.  The distortion integral is plotted as a function of z, the electron starting point, at four 
different radius values.  The largest distortion shown is for a radius that is 5 cm from the outer field 
cage cylinder.
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Preparation for a similar plot for radii closer to the inner field cage cylinder
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Figure 6.  The distortion integral is plotted as a function of z, the electron starting point, at 
four different radius values closer to the inner field cage radius.  Again the largest distortion 
occurs for the radii close to the field cage boundary.

It has been shown that the reduced resistance in a section of the field cage with some 
parallel resistances as low as 100 times the nominal resistor chain value causes some error, 
but the error is well within the design tolerance of 0.7 mm for the radial distortion integral.
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4. Radial Distortion from Finite Width Equipotential Stripes

The field cage cylinder is constructed with uniform width (1 cm wide) copper stripes that are 
separated with as small a gap as can be safely used to hold off the potential difference between the 
stripes.  This step-wise grading of the potential deviates from the ideal case with a uniform 
continuous grading.  It is well known that the error caused by this construction is extremely small at 
distances from the field cage wall that are a few times the band width, but we can in principle apply 
our method to get a good quantitative value for the distortion.  The results show that we can safely 
join stripes, effectively increasing the stripe width as long as the center potentials of all the stripes 
are correctly maintained.  This is useful knowledge since it simplifies the construction of the support 
for the central membrane.

To define the boundary conditions for this problem we assume that the uniform stripes are touching 
and the ends of the cylinder intersect the centers of the end stripes.  The center of the stripes are at 
the correct potential and the error potential increases linearly with the z distance from the stripe 
center.  The solution is as follows.  

L .200 cm cylinder length in round numbers for convenience

Ns 20 number of uniform bands or stripes that the cylinder is divided into

ns 5

w
L

Ns
=w 10 cm width of a stripe

Nn ..ns 2 Ns selected number of terms in the Fourier expansion

The integrals (Eqs. 7 and 8, the same in this case) can be evaluated analytically and are 0 for many 
values of n. The result is: 
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and, by Eq. 10, the normalized error potential is
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We plot the resulting potential solution above on the boundaries to compare with the specified 
boundary conditions.  
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Figure 7.  The generated potential solution is shown on the inner and outer cylinder boundaries.  
The solution for the outer cylinder (in red) has been displaced slightly since it would otherwise 
overlap completely with the solution at the inner cylinder.  The specified error potential for finite 
width stripes used to generate the solution is shown in black. The reconstructed potential is 
close, but not perfect due to the limited number of terms in the expansion.  In the interest of 
clarity only 1/5 of the 200 cm cylinder is shown here.
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Again using Eq. 4 the distortion integral is:
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1

which is shown in Figure 8 plotted as a function of z for paths 5 cm from the inner and outer field 
cage cylinders. 
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Figure 8. The radial distortion integral is shown along part of the field cage wall.  The red curve is 
the distortion 5 cm from the outer field cage boundary and the blue curve in the distortion 5 cm 
from the inner field cage boundary.  Electron paths that originate with z values centered on the 
stripes would end up with zero distortion and paths starting at the junction between stripes get 
the maximum distortion.  The sign of the distortion is always such that the point of origin will 
appear to be closer to the near cylinder wall.

Ni 80
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The radial dependence of the distortion is shown in the next plot (Figure 9).  For this plot a z value is 
chosen to maximize the distortion. 
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Figure 9.  The magnitude of the radial distortion integral divided by the stripe width is shown as 
a function of radius.  As expected the distortion heals rapidly as one moves away from the field 
cage walls.  

The example shown in Figs. 8 and 9 is for 10 cm wide stripes, a value that is roughly 10 times the 
width of the stripes in the STAR field cage.  In principle this approach could be applied to smaller 
stripes, but in practice we are limited by the size of the Bessel function arguments.  For large 
arguments the Bessel functions go as exponentials of the arguments and overflow results.  By 
choosing different sized stripes we have found that the amplitude scales approximately as shown in 
Eq. 11 below.   

∆ρ( ),x w .w exp .x

w
ln( )1000 (11)

where

w is the stripe width and

x is the distance from the field cage wall

For the STAR TPC w is 1.1 cm and the field cage wall is more than 5 cm from the useful tracking 
region so the distortion from this effect is less than

=∆ρ( ),.5 cm .1.1 cm 2.5 10 10 µm
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This result shows that we can safely join stripes if necessary to facilitate construction of the central 
membrane support.  Joining 2 stripes on either side of the center stripe is equivalent to increasing 
the stripe width by 5.  In this case the distortion amplitude is

=∆ρ( ),.5 cm .5.5 cm 103 µm which is well below our 700 µm limit.

