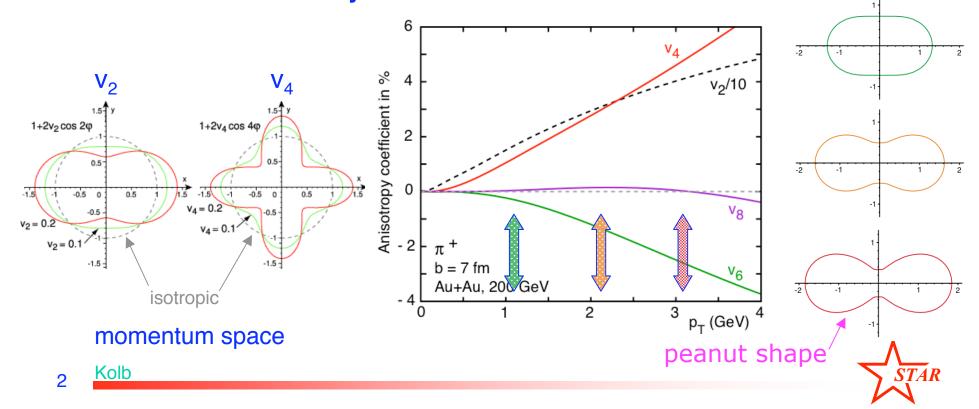
Azimuthal Anisotropy: The Higher Harmonics

Art Poskanzer for the STAR Collaboration

Peter Kolb

- v₄ a small, but sensitive observable for heavy ion collisions: PRC 68, 031902(R)
 - Strong potential to constrain model calculations and carries valuable information on the dynamical evolution of the system

 Magnitude, and even the sign, sensitive to initial conditions of hydro



v₂ determines the reaction plane

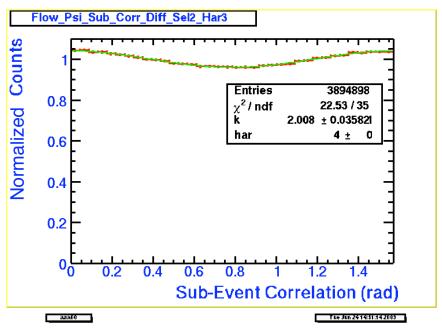
• v_1 (STAR talk by Aihong Tang), v_4 v_6 and v_8 using second harmonic particles

 Possible because v₂ is so large at RHIC and event plane resolution is so good in STAR

Correlation of two event planes:

4th harmonic of one subevent relative to 2nd harmonic of other subevent

v₄ is positive



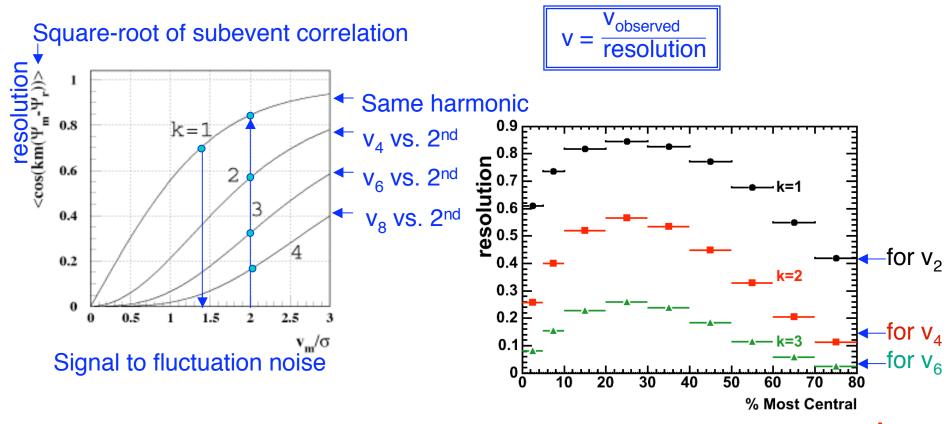
Terminology

- n = harmonic number
- Common usage
 - v_n = harmonic order n with respect to event plane of same order
 - $v_n(N) = N$ -particle cumulant for v_n
- New addition
 - v_n{EP₂} = harmonic order n with respect to event plane of order 2

