φ-meson Production in Heavy-Ion Collisions at RHIC

Sarah Blyth
for
The STAR Collaboration

Strangeness in Quark Matter 2006
The medium produced in HI collisions is very short-lived → we need probes which carry information from the early stage to find out about the medium constituents:

The ϕ-meson ($S\bar{S}$) is a **clean probe from early time**:

- **Small σ** for interactions with non-strange particles$^{[1]}$
- Relatively long-lived (41 fm/c) → decays **outside** the fireball
- Previous measurements have **ruled out** $K+K$ coalescence as ϕ production mechanism$^{[2]}$ → info not “diluted” by hadronic phase

The ϕ can provide info on **particle production mechanisms / medium constituents**:

- The ϕ is a **meson** but as **heavy** as Λ, ρ baryons
 - Differentiate between mass-type or meson/baryon-type dependencies

$^{[1]}$ A. Shor, Phys. Rev. Lett. 54 (1985) 11
The STAR Experiment

We used the high-statistics 200 GeV Au+Au data to measure the ϕ observables at STAR:

- ~13.5 M minbias (0-80%) events
- ~13 M central triggered (0-10%) events

Measured decay channel:

$$\phi \rightarrow K^+K^- \ (BR = 49.1\%)$$

- STAR TPC used to identify K via dE/dx in TPC gas

STAR Detector

- Event-mixing method used to estimate background from uncorrelated K^+K^- pairs
- Final subtracted m_{inv} distribution fitted with Breit-Wigner + straight line

![Graph showing $1.0 < p_T < 1.2 \text{ GeV/c}$ distribution](image)

<table>
<thead>
<tr>
<th>hDiff5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
<tr>
<td>χ^2 / ndf</td>
</tr>
<tr>
<td>BW Area</td>
</tr>
<tr>
<td>Γ</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Linear Slope</td>
</tr>
<tr>
<td>Linear Const</td>
</tr>
</tbody>
</table>
Elliptic flow provides early time information on the collectivity of particles from heavy-ion collisions:

- Non-central A+A collisions result in an azimuthally anisotropic distribution of particles in coordinate-space.
- Density gradients and interactions between the particles lead to an asymmetry in momentum-space.
- Signal is self-quenching with time – EARLY TIME OBSERVABLE!

Expanding in a Fourier series:

$$\frac{E}{d^3 p} \frac{d^3 N}{d^3 p} \frac{1}{\pi} \frac{d^2}{dp_T^2} \frac{N}{dy} [1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + ...]$$

$$v_2 = \langle \cos(2\phi) \rangle$$
The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

- For $p_T<2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For $p_T>2$ GeV/c, ϕv_2 is more consistent with K^0_S than Λ (favors NCQ\(^{[1]}=2\))
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)\(^{[2]}\) i.e. s-quarks flow!

Particle production mechanisms:
- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/coallescence models\(^{[3]}\))

References:
The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:
- For $p_T<2\text{ GeV/c}$, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For $p_T>2\text{ GeV/c}$, ϕ v_2 is more consistent with K^0_S than Λ (favors NCQ$^{[1]}=2$)
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:
- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/p_T coalescence models$^{[3]}$)

Sarah Blyth, Strangeness in Quark Matter 2006, Los Angeles
The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:

- For $p_T < 2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For $p_T > 2$ GeV/c, ϕ v_2 is more consistent with K^0_S than Λ (favors NCQ$^{[1]}=2$)
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/coalescence models$^{[3]}$)

The φ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:
- For \(p_T < 2 \text{ GeV/c} \), φ flows as much as other ID'd particles, consistent with hydro. mass-ordering.
- For \(p_T > 2 \text{ GeV/c} \), \(v_2 \) is more consistent with \(K^0_S \) than \(\Lambda \) (favors NCQ\(^{[1]}\)=2).
- Consistent with \(v_2 \) of other multi-strange hadrons (\(\Xi, \Omega \)\(^{[2]} \)) i.e. s-quarks flow!

Particle production mechanisms:
- Further evidence of species-type dependence of \(v_2 \) at intermediate \(p_T \) (described by recombination/ coalescence models\(^{[3]}\)).