5. Distortions from Random Resistor Errors in the Resistor Chain

In order to determine the precision required for the resistors in the field cage resistor chain we have 
calculated the radial distortion integral for a field cage where the resistors have been assigned 
random values within specified limits.  The calculation of the radial distortion integral has been 
performed in the same manner as was done in section 3.  In this Monte Carlo exercise the resistor 
values have been given a uniform random value between +- 0.2 %.  This is equivalent to an rms 
resistor error of 0.12 %.  A typical error potential for the inner and outer cylinder boundary condition 
is shown in Figure 10 along with Fourier expansion of the boundary potential used to find the radial 
distortion integral.  The number of  a and b coefficients in the expansion is

=Nn 40
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Figure 10.  The points show a typical normalized error potential for each equipotential stripe of 
the field cage where the resistors in the resistor chain have been assigned a random value 
between +- 0.2 % of the nominal value.  The blue circles show the error potential on the inner 
cylinder and the red diamonds show the error potential on the outer cylinder.  The smooth curves 
show the expansion representation of the error potential.    
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The radial distortion integrals 5 cm from the inner and outer field cage cylinder are shown below in 
Figure 11 for two example cases. 

0 50 100 150 200
0.8

0.4

0

0.4

0.8

.7

.7

< >
rdo

jp
kr

mm

< >
rdi

jp
kr

mm

< >
rdo

0
kr

mm

< >
rdi

0
kr

mm

zskr

cm

Figure 11.  Two example cases of the radial distortion integrals are shown as a function of drift 
distance along z.  The red and magenta curves are for the path 5 cm from the outer field cage 
cylinder and the blue and green curves are for the path 5 cm from the inner field cage cylinder.  
The red and blue curves are for the same case with error potentials given in Figure 10.  In both 
cases the resistors in the resistor chain vary randomly between +- 0.2 %.  The limits on 
acceptable distortion are show at + an - 0.7 mm.

Just two examples are shown in Figure 11.  We have run 60 cases and histogramed the maximum 
amplitudes of the radial distortion integral in Figure 12.
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Figure 12.  Histogram of the maxima in the radial distortion integral for different resistor runs.  As 
before the resistors vary randomly between +- 0.2% of nominal.  The red curve is for the path 5 
cm from the inner cylinder and the blue curve is for the path 5 cm from the outer cylinder.
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As shown in Figure 12 there is considerable variation in the distortion for a given selection of resistor 
precision.  The magnitude of the distortion depends strongly on the ordering of the resistor selection.  
We show two different orderings of the same resistor set.  In one case the resistors are ordered in 
ascending order starting with the lower values at z = 0.  In the other case we pair-wise order the 
resistors with, the larger resistors placed next to the smallest resistors.  The error potentials for the 
two sorting conditions are shown in Figure 13 and the resulting radial distortion integrals are shown 
in Figure 14.
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Figure 13.  The error potential on the inner and outer cylinder boundaries for two different 
sortings of the resistors in the resistor chain.  The large error (red points outer cylinder and 
blue points inner cylinder) results from sorting the resistors in increasing resistance from z = 
0 to z = 210.  The magenta points (outer cylinder) and green points (inner cylinder) show the 
error potential for resistors sorted with the largest and smallest values paired starting from z 
= 0 and progressing with less divergent pairs to z = 210.

The distortion results in Figure 14 show that, even with resistors that have been limited to a 
reasonably tight tolerance ( +- 0.2 % ), the ordering of the resistor values can have a significant 
effect on the distortion.  When the resistors are sorted with values increasing with z the error is 2 to 
3 times the allowed value of 0.7 mm.  The error is much smaller when the largest resistors are 
paired adjacent to the resistors with the smallest values.  This shows that a potential error between 
two stripes can be compensated by correcting on the next stripe pair.  This pair-wise sorting, 
however, does not provide a significant improvement over the purely random distribution which is 
represented in Figure 12.
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Figure 14.  The radial distortion integral 5 cm from the inner and outer field cage cylinder plotted 
as a function of z for different sorting conditions on the resistors in the resistor chain.  The red 
and blue curves show the distortion integral for resistors that have been sorted in increasing 
value from z = 0 to z = 210 cm.  The red curve is the distortion next to the outer field cage 
cylinder and the blue curve is for the path next to the inner cylinder.  The magenta and green 
curves (outer and inner cylinder paths respectively) are for the same resistors sorted pair-wise 
with the largest value next to the smallest value. 

6. Distortion Caused by Shorted Stripes

The radial distortion integral is calculated for a condition where two stripes of the outer field cage 
cylinder are shorted together.  The potential along the cylinder, Vz, can be represented as a 
continuous function of z, ignoring the discrete stripe nature of the cage.

z<zsh
Vz( )z .R( )z I where

R( )z

.Rd

∆z
z

.Rd

∆z
z Rd z>zsh

and

∆z stripe period
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Nr 182 number of resistors in the chain

zsh .158 cm short location in z

Rd individual resistor value in the chain

I
V

.( )Nr 1 Rd current in the shorted resistor chain

V total voltage on the field cage

Subtracting the ideal potential and normalizing to the total field cage voltage gives the normalized 
error potential.
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Substituting this expression for the error potential into Eq. 8 and performing the integration gives
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The radial distortion integral, ∆ρ(ρ,z), resulting from a shorted stripe on the outside cylinder is 
displayed for the full drift volume in Figure 15.  The sign of the distortion is reversed in the figure for 
viewing.  The radial distortion integral is everywhere negative, i.e. the distortion is toward the inner 
radius.  Note that the distortion is a minimum around ρ = 95 cm and increases nearer the inner 
cylinder even though there is no potential error on the inner cylinder at ρ = 50 cm.  
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Figure 15.  Values of the radial distortion integral (sign reversed) in the full drift volume for a 
shorted stripe on the outer cylinder of the field cage 1/4 of the way from the central membrane. 
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The radial distortion integral is shown for specific selected radii in Figure 16.  The inner radius 
displayed ( 95 cm ) is near the minimum in the distortion and the outer radius shown ( 195 cm ) is 
near the limit of used volume in the field cage. 
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Figure 16.  A plot of the radial distortion integral as a function of z for selected radii.  The 
distortion is calculated for a pair of shorted stripes on the out field cage cylinder at z = 158 cm. 

The distortion is over 1 cm in some places, greatly exceeding the design requirement of 0.7 mm.

7. Distortion from Potential Mismatch with the Cylinder Endcap

Distortions can arise from incorrect matching of the end cap potential with the field cage cylinder.  
This is most likely to happen at the ground end where the pad plane multi-wire proportional 
chambers define the potential.  The effective position of the ground plane depends on the amount of 
field leakage from the anode wires and its compensation with the gating grid plane bias.  The 
ground end of the field cage cylinder can be biased to achieve the correct matching.  The following 
calculation shows the form of the distortion when this matching bias is incorrect. 
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We represent the mismatch with the endcap as the following error potential on the inner and outer 

cylinder boundaries4. 

φ( )z .δV
L z

L

where δV is the potential mismatch at the endcap expressed as a fraction of the total potential on 
the field cage. 

Using Eqs.  7 and 8 with the above error potential
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and again using Eqs. 5, 6 and 4 to get the coefficients and the radial distortion integral
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The radial distortion integral is shown as a function of z for paths at several different radii in Figure 17
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Figure 17.  The radial distortion integral is shown as a function of z for equally spaced radial 
paths starting at 55 cm (5 cm from the inner cylinder) and ending at 195 cm (5 cm from the other 
field cage cylinder.  This is the distortion resulting from a voltage mismatch at end ground plane 
electrode (pad plane) of 3 volts for a total 30 kV on the field cage.

The distortion shown in Figure 17 is for a 10-4 mismatch.  This corresponds to a mismatch in the 
potential at the ground plane of 3 volts out of 30 kV or a mechanical misplacement in z of 0.2 mm.  
The voltage trimming should be reasonably easy to  maintain, but this also implies a mechanical 
requirement of maintaining the pad plane parallel to the equipotential rings to within ~0.4 mm to 
maintain the 0.7 mm limit for the radial distortion integral.  This will be a challenging mechanical 
problem.     