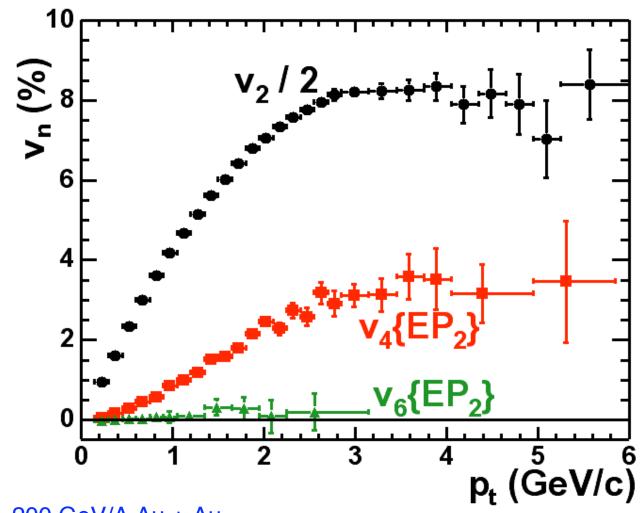
Method

Described in methods paper:

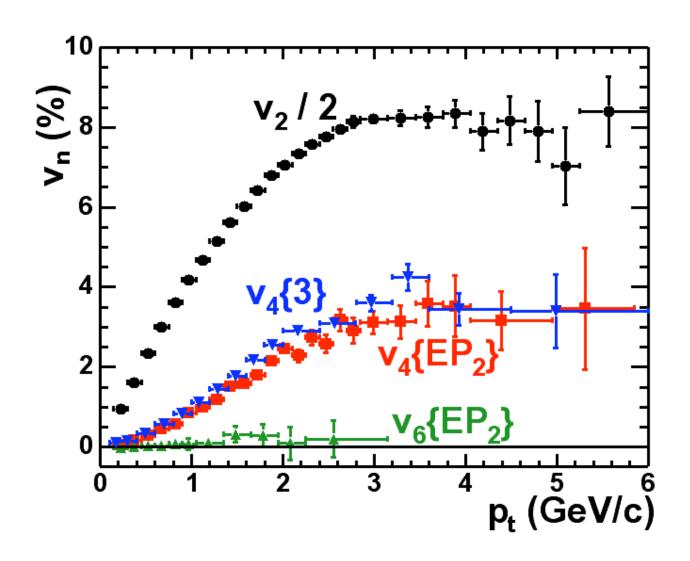
■ Poskanzer and Voloshin, Phys. Rev. C 58, 1671 (1998)



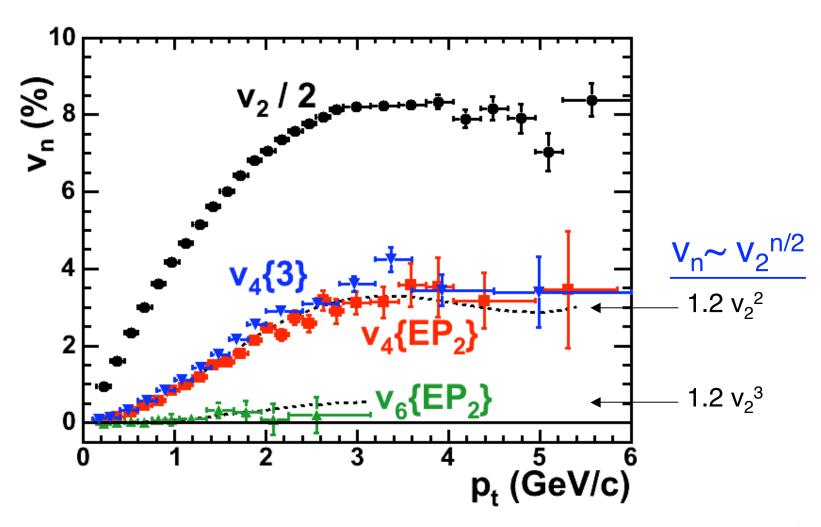
$v_4(p_t)$



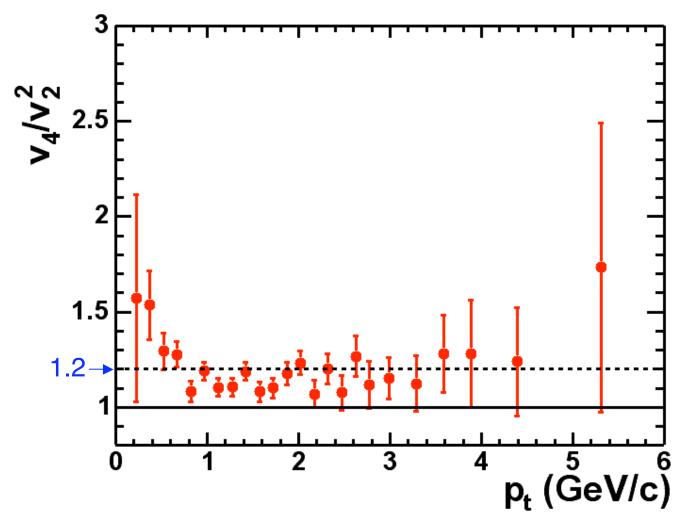
$v_4(p_t)$



$v_4(p_t)$



v₄(p_t) Scaling



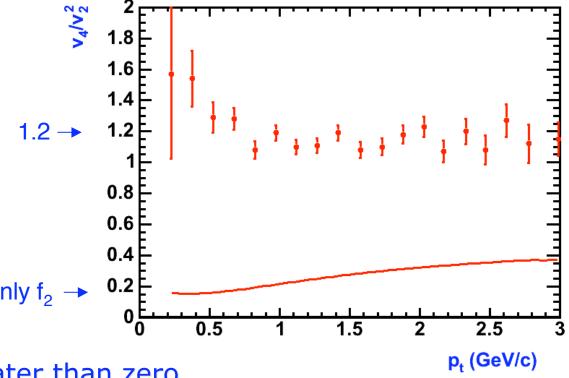
Definitely greater than 1.

v₄ from f₂

$$\rho(\phi) = \rho_0 \left(1 + 2f_2 \cos(2\phi) + 2f_4 \cos(4\phi) + 2f_6 \cos(6\phi) + \dots \right)$$

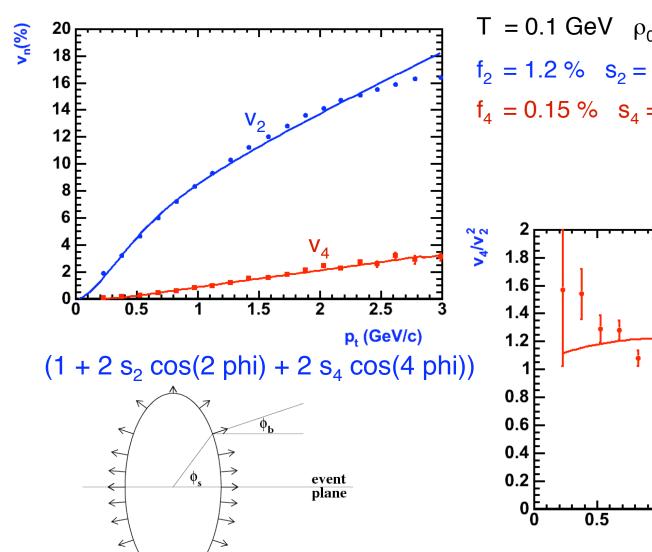
$$v_n(p_T) = \frac{\int d\phi \cos(n\phi) \operatorname{I}_n(k\alpha(\phi)) \operatorname{K}_1(k\beta(\phi))}{\int d\phi \operatorname{I}_0(k\alpha(\phi)) \operatorname{K}_1(k\beta(\phi))}$$
Blast Wave

Fit v₂



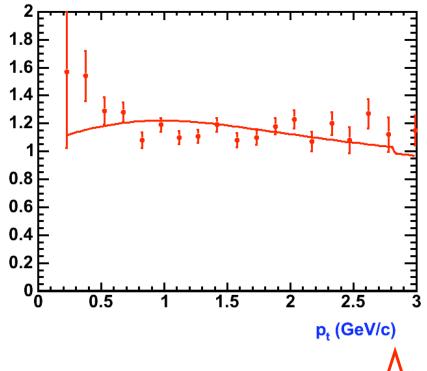
Therefore, f₄ is greater than zero

Blast Wave v₄ fit



T = 0.1 GeV
$$\rho_0 = 1.08$$

 $f_2 = 1.2 \%$ $s_2 = 7.4 \%$
 $f_4 = 0.15 \%$ $s_4 = 1.2 \%$



STAR

Parton Coalescence and Scaling

Assuming coalescence of quarks:

$$\frac{dN_n}{dyp_Tdp_Td\varphi} \sim (1+2\ v_2^q\cos(2\,\varphi) + 2\ v_4^q\cos(4\,\varphi) + \ldots)_1^n$$
 quarks

$$v_4/v_2^2 pprox 1/4 + 1/2 \, ({\rm v_4^q/(v_2^q)^2})$$
, but experimentally it is 1.2

Therefore, v_4^q is greater than zero

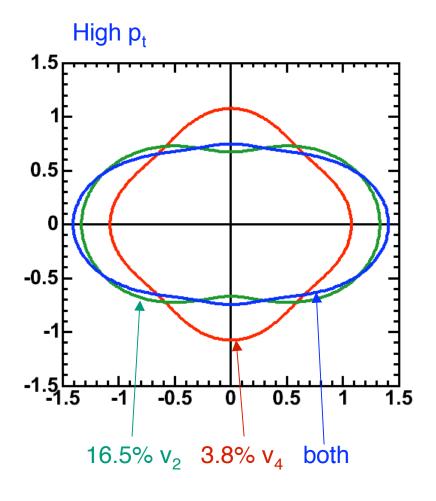
Assuming scaling for quarks:

$$V_n^q = (V_2^q)^{(n/2)}$$

$$v_4 / v_2^2 pprox 1/4 + 1/2 = 3/4$$
, but experimentally it is 1.2

Therefore, v_4^q is even greater than simple parton scaling would indicate

The Peanut Waist



No waist:

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_2 - 1) / 34$$

$$v_3 - 1$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

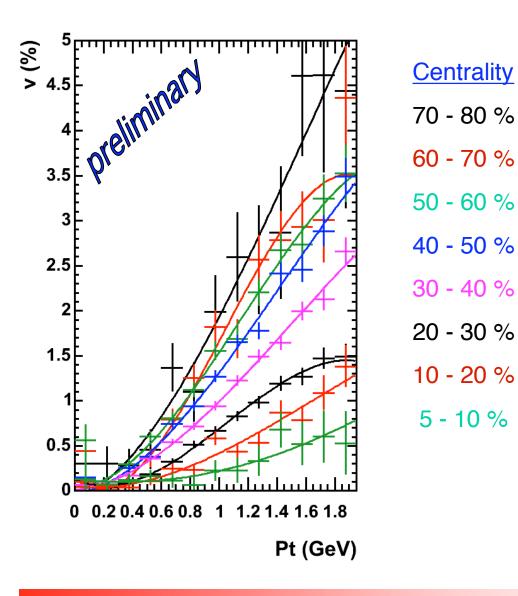
$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4 = (10 * v_2 - 1) / 34$$

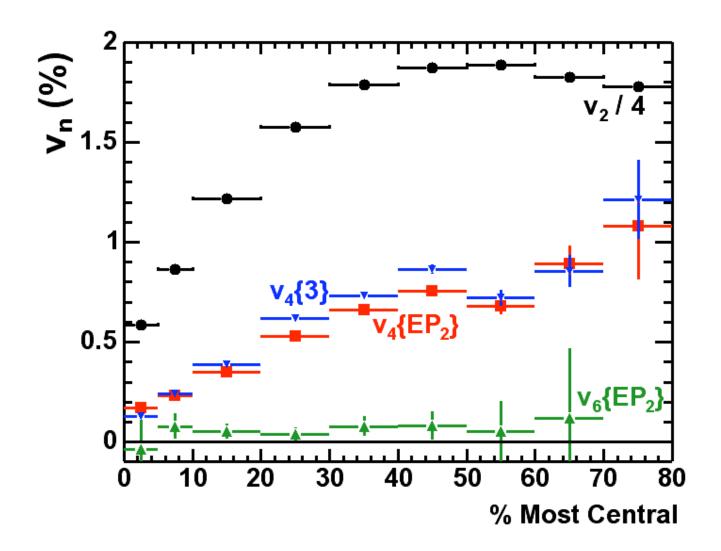
$$v_4 = (10 * v_2 - 1) / 34$$

$$v_4$$

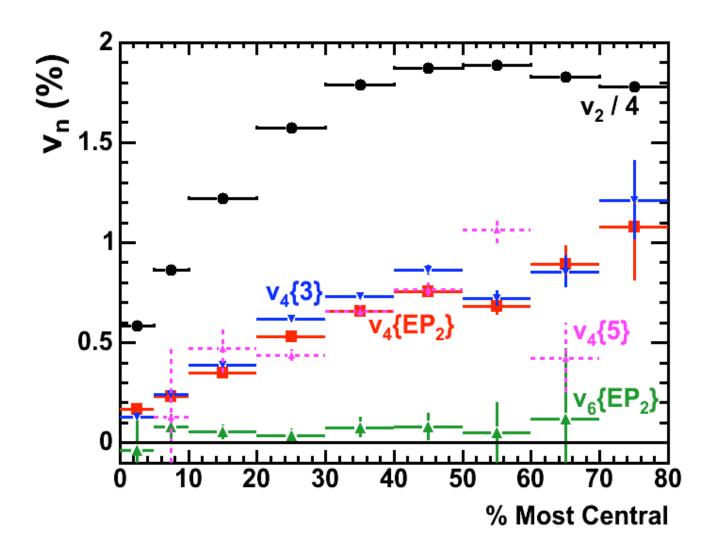
v₄(p_t,cent)



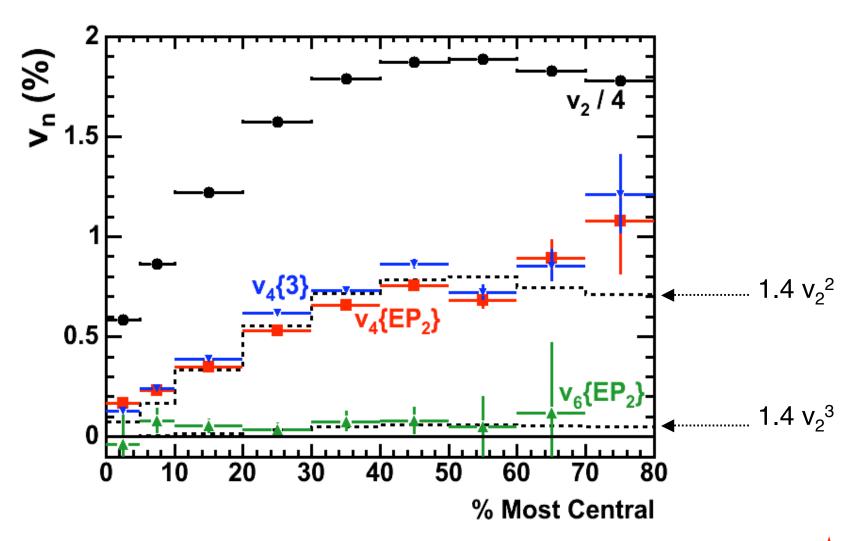
v₄(centrality)



v₄(centrality)



v₄(centrality)



v triply integrated in MTPC

<u>v</u>	<u>%</u>
2	5.18 +/- 0.005
4	0.44 +/- 0.009
6	0.043 +/- 0.037
8	-0.06 +/- 0.14

Two sigma upper limit is 0.1%

Conclusions

- V₄
 - Integrated, a factor of 12 smaller than v₂
 - v₂² scaling
 - Small, but significant
- **V**₆
 - Probably another factor of 10 smaller
 - Consistent with v₂³ scaling
- Blast Wave
 - f₄ finite, s₄ needed for good fit
- Parton coalescence
 - v_4^q finite and greater than $(v_2^q)^2$
- Hydro
 - Predicts a waist, but not observed

