Non-identical Particle Correlations at 62 and 200 GeV at STAR

Petr Chaloupka

Nuclear Physics Institute Academy of Sciences of the Czech Republic

for the STAR collaboration

Outline

Motivation:

- sizes of and shift between emission sources
- testing flow
- interaction potentials of hadrons

Current results on:

- proton-antiproton
- proton-lambda, antiproton-lambda
- pion-cascade

Model comparisons

Conclusions

Effects of transverse flow

- Correlation between momentum and emission point
- Effective **reduction of source size** and **shift** in average emission point
- Effect increases with m_T

Non-identical correlations can test flow by measuring sizes and shifts of the sources

p-p at 200GeV AuAu

- Reasonable **centrality dependence**
- Fits into the flow picture
- Extracted sizes differ from p-p, pbar-pbar measurements

Possible explanations:

- residual correlations feed-down
- p-wave contribution
- revise scattering length
- smoothness assumption breakdown
- geometry of the two-particle source

Poster on p-p and p-pbar correlations at 200 and 62 GeV by Hanna Gos

Quark Matter '05, Budapest

Petr Chaloupka

p– Λ , \bar{p} – Λ and p– Λ , \bar{p} – Λ in 200GeV AuAu

C(¥)

2.5

1.5

0.5

 $\overline{\Lambda} q + \Lambda \overline{q} + \Phi$

 $- p \Lambda + \overline{p} \overline{\Lambda}$

STAR preliminary

- Proton-lambda source size measured - CF fitted using known potential
- For antiproton-lambda scattering length extracted for the first time
- Measured sizes fit into the flow picture
- Non-trivial particle purity corrections, and correlated feed-down from lambda-lambda

π–Ξ in 200GeV AuAu

<u>*</u>1.2 πΞ⁺ 10-40% Central 200GeV AuAu ^ π⁺ Ξ • πΞ Data from RHIC's year 2004 high 1.1 • π⁺ Ξ⁺ Ξ statistics AuAu run Data corrected for π and Ξ sample STAR preliminary purities 0.9 0.2 k*[GeV/c] 0.1 Coulomb and strong (Ξ *1530) ¥_1.6 ن final state interaction effects unlike-sign $\pi \Xi$ 200GeV AuAu Centrality present. 0-10% 1.4 10-40% 40-80% **Centrality dependence** observed, STAR preliminary 1.2 particularly strong in the Ξ^* region 0.1 0.2 n

k*[GeV/c]

π – Ξ systematics

Petr Chaloupka

Quark Matter '05, Budapest

Spherical harmonics decomposition

- Testing symmetry in k* space by decomposition of CF into spherical harmonics
- Different A_{lm} coefficients correspond to different symmetries of the source
- A₀₀ angularly averaged CF
- A₁₁ to study shift in R_{out} direction

k*

k*

Φ

k*

Accessing shift between sources

- A₁₁ ≠ 0 in Coulomb and strong region
- Shift in the average emission point
 between π–Ξ

Model comparison

Model:

- S. Pratt's FSI (Phys.Rev. C68, 054901(2003)) +
- Emission points from:
 - Blastwave- constrained by $\pi \pi$ HBT
 - RQMD

- Difference between measured and calculated CF under investigation
- Observed **shift agrees** qualitatively **with flow scenario**.

Early freeze-out ?

- Is this due to early freeze-out? (Could we tell?)
- Competing changes small overall effect
- Assumed early freeze-out scenario **small effect on CF**

Conclusions

- Non-identical particle correlations for baryons were measured by STAR experiment. Source sizes and scattering length were extracted for first time for antiproton-lambda. Results qualitatively agree with flow picture.
- First high statistics measurements of π - Ξ correlations in 200 and 62 GeV AuAu and 200 GeV dAu collisions presented.
- Very good sensitivity to source size in Ξ* peak was found. Theoretical input needed.
- Using new spherical harmonics representation of data we observe clear shift between average emission points of π and Ξ sources in qualitative agreement with transversally expanding source.

Additional and backup slides

Remaining technical challenges

• Non-flat baseline issue

- Wide k* structure in CF, dip in low k* possible source: flow, detector effects-currently being investigated
- Using fake Ξ s to construct correlation function with similar baseline behaviour for corrections

Non-identical particle correlations

ωX

 $\bullet \pi$

$$N_{\pi} = 23$$

 $N_{\Xi} = 7$
 $N_{\Xi}^* = 2$
 $N_{\Xi}^*/N_{\pi\Xi} \sim 0.01$

$$N_{\pi} = 11$$

$$N_{\Xi} = 3$$

$$N_{\Xi}^* = 1$$

$$N_{\Xi}^*/N_{\pi\Xi} \sim 0.03$$