

International Conference on Strangeness in Quark Matter 2006

Los Angeles, UCLA 26-31 March 2006

Global polarization measurements in Au+Au collisions

Wayne State University Detroit MI 48021

E-mail: IlyaSelyuzhenkov@wayne.edu

Global hyperon's polarization

Effect: transformation of the angular momentum \dot{L} into the particles spin

Method: \vec{L} is perpendicular to the reaction plane

Correlations wrt the reaction plane

→ Anisotropic flow technique can be applied

Analysis overview

Theory input:

ZT. Liang and XN. Wang	Phys. Rev. Lett. 94, 102301 (2005) [erratum: 039901(2006)]
ZT. Liang and XN. Wang	nucl-th/0411101
Sergei A. Voloshin	nucl-th/0410089

Measurement technique: Two particle correlations wrt reaction plane estimated from STAR Forward TPC

Results: Lambda global polarization in Au+Au at 62 and 200 GeV

Systematics study:

2 different collision energies Reversed Full Field vs Full Filed data for 200GeV FTPC event plane resolution: FTPC saturation in 200GeV centrality cuts event plane from different charges

Angular distribution for the global polarization

$$\frac{dN}{d\cos\theta^*} \sim 1 + \alpha_H P_H \cos\theta^*$$

 P_H hyperon polarization wrt reaction plane (global polarization)

$$\alpha_H$$
 decay constant ($\alpha_A = 0.642$ for $\Lambda \to p \pi^-$)

 θ^* angle between normal for the reaction plane and the hyperon's decay product 3-momentum in the hyperon's rest frame

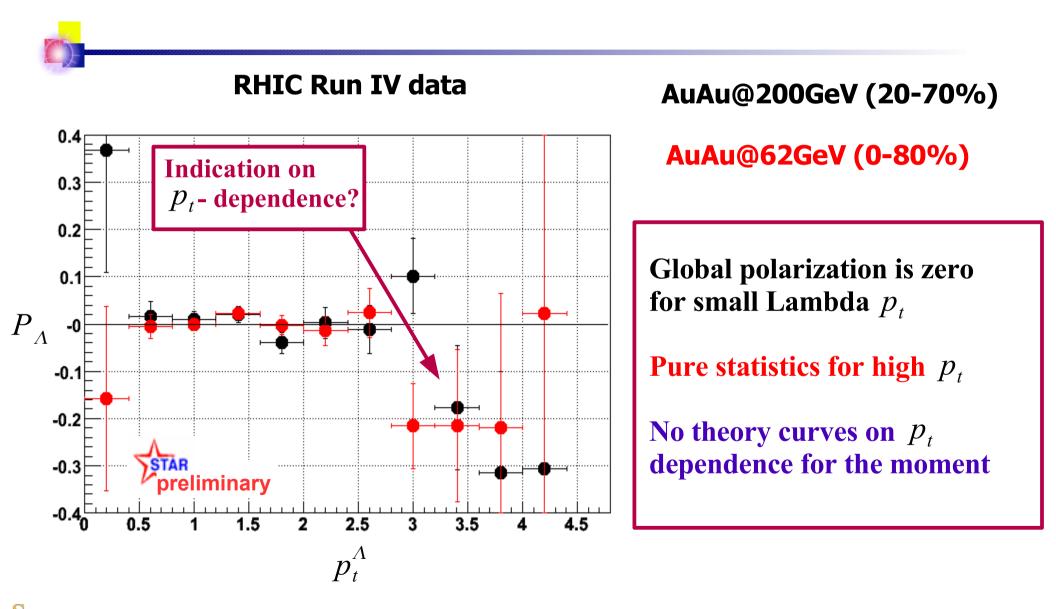
Lambda global polarization: measurement technique

$$P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \langle \sin(\varphi_{p_{\Lambda}^{*}} - \Psi_{RP}) \rangle$$

 $\varphi_{p_{\Lambda}^{*}}$ - angle of the decayed proton in the Λ rest frame

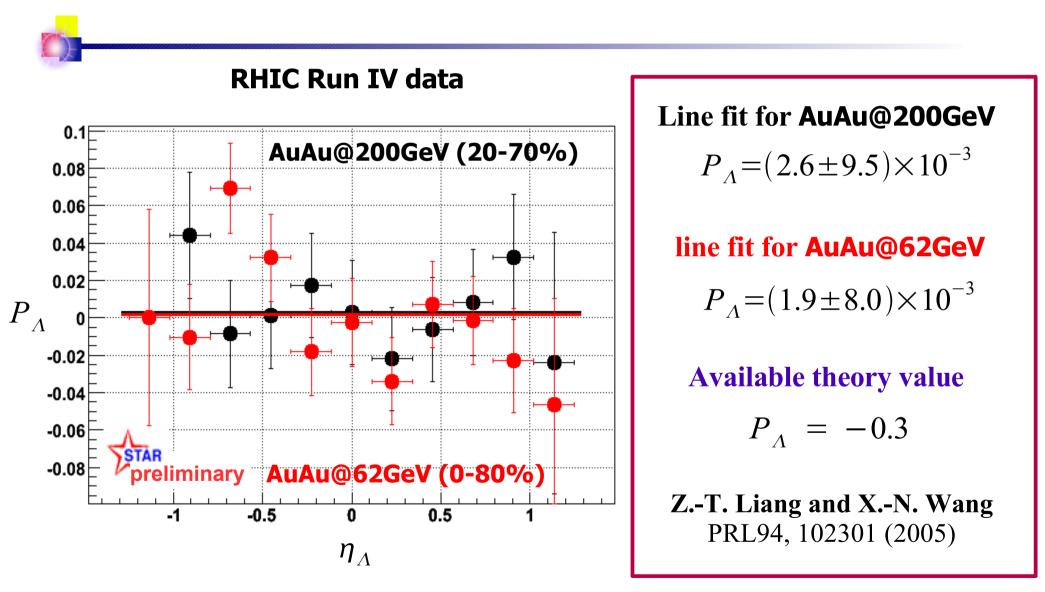
Scalar product technique (two particle correlations)

$$P_{\Lambda} = \frac{8}{\pi \alpha} \frac{\langle \sin \varphi_{p_{\Lambda}^{*}} X_{EP} \rangle - \langle \cos \varphi_{p_{\Lambda}^{*}} Y_{EP} \rangle}{R_{EP}}$$


 $Q_{EP} = (X_{EP}, Y_{EP})$ - 1st order event plane vector (from FTPC)

*R*_{EP} - FTPC event plane resolution: from two particle correlations (FTPC[East-West] to suppress non-flow from momentum conservation) or mixed harmonic (need more statistics, but efficiently suppress non-flow)

Lambda global polarization: transverse momentum dependence



Lambda global polarization: pseudo-rapidity dependence

Conclusion

• The Lambda global polarization has been measured in Au+Au collisions at the center of mass energies 62 and 200 GeV with the STAR detector at RHIC

• An **upper limit for the Lambda global polarization** is obtained:

$$\left| P_{\Lambda} \right| \leq 10^{-2}$$

This value is far below the one discussed in the recent theoretical papers:

$$P_{\Lambda}^{theor} = - 0.3$$

• The reason for this significant discrepancy is not clear now and there are still extensive theoretical discussion on this subject. As it was found later by the original authors the predicted value of $P_{\Lambda}^{theor} = -0.3$ could be incorrect due to inapplicability of the approximations used and the correct estimation for RHIC energies requires more realistic theoretical calculations (see Phys. Rev. Lett. 96, 039901 (2005) for details).

