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Kaons from Kinks in STAR

1 Introduction

The determination of the proper mean lifetime for charged Kaons in STAR is compli-
cated by both limited lifetime acceptance and momentum-dependent cuts. A number
of more elegant mathematical approaches were investigated to compensate for these
effects, but in the end it was seen that the simplest and most reliable approach is
a thorough analysis of simulated tracks embedded in a real event. This approach
should be effective in any collider experiment.

2 Lifetime Acceptance in STAR

The proper lifetime of a particle is simply related to its lifetime, tL, and velocity, v,
in the laboratory by

t0 =
tL
γ

, (γ ≡ 1√
1 − β2

, β ≡ v

c
). (1)

The time in the laboratory is related to the distance traversed by the particle by
tL = s/v = s/(βc), so the proper lifetime can be expressed in terms of the distance
traversed in the laboratory and the particle’s mass, m, and momentum, p = mvγ, as:

ct0 =
s

βγ
= s

mc2

pc
. (2)

The mean proper lifetime of the charged Kaon is cτ = 371.3 cm. The fiducial
volume in STAR that is searched for kink decays is 133 cm < r < 179 cm. Given
these radial limits, it is useful to find a simple expression for the path length traversed
between two points by a helix representing a particle with charge q, total momentum
p, and transverse momentum pT ≡ |−→p × ẑ| given a magnetic field

−→
B = Bẑ. The dip

angle of the helix is λ = cos−1(pT

p
).

As a practical matter, STAR tracking does not find tracks which cover more than
half the period of the helix. This is because track finding is done from the outside
of the TPC in, and so all tracks are monotonically increasing in the radial direction.
This greatly simplifies the task of finding path length along a track; we need only
know their separation in the transverse plane (2A in Figure 1). It is easy to see that
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Figure 1: Transverse projection of helix

the azimuthal angle between the points (x1, y1) and (x2, y2) relative to the helix axis
is a = sin−1(A

R
) and so the path length in the transverse plane is st = 2Rsin−1(A

R
).

R = pT /qB here is the radius of curvature of the helix. The full path length then is
just

s =
st

cos(λ)
= 2

pT

qB
sin−1(A

qB

pT
)

p

pT
=

2p

qB
sin−1(A

qB

pT
) (3)

This translates readily into lifetime:

ct =
mc2

pc

2p

qB
sin−1(A

qB

pT
) =

2mc

qB
sin−1(A

qB

pT
) (4)

Note: This formula assumes nonzero pT . The TPC doesn’t see tracks with pT = 0,
so this is fine.

Full magnetic field strength in STAR is B = 0.5 T = 5 kG = 5x10−14 GeV s
cm2 =

0.0015 GeV/c
cm

. Thus a mid-rapidity charged Kaon in STAR that originates at the beam
line and has mean pT (< pT >≈ 600MeV) will enter and leave the fiducial volume
after traveling 133.6 cm and 180.5 cm, respectively.

Since the charged Kaon mass is m = 493.7 MeV/c2, these correspond to proper
lifetimes, ct0, of 109.9 cm and 148.5 cm, or 0.3 and 0.4 of the mean proper cτ for
charged Kaons. One can see in Figure 2 how limited this range of 0.1 cτ is. We shall
see later on how this renders ineffective some techniques for finding the lifetime.

3 Fitting with Maximum Likelihood

This is a summary and application of the Maximum Likelihood fitting method de-
scribed in Reference [1]. Note that the example in the book deals with V0 particles
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Figure 2: STAR lifetime acceptance for < pT > charged Kaons

in a fixed target experiment, where one typically has shorter lifetimes and larger ac-
ceptances. First we look at the probability of one event , an observed particle in the
detector, has a lifetime ti. (Proper lifetime will be implied for the rest of the dis-
cussion.) We factor the probability in terms of observation probability and lifetime
probability. The probability of observing a particle with mean lifetime τ , momen-
tum −→pi , and position −→ri multiplied by the conditional probability that the observed
particle has a given lifetime is equal to the probability that the particle has a given
lifetime (whether observed or not):

P (observation)P (observation | lifetime ti) = P (lifetime ti) (5)

⇒ P (observation | lifetime ti) =
1

P (observation)
P (lifetime ti) (6)

⇒ Pi = Ai
e−

ti

τ

τ
, (7)

where Ai is a factor representing the detector efficiency. In this case A−1
i is the

probability that a particle having mean lifetime τ , momentum −→pi , and position −→ri

will be observed to decay in the detector. e−
ti

τ /τ is the probability that a particle
having mean lifetime τ will live time ti.

