

identified particle measurements at large transverse momenta from p+p to Au+Au collisions at RHIC

Richard Hollis for the STAR collaboration

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

19-24 February 2007 Lake Louise Winter Institute

outline

o motivation

- o data analysis
- o data ratios
- o interpretation

o summary

motivation

motivation: why identify particles at high-p_τ?

- why do we look at identified particles?
 - at high-p_T affords insight into gluon and quark