φ-meson Production in Heavy-Ion Collisions at RHIC

Sarah Blyth for The STAR Collaboration

Strangeness in Quark Matter 2006

The medium produced in HI collisions is very shortlived \rightarrow we need probes which carry information from the early stage to find out about the medium constituents:

The φ -meson ($S \overline{S}$) is a **clean probe** from **early time**:

- Small σ for interactions with non-strange particles^[1]
- Relatively long-lived (41 fm/c) →decays **outside** the fireball
- Previous measurements have ruled out K+K coalescence as φ production mechanism^[2] → info no⁽¹⁾
 "diluted" by hadronic phase

The φ can provide info on **particle production** mechanisms / medium constituents:

- The φ is a **meson** but as **heavy** as Λ , p baryons
 - Differentiate between mass-type or meson/baryontype dependencies

Motivation

Why the φ-meson?

[1] A. Shor, Phys. Rev. Lett. 54 (1985) 11
[2] J. Adams *et al.*, Phys. Lett. B 612 (2005) 181

STAR

The STAR Experiment

We used the high-statistics 200 GeV Au+Au data to measure the φ observables at STAR:

- ~13.5 M minbias (0-80%) events
- ~13 M central triggered (0-10%) events

Measured decay channel:

 $\varphi \rightarrow K^+ + K^- (BR = 49.1\%)$

 STAR TPC used to identify K via dE/dx in TPC gas

STAR

- Event-mixing method used to estimate background from uncorrelated K⁺K⁻ pairs
- Final subtracted m_{inv} distribution fitted with Breit-Wigner + straight line

Elliptic Flow

Elliptic flow provides early time information on the collectivity of particles from heavy-ion collisions:

TAR

- Non-central A+A collisions result in an azimuthally anisotropic distribution of particles in coordinate-space
- Density gradients and interactions between the particles lead to an asymmetry in momentum-space
- Signal is **self-guenching** with time **EARLY TIME OBSERVABLE!**
- Expanding in a Fourier series:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{\pi}d^{2}\frac{N}{dp_{T}^{2}dy}[1+2v_{1}\cos(\phi)+2v_{2}\cos(2\phi)+...]$$

$$v_2 = \langle \cos(2\phi) \rangle$$

The φ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

X. Dong *et a*l., Phys. Lett. B, 597 (2004) 328
 STAR Collab. Phys. Rev. Lett. 95 (2005) 122301
 R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902

STAR

Early time information:

- For p_τ<2 GeV/c, φ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For p_{τ} >2 GeV/c, φv_2 is more consistent with K_{s}^{0} than Λ (favors NCQ^[1]=2)
- Consistent with v_2 of other multi-strange hadrons $(\Xi, \Omega)^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

 Further evidence of species-type dependence of v₂ at intermediate p_τ (described by recombination/ coalescence models^[3])

The φ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

X. Dong *et a*l., Phys. Lett. B, 597 (2004) 328
 STAR Collab. Phys. Rev. Lett. 95 (2005) 122301
 R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902

STAR

Early time information:

- For p_τ<2 GeV/c, φ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For p_{τ} >2 GeV/c, φv_2 is more consistent with K_{s}^{0} than Λ (favors NCQ^[1]=2)
- Consistent with v_2 of other multi-strange hadrons $(\Xi, \Omega)^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

 Further evidence of species-type dependence of v₂ at intermediate p_τ (described by recombination/ coalescence models^[3])

The φ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

X. Dong *et a*l., Phys. Lett. B, 597 (2004) 328
 STAR Collab. Phys. Rev. Lett. 95 (2005) 122301
 R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902

STAR

Early time information:

- For p_τ<2 GeV/c, φ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For p_{τ} >2 GeV/c, φv_2 is more consistent with K_{S}^{0} than Λ (favors NCQ^[1]=2)
- Consistent with v_2 of other multi-strange hadrons $(\Xi, \Omega)^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

 Further evidence of species-type dependence of v₂ at intermediate p_τ (described by recombination/ coalescence models^[3])

The φ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

X. Dong *et a*l., Phys. Lett. B, 597 (2004) 328
 STAR Collab. Phys. Rev. Lett. 95 (2005) 122301
 R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902

STAR

Early time information:

- For p_τ<2 GeV/c, φ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For p_{τ} >2 GeV/c, φv_2 is more consistent with K_{S}^{0} than Λ (favors NCQ^[1]=2)
- Consistent with v_2 of other multi-strange hadrons $(\Xi, \Omega)^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

 Further evidence of species-type dependence of v₂ at intermediate p_τ (described by recombination/ coalescence models^[3])

The φ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

[1] X. Dong *et a*l., Phys. Lett. B, 597 (2004) 328
[2] STAR Collab. Phys. Rev. Lett. 95 (2005) 122301
[3] R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902

STAR

Early time information:

- For p_τ<2 GeV/c, φ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For p_{τ} >2 GeV/c, φv_2 is more consistent with K_{S}^{0} than Λ (favors NCQ^[1]=2)
- Consistent with v_2 of other multi-strange hadrons $(\Xi, \Omega)^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

 Further evidence of species-type dependence of v₂ at intermediate p_τ (described by recombination/ coalescence models^[3])

Particle Production I

The shape of the φp_{τ} spectra provide information on the mechanisms of particle production:

- φ p_τ spectra show a systematic
 centrality-dependent evolution in shape
- For peripheral collisions, a pQCD power-law tail is evident
 - Peripheral spectra favor a Levy function description
- For central collisions, exponential and Levy functions fit spectra equally well

STAR

- The **power-law tail is suppressed** by the medium produced in central collisions

Sarah Blyth, Strangeness in Quark Matter 2006, Los Angeles

φ Spectra

Particle Production II

For both centrality groupings, $R_{_{CP}}$ of $\varphi < 1$: φ yield suppressed in central compared to peripheral collisions:

Nuclear Modification Factor

Particle grouping behaviour:

- Like for $v_2^{}$, φ follows same trend as $K^0_{\ s}$ and $K^{*\,^{[1]}}$ in $R_{_{CP}}$
- Confirmation of meson-baryon dependence of R_{CP} rather than masstype dependence
- Described by recombination/ coalescence models^[2]

STAR Collab., Phys. Rev. C 71 (2005) 064902
 R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902

Particle Production IIIctations on particleModel Predictions

Comparison with model expectations on particle production can give insight on the constituents of the medium produced in heavy-ion collisions:

- *R. Hwa's recombination model*^[1]:
- φ and Ω (sss) spectra (p_{τ} <8GeV/c) mainly due to recombination of thermal quarks (TT)
- Seems to match data well

- **BUT**... Ω/φ ratio has similar shape to other baryon/meson measurements
- Model matches data for $p_{\tau} < 4 \text{ GeV/c}$

Conclusions

STAR

- **Large elliptic flow** (despite small σ) at low p_{τ}
- NCQ-scaling of v_2 for $p_{\tau} > 2 \text{ GeV/c}$ (similar to Ω (sss))
- Reco. models describe data well^[1]
- *R*_{CP} critical confirmation of **baryon**meson dependence of RHIC observables
- Scaling described by reco. models
 - Central data well-described (intermediate p_{τ}) by reco. model^[2]
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/φ ratio well-described by thermal quark reco. model up to p_τ~4 GeV/c^[2]

[1] R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902
[2] R. Hwa & C-B Yang, nucl-th/0602024

Conclusions

STAR

- Large elliptic flow (despite small σ) at low p_{τ}
- NCQ-scaling of v_2 for $p_{\tau} > 2 \text{ GeV/c}$ (similar to Ω (sss))
- Reco. models describe data well^[1]
- Scaling described by reco. models
 - Central data well-described (intermediate p_{τ}) by reco. model^[2]
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/φ ratio well-described by thermal quark reco. model up to p_τ~4 GeV/c^[2]

PARTONIC COLLECTIVITY & DECONFINEMENT/

[1] R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902
[2] R. Hwa & C-B Yang, nucl-th/0602024

Conclusions

STAR

- Large elliptic flow (despite small σ) at low p_{τ}
- NCQ-scaling of v_2 for $p_{\tau} > 2 \text{ GeV/c}$ (similar to Ω (sss))
- Reco. models describe data well^[1]
- *R*_{CP} critical confirmation of **baryon**meson dependence of RHIC _____ observables
- Scaling described by reco. models
- Central data well-described (intermediate p_{τ}) by reco. model^[2]
- pQCD power-law tails suppressedin central compared to peripheral spectra
- Central Ω/φ ratio well-described by thermal quark reco. model up to p_τ~4 GeV/c^[2]

PARTONIC COLLECTIVITY & DECONFINEMENT

[1] R. J. Fries *et al.*, Phys. Rev. C 68 (2003) 044902
[2] R. Hwa & C-B Yang, nucl-th/0602024

...hints of

<i>THERMALIZATION

The Future...

Further interesting predictions can be investigated using φ -meson observables:

[1] R. Hwa & C-B Yang, nucl-th/0602024
[2] M. Asakawa & C.M. Ko, Phys. Rev. C50 (1994) 3064

STAR

- Measurement of angular correlations with respect to a φ-meson trigger particle^[1]:
 - Investigates particle production mechanism
- φ di-lepton decay channel is a very clean probe from the early stage (e⁺⁻ do not interact strongly)

$$oldsymbol{arphi}
ightarrow {f e}^{+} + {f e}^{-}$$

- Good channel to search for modifications of hadron properties due to the hot medium^[2]
- → Will be a challenge: $\phi \rightarrow e^+ + e^-$ (BR~10⁻⁴)
- STAR Full barrel Time Of Flight (TOF) detector (installed by 2008) will be a huge asset in making this measurement!