Since an event did occur (we observed a particle with properties τ , −→pi , −→ri ), we
can say that the integral of Pi over all observable lifetimes for a given τ , −→pi , and −→ri

must be unity. This allows us to determine Ai:

1 =
∫ tmax

i

tmin

i

Pidt (8)
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⇒ A−1
i = (e−

t
min

i

τ − e−
t
max

i

τ ). (9)

The upper and lower limits on the integral are functions of −→pi , −→ri , and the detector
fiducial volume , the region where particles may be detected. Let us examine the
specific example of charged Kaon decays in STAR. Here, the fiducial volume, as
mentioned above, is 133 cm < r < 179 cm. That means that we can express the
integral limits using Equation 4 as

ctmin
i =

2mc

qB
sin−1(

rmin

2

qB

pi
T

) (10)

ctmax
i =

2mc

qB
sin−1(

rmax

2

qB

pi
T

) (11)

Now that the individual decay probabilities have been determined, we can look at
the joint probability associated with a set of events. This is just the probability of N
events occurring concurrently and is called the the likelihood function:

L ≡
N∏

i=1

Pi = τ−Ne
−1
τ

∑
N

i=1
ti

N∏
i=1

Ai (12)

As a practical matter, this number will be very small for large N, and on a com-
puter it is more useful to consider the logarithm of the likelihood function:

M ≡ ln(L) = −Nln(τ) − 1

τ

N∑
i=1

ti +
N∑

i=1

Ai (13)

The likelihood function can be used to determine any parameter in the probability
distributions. For our purposes, we wish to find which value of the mean lifetime τ
maximizes L (or M). We know that the observed events did occur and so the τ ′ which
maximizes M is the most probable value. Furthermore, for a large number of events
L is Gaussian around the most probable value of a parameter,which allows one to
extract the uncertainty in the parameter as well:

L(τ) ∝ e−
(τ−τ

′)2

2σ2 (14)

M(τ) = −(τ − τ ′)2

2σ2
+ constant (15)

The general procedure when looking at experimental data is as follows:

1. Select a set {τj} of trial mean lifetimes in the vicinity of the hypothesized value
of τ .

2. For each τj, calculate M(τj) as shown in Equation 15.

3. Take the exponential of M to get L and fit L to a Gaussian near its peak. This
will yield the most likely value, τ ′, for the mean lifetime and the uncertainty in
that value.

4



Kτt/
2 4 6 8 10 12 14 16 18 20 22

)
Kτ

d
N

/d
(t

/

1

10

10
2

10
3

)KτdN/d(t/

Kτ/τ
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

L

0

0.2

0.4

0.6

0.8

1

Chi2 / ndf = 0.01811 / 52
 0.2117 ±p0       = 1.007 
 0.09534 ±p1       = 1.009 
 0.1975 ±p2       = 0.2775 

L (1<R<10000, p=0.6, nevts=1000) Chi2 / ndf = 0.01811 / 52
 0.2117 ±p0       = 1.007 
 0.09534 ±p1       = 1.009 
 0.1975 ±p2       = 0.2775 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

800

900

1000

1100

1200

1300

1400

1500

1600

Kτ/τ vs τt/

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

5500

5600

5700

5800

5900

6000

6100

6200

Kτ/τ) vs τlog(c

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-3.5

-3

-2.5

-2

-1.5

Kτ/τ) vs τ/max-t - e
τ/min-t

log(e

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-7040

-7020

-7000

-6980

-6960

-6940

-6920

-6900

Kτ/τM vs 

Kτt/
0.3 0.32 0.34 0.36 0.38

)
Kτ

d
N

/d
(t

/

3000

4000

5000

6000

7000

8000

9000

)KτdN/d(t/

Kτ/τ
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

L

0

0.2

0.4

0.6

0.8

1

Chi2 / ndf = 0.0006747 / 47

 0.1925 ±p0       = 1.004 

 0.8134 ±p1       = 1.277 

 2.189 ±p2       = 0.6022 

L (133<R<179, p=0.6, nevts=100000) Chi2 / ndf = 0.0006747 / 47

 0.1925 ±p0       = 1.004 

 0.8134 ±p1       = 1.277 

 2.189 ±p2       = 0.6022 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
25000

30000

35000

40000

45000

50000

55000

Kτ/τ vs τt/

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

5500

5600

5700

5800

5900

6000

6100

6200

2x10
Kτ/τ) vs τlog(c

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-2800

-2700

-2600

-2500

-2400

2x10
Kτ/τ) vs τ/max-t - e

τ/min-t
log(e

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
-3633.65

-3633.6

-3633.55

-3633.5

-3633.45

-3633.4

-3633.35

-3633.3

2x10
Kτ/τM vs 

Kτt/
0.3 0.32 0.34 0.36 0.38

)
Kτ

d
N

/d
(t

/

)KτdN/d(t/

Kτ/τ
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

L

0

0.2

0.4

0.6

0.8

1

Chi2 / ndf = 0.02264 / 54
 0.2032 ±p0       = 1.009 
 0.1346 ±p1       = 1.039 
 0.313 ±p2       = 0.3399 

L (133<R<179, p=0.6, nevts=1000000) Chi2 / ndf = 0.02264 / 54
 0.2032 ±p0       = 1.009 
 0.1346 ±p1       = 1.039 
 0.313 ±p2       = 0.3399 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
2500

3000

3500

4000

4500

5000

5500

2x10
Kτ/τ vs τt/

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

5500

5600

5700

5800

5900

6000

6100

6200

3x10
Kτ/τ) vs τlog(c

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-2800

-2700

-2600

-2500

-2400

3x10
Kτ/τ) vs τ/max-t - e

τ/min-t
log(e

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-3633.32

-3633.3

-3633.28

-3633.26

-3633.24

-3633.22

-3633.2

-3633.18

-3633.16

-3633.14

3x10
Kτ/τM vs 

Figure 3: Gaussian fits to likelihood function (p1=center, p2=width)

In Figure 3, we show the results of the method applied to simple one dimensional
Monte Carlo data which was thrown with flat momentum and a mean lifetime of
τK. In many situations, this give excellent results. If the range of experimentally
observed lifetimes is large relative to the mean lifetime, the correct mean lifetime can
be extracted from a small number (1000) of events. This can be seen in the topmost
figure. For very narrow lifetime acceptance, however, as many as a million events are
needed for the method to converge. One can from the bottom figures see the that the
correct lifetime is not reproduced for even 100 thousand events.

There is even more to the story, however, as the method described above as-
sumes perfect efficiency within the detector fiducial volume. This is not the case
in STAR because 1) not all decays in the fiducial are reconstructed and 2) momen-
tum dependent cuts are applied in order to separate Kaon signal from correlated
and combinatorial background. The second factor in particular biases the observed
lifetime distribution a great deal because momentum dependence translates directly
into lifetime dependence for a fixed acceptance.
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4 Fitting with Virtual Particles

This method attempts to restore the signal which is lost outside of the fiducial volume.
It proceeds as follows:

1. For each event (detected Kaon), calculate the lifetime acceptance based on its
momentum and the coordinate-space acceptance. In STAR, for example, this
involves finding the upper tmax and lower tmin lifetime limits based on the outer
and inner radii of the fiducial volume using Equation 4.

2. Using simple Monte Carlo, generate two virtual particles using the ideal lifetime
distribution (Equation 7) and the accepted value for the charged Kaon mean
lifetime. The first particle should have lifetime 0 < tunder < tmin and the second
should have lifetime tmax < tover < ∞. These particles will represent particles
which have fallen outside the detector acceptance

3. Weigh the three particles by the integral of the probability distribution in each
region:

w =
∫ tmax

tmin

ρ(t)dt (16)

wunder =
∫ tmin

0
ρ(t)dt (17)

wover =
∫

∞

tmax

ρ(t)dt (18)

4. Fill the lifetime histogram (dN/dt) with the lifetimes for the real event and
the two virtual particles, weighted as above. The weights above ensure that the
virtual particles will fall into the ideal lifetime distribution relative to the weight
of the ideal particles. Fitting this histogram will extract the mean lifetime.

This method reproduces the ideal lifetime distribution for ideal Monte Carlo
events, but it faces certain complications for real data. Firstly, it shares the problem
of efficiency with the Maximum Likelihood method above because it assumes 100%
reconstruction of particles in the fiducial volume. Secondly, it is seriously affected by
the limited lifetime acceptance of STAR. The virtual particles which are generated
for each real particle have weights much greater than the weight of the real particle.
That means that the real signal is overpowered by the virtual particles, and the hy-
pothesized mean lifetime is always reproduced, regardless of the lifetime of the real
particles.

This situation can be seen in Figure 4, which shows the results of applying this
method to simple Monte Carlo data in the STAR fiducial volume. Particles with
monochromatic momentum were thrown according to an input mean lifetime. Ac-
ceptance cuts were then applied to coincide with the fiducial. This data is labeled
“uncorrected” in the histograms. The data labeled “corrected” includes both the
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Figure 4: Results of Fitting with Virtual Particles

input particles and virtual particles thrown according to the hypothesized mean life-
time. The histograms on the right show the result of an input mean lifetime τK equal
to the hypothesized mean lifetime. Those on the left show the same exercise with an
input mean lifetime of 3 times that of the hypothesized lifetime. In both cases, the
lower histograms show that the sum of the virtual and input particles is much greater
than the input particles alone. This is seen clearly in the upper figures, which show
that in both cases, the “corrected” data follows the hypothesized lifetime distribution.
The mean lifetime of the input particles is not recovered.

5 Fitting with Momentum Integral Weighting

This is one method which is not susceptible to the limited lifetime acceptance in
STAR, but it does make certain assumptions. For each input particle, we calculate
its momentum acceptance from its lifetime and the coordinate space acceptance. This
requires knowledge of the input momentum distribution:

P (pmin < p < pmax) =
∫ pmax(rmax,t)

pmin(rmin,t)
ρ(p)dp (19)

Then we simply weigh the lifetime of each particle with the inverse of this prob-
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Figure 5: Lifetime distribution (c τ) after momentum integral weighting to recover
input slope (c t0 = 1)

ability when filling the lifetime histogram, effectively correcting for the coordinate
space acceptance in momentum space. If the input momentum distribution is know,
this approach works, as see in Figure 5. The closed circles are the input Monte Carlo
distribution. The closed squares are that distribution after fiducial cuts. The open
circles are the cut distribution after weighting by the momentum integral. The slope
is fit from this weighted distribution, and comes out very close to 1 (the input slope).

The weakness of this approach is that in practice the input momentum distribution
is not known, in particular when momentum Dependant cuts are applied. It fails when
applied to STAR data.

6 Correcting Data Using Embedding

Besides the problem of limited lifetime acceptance, a common flaw in the approaches
presented above is that they assume perfect efficiency in the fiducial volume. Since
we do not have perfect detection efficiency, we must use simulated data to calculate
it. One can use embedded data (Monte Carlo tracks propagated through the de-
tector and placed inside real events) to determine the efficiency by looking at how
many of the Monte Carlo tracks in the fiducial volume are reconstructed. One could,
for example, determine the coordinate space efficiency and then use the maximum
likelihood method. Or the momentum efficiency could be calculated and used with
the momentum weighting method above. But one could just as easily calculate the
lifetime efficiency directly (dNreconstructed/dNDecayed

Embedded) and use that to correct the raw
lifetime distribution without any more effort. In the end, this was our approach.
Figure 6 shows our results using the embedding lifetime efficiency correction applied
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to year 2000 data. The ratio of the mean lifetime from the fit to the PDG lifetime is
very close to 1. Note that Kaons with shorter proper lifetime only reach the STAR
fiducial volume if they have high pT . For example, Equation 4 shows that a Kaon with
ct = 20 cm must have pT = 3.3 GeV/c to reach the fiducial volume (R = 133 cm).
The Kaon signal at larger momentum has higher contamination and is eliminated
from the lifetime fit here.

7 Summary

Several analytical methods were investigated to recover the mean proper lifetime for
charged Kaons including Maximum Likelihood, Virtual Particles, and Momentum
Integral Weighting. Due to limited acceptance and complicated momentum depen-
dencies of the analysis cuts, none of these methods produces satisfactory results. The
weighting function must be produced from detailed simulation of Kaon decays; this
method reproduces very well the accepted value of the proper mean lifetime and
should be applicable for any collider experiment.
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