
STAR Note SN0258, rev. 1

1

On-line State Manager State Transition Models and
Client API for STAR System Test

D. Olson
Submitted: 6-Sept-1996
Revised: 12-Sept-1996

This document describes the state transition models and the programming interface
used by client subsystems of the on-line state manager used for the STAR system test.
The prototype state manager described in this document exists in the onl/psm software
package in the STAR software library. Additional documentation is available at
http://www.rhic.bnl.gov/star/starlib/doc/www/html/ssd_l/psm_l/psm.html.

State Transition Models
There are three state transition models used by the prototype state manager, a
sequencing state model, a command state model and an alarm state model. The
sequencing state model consists of the states and transitions (events) which comprise
the major control sequencing necessary for each subsystem (trigger, daq, hardware
control components, monitoring components, etc). The command state model provides
for an asynchronous command interface between a subsystem and the operator,
independent of the sequencing state model. The alarm state model provides a
synchronous messaging interface between the operator and the subsystem which is
intended to be used for abnormal or error conditions.

Sequencing State Model
The state transition diagram for the sequencing state model is shown in figure 1. States
are boxes, events are arrows which show transitions from one state to another, labels
on arrows are the names of events, unlabelled arrows indicate automatic transitions
that occur when the activity of one state has concluded successfully. The initial state is
"Connected" and the final state is "Disconnected".

STAR Note SN0258, rev. 1

2

subsystem

Connected

Initializing

Initialized

Configuring

Idle

Preparing

Poised

Resuming

Run

Pausing

Terminating

Any Stationary State

Aborting

Aborted

Disconnected

OMT Project: SST
Diagram: Sequence.sta

Sequencing State Model
for Subsystems

ConfigErrHandling

ConfigErr

PrepErrHandling

PrepErr

UnConfiguring

Any Doing State

The name of a "Doing"
state ends in "ing" and
has an automatic
(unlabelled) transition
to the next state.

A "Stationary" state is
not a "Doing" state and
has no unlabelled
transitions to other
states.

Any State

Init

Configure

GetSet

Go (new or resume)

Pause

End

End

Abort

Init

ConfigFail

PrepFail

ConfigRecover

PrepRecover

UnConfigure

Abort

Disconnect

Figure 1. Sequencing state transition diagram.

Description of sequencing model states.
Aborted

The stationary state following an abort. The operator should be able to
investigate conditions in the sub-system and try to diagnose the failure.

Aborting
A transitional state following an abort. The sub-system should preserve, as
much as possible, the environment which caused the abort so that it may be
investigated by the operator while in the Aborted state.

Connected
Initial stationary state.

ConfigErr
The stationary state entered following a configuring failure.

ConfigErrHandling
The transitional state in which the subsystem attempts to recover from the
configuring error. If successful the subsystem will go to the Initialized state. If
unsuccessful the subsystem should abort.

STAR Note SN0258, rev. 1

3

Configuring
The transitional state in which a subsystem loads all of its external configuration
data.

Disconnected
The final sequencing state. In this state the subsystem no longer exists from
the point of view of the state manager.

Idle
The stationary state following configuring in which the subsystem has
successfully loaded all of its configuration data.

Initialized
The stationary state following initializing.

Initializing
The transitional state in which the subsystem initializes its internal conditions.

Pausing
The transitional state in which the subsystem attempts to suspend its “run”
activity.

Poised
The stationary state in which a subsystem is fully configured and any inter-
subsystem interfaces used in the run state are ready.

Preparing
The transitional state in which a subsystem gets ready to run. Inter-subsystem
interfaces should be available for testing or communications during this state.

PrepErr
The stationary state entered by a subsystem after it detects an error during the
preparing state.

PrepErrHandling
The transitional state during which the subsystem attempts to recover from the
preparing error and return to idle.

Resuming
The transitional state in which the subsystem is attempting to run.

Run
The stationary state in which the subsystem is fully performing its primary
function for operating the detector and taking data.

Terminating
The transitional state in which the subsystem attempts to end its run activity.

UnConfiguring
The transitional state in which the subsystem does an necessary activity so that
it can return to the Initialized state. This will likely be followed by configuring
with a new set of configuration data.

Command State Model
The command state model is shown in figure 2. States are shown as boxes. The initial
state is “Ready” and the final state is “Disconnected.” The events, shown as arrows,
cause transitions between states. The content of the command sent from the operator
to the subsystem is the argument of the Go event.

STAR Note SN0258, rev. 1

4

Command Object

Ready Running

Finished

Failed

AbortingAborted

Any State
Disconnected

Go

Ack

FailAck

Abort
Ack

Disconnect

Figure 2. Command state transition diagram.

Command model states
Aborted

The stationary state following an abort. The operator should be able to
investigate conditions in the sub-system command handler and try to diagnose
the failure.

Aborting
A transitional state following an abort. The sub-system command handler
should preserve, as much as possible, the environment which caused the abort
so that it may be investigated by the operator while in the Aborted state.

Disconnected
The final state following a disconnect event. In this state the command handler
no longer exists to the state manager.

Failed
The stationary state following a failure of the command to complete
successfully.

Finished
The stationary state following successful completion of the command.

STAR Note SN0258, rev. 1

5

Ready
The initial state and the stationary state in which the subsystem command
handler is waiting for a command.

Running
The transitional state in which the command is executing.

Alarm State Model

The alarm state transition diagram is shown in figure 3. States are shown as boxes.
The initial state is “Posted” and the final state is “Disconnected.” The events, shown as
arrows, cause transitions between states. The content of the alarm message sent to
the operator is the logmsg argument of smNewObject. The reply from the operator is
the argument of the Ack event.

Alarm

Posted

Acknowledged

Disconnected

Ack

Figure 3. Alarm model state transition diagram.

Alarm model states
Acknowledged

The transitional state in which the subsystem deals with the operator’s response
to the alarm. The operator’s response is received as the argument to the Ack
event.

Disconnected
The final state. In this state the command handler no longer exists to the state
manager.

STAR Note SN0258, rev. 1

6

Posted
The initial stationary state in which the subsystem alarm object waits for an
operator response.

State Manager Client API
This section documents the programming interface for clients of the prototype state
manager in the onl/psm package in the STAR software library.

psmConnect
int psmConnect(char *host, int port)

Connect to state manager server.

Parameters:
host - the name of the state manager server host.
port - TCP port for the state manager server. Zero to use default port.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmDestroyObject
int psmDestroyObject(char *object)

Destroy an object that was created by psmNewObject.

Parameters:
object - the name of the object to be destroyed.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmDisconnect
int psmDisconnect(void)

Disconnect from the state manager server.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmEndActivity
int psmEndActivity(char *object, char *state, char *event, char * logmsg)

End activity for an object and cause a state transition.

Parameters:
object - the name object that is ending an activity.
state - current state of the object before the transition.
event - event that ends the activity.
logmsg - message to enter in message log describing end of activity.

STAR Note SN0258, rev. 1

7

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmErrorCode
int psmErrorCode()

Get the error code for the last error detected during a state manager API call.

Returns:
Error code (see psmcodes.h).

psmGetModel
int psmGetModel(char *object, char *model)

Get the name of the state model for an object.

Parameters:
object - name of object for request.
model - returned model for object.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmGetSocket
int psmGetSocket(SM_SOCKET *pSocket)

Get the socket that is connected to the state manager.

Parameters:
pSocket - pointer to return location for socket.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmGetState
int psmGetState(char *object, char *state)

Get the current state of an object.

Parameters:
object - name of the object for request.
state - returned state for object.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmNewObject
int psmNewObject(char *object, char *model, char * logmsg)

Create a new object with a specified state model.

Parameters:
object - the name object to be created.

STAR Note SN0258, rev. 1

8

model - state model for the object.
logmsg - message to enter in message log.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmPerror
void psmPerror(char *msg)

Print an error message for the last error detected during an API call.

Parameters:
msg - text to be printed before the error message.

psmRecvEvent
int psmRecvEvent(char *object, char *event, char * arg, int *pTimedOut, int
waitTimeMsec)

Receive an event for an object and do a state transition.

Parameters:
object - returned object name.
event - returned event for the object.
arg - returned event argument.
pTimedOut - location to return timed out flag (TRUE if timed out else FALSE).
waitTimeMsec - time to wait in msec before timeout.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

psmStrToCode
int psmStrToCode(SM_STR_CODE_T *pCode, char *str)

Convert a string for an event or state to a enum code. See psmcodes.h.

Parameters:
pCode - location to return value for code.
str - string to be converted to code.

Returns:
TRUE for success or FALSE for failure. See psmErrorCode() and psmPerror().