8. Conclusion

We have developed a calculation for determining electron drift distortion for the standard concentric 
cylinder TPC field cage given the error potential on the cylinder walls.  This method has the 
advantage that it is easy to input the boundary conditions and it only takes a few seconds to run.  
This code has been checked against a Poisson calculation done by Russ Wells 5, and the results 
agree to better than 5 %.  The method has been used to check the effects of reduced resistance on 
one section of the STAR TPC field cage and shows that a distortion will exist, but it is within the 
design tolerance which requires that a false sagitta be less than 200 µm.  We have also done 
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calculations for distortions due to finite width of the equipotential rings, errors in resistor chain values, 
effects of ordering the resistors by value, shorted resistors and voltage mismatch of the cylinder with 
the end planes.  As expected, finite width of the equipotential rings is not a problem and if necessary 
we could join 5 rings together without affecting resolution as long as joined rings are maintained at 
the proper potential.  The tolerance on resistor precision is consistent with what has been done in 
the past as long as the resistors are not sorted by value along the z.  This ordering can increase the 
error over random placement or high-low pairing by a factor of 5 to 10.  A shorted stripe pair in the 
field cage has a characteristic large distortion that should be easy to recognize and if necessary a 
calculated correction could be applied.  However, a factor of 10 correction would be required to 
maintain the desired 0.7 mm radial distortion integral limit.  Doug Greiner has pointed out that a 
simple fix for shorted stripes could be accomplished by simply changing the divider resistors on 
either side of the shorted section6.  The final distortion studied in this note addresses proper 
matching of the field cage cylinder ground end voltage with the pad plane.  Proper matching will 
require trimming the voltage to within 6 volts of nominal when operating with a terminal voltage of 30 
kV.  This will not be as difficult as maintaining the mechanical matching of 0.4 mm. 
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Appendix 1 

Derivation of the Radial Distortion Formula

The derivation of the formula for the drift distortion integral:

A1(1)∆ρ( ),ρ z d

z

0

z
E ρ( ),ρ z

E z

is developed from section 3.6, "Laplace Equation in Cylindrical Coordinates, Bessel Functions" of 
Jackson3.  We calculate the case for a volume (see Figure 1) defined by two concentric cylinders 
closed at the ends with  planes perpendicular to the axis.  The potential on the ends is 0 and the 
potential on the two cylinders can be given any function of z that goes to 0 at the two ends and is 
rotationally invariant.

The first step is to write down the solution to Laplace’s equation for the error potential.  Laplace’s 
equation with the separation of variables (there is no φ dependence in this problem) 

Φ( ),ρ z .R( )ρ Z( )z A1(2)

is

d

d
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d
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R .k2 R 0 A1(3)
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Z .k2 Z 0 A1(4)

We have chosen the sign of the coupling constant, k 2, given at the end of Jackson’s2 section 3.6.  
This gives the Z equation, A1(4) which has a solution of 

sin( )kz or cos( )kz

This can be used in an expansion of the potential along the inner and outer cylinders.  Since the 
potential must go to 0 at the ends, z=0 and z=L, then the sine function is the appropriate solution 
and the coupling constant, k, must be limited to 

k
.n π
L

where n is an integer.
A1(5)
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The linearly independent solutions to the radial equation, A1(3), are the  zeroth order modified 
Bessel functions of the first and second kind, 
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and
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respectively, where the restricted value of k has been included.

The combined solution is:
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The coefficients An and Bn are evaluated using the potentials given on the inner and outer cylinders 
in the following manner:
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The equations A1(7) and A1(8) are a pair of linear equations which can be solved for A n and Bn

 giving
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A1(11)
Sir

n
.2

L
d

0

L

z.Φ( ),ρir z sin
..n π z

L

and

Sor
n

.2

L
d

0

L

z.Φ( ),ρor z sin
..n π z

L
A1(12)

Note that in the solution for a simple cylinder (no inner cylinder boundary) where the potential is 
finite at ρ = 0 there can be no K0 function so B n = 0 and An is given by equation A1(8).

Having an expression for the potential (Eq. A1(6)) and a way of determining the coefficients, we 
are ready to determine the radial distortion (Eq. A1(1)), but first it is slightly simpler to switch to 
a normalized error potential, i.e.:

φ( ),ρ z where Φ( ),ρ z .V φ( ),ρ z A1(13)

V is the full voltage on the field cage generating the drift field.  This voltage appears in the radial 
distortion expression in terms of the drift field Ez, namely:

27



fldnote3.MCD STAR note253
8/5/96

E z
V

L A1(14)

Changing to the normalized potential Eq. A1(6) and Eqs. A1(9) - A1(12) become:
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In the radial distortion expression, Eq. A1(1)
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28



fldnote3.MCD STAR note253
8/5/96

Using Eq. A1(15) for Φ and the derivative relations:
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where I1 and K1 are the first order modified Bessel functions of the first and second kind.

The derivatives, A1(21), can be obtained using expressions 3.87 and 3.88 of Jackson3.

To get the final result, substitute the expressions  A1(22) for Eρ and A1(14) for Ez into
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and perform the integration to get:
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Again the coefficients are given by equations, A1(16) - A1(19) 
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