The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:

- For $p_T < 2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For $p_T > 2$ GeV/c, ϕ v_2 is more consistent with K^0_S than Λ (favors NCQ$^{[1]}=2$)
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

- Further evidence of species-type dependence of v_2 at intermediate p_T
 (described by recombination/coalescence models$^{[3]}$)

Sarah Blyth, Strangeness in Quark Matter 2006, Los Angeles
The shape of the ϕp_T spectra provide information on the mechanisms of particle production:

- ϕp_T spectra show a systematic centrality-dependent evolution in shape

- For peripheral collisions, a pQCD power-law tail is evident
 - Peripheral spectra favor a Levy function description

- For central collisions, exponential and Levy functions fit spectra equally well
 - The power-law tail is suppressed by the medium produced in central collisions
For both centrality groupings, R_{CP} of $\varphi < 1$:

- φ yield suppressed in central compared to peripheral collisions:

Particle grouping behaviour:

- Like for v_2, φ follows same trend as K^0_S and K^* [1] in R_{CP}

- Confirmation of meson-baryon dependence of R_{CP} rather than mass-type dependence

- Described by recombination/coalescence models [2]

Comparison with model expectations on particle production can give insight on the constituents of the medium produced in heavy-ion collisions:

R. Hwa's recombination model[^1]:
- ϕ and Ω (sss) spectra ($p_T < 8\,\text{GeV/c}$) mainly due to recombination of thermal quarks (TT)
- Seems to match data well

[^1]: R. Hwa & C-B Yang, nucl-th/0602024

- **BUT**... Ω/ϕ ratio has similar shape to other baryon/meson measurements
- Model matches data for $p_T < 4\,\text{GeV/c}$
Conclusions

- **Large elliptic flow** (despite small σ) at low p_T
- NCQ-scaling of v_2 for $p_T > 2$ GeV/c (similar to Ω (sss))
- Reco. models describe data well\(^1\)

- R_{CP} critical confirmation of **baryon-meson** dependence of RHIC observables
- Scaling described by reco. models

- Central data well-described (intermediate p_T) by reco. model\(^2\)
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/φ ratio well-described by **thermal quark reco.** model up to $p_T \sim 4$ GeV/c\(^2\)

\(^{2}\) R. Hwa & C-B Yang, nucl-th/0602024
Conclusions

- **Large elliptic flow** (despite small σ) at low p_T
- NCQ-scaling of v_2 for $p_T > 2$ GeV/c (similar to Ω (sss))
- Reco. models describe data well\(^1\)

- R_{CP} critical confirmation of **baryon-meson** dependence of RHIC observables
- Scaling described by reco. models

- Central data well-described (intermediate p_T) by reco. model\(^2\)
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/φ ratio well-described by **thermal quark reco.** model up to $p_T \sim 4$ GeV/c\(^2\)

\(^2\) R. Hwa & C-B Yang, nucl-th/0602024
Conclusions

- **Large elliptic flow** (despite small σ) at low p_T
- NCQ-scaling of v_2 for $p_T > 2$ GeV/c (similar to Ω (sss))
- Reco. models describe data well$^{[1]}$

- R_{CP} critical confirmation of **baryon-meson** dependence of RHIC observables
- Scaling described by reco. models

- Central data well-described (intermediate p_T) by reco. model$^{[2]}$
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/ϕ ratio well-described by **thermal quark reco.** model up to $p_T \sim 4$ GeV/c$^{[2]}$

...hints of THERMALIZATION?

PARTONIC COLLECTIVITY & DECONFINEMENT

Sarah Blyth, Strangeness in Quark Matter 2006, Los Angeles
Further interesting predictions can be investigated using ϕ-meson observables:

- Measurement of angular correlations with respect to a ϕ-meson trigger particle$^{[1]}$:
 - Investigates particle production mechanism

- ϕ di-lepton decay channel is a very clean probe from the early stage (e^+e^- do not interact strongly)
 - Good channel to search for modifications of hadron properties due to the hot medium$^{[2]}$
 - Will be a challenge: $\phi \rightarrow e^+ + e^-$ (BR~10^{-4})
 - STAR Full barrel Time Of Flight (TOF) detector (installed by 2008) will be a huge asset in making this measurement!

$^{[1]}$ R. Hwa & C-B Yang, nucl-th/0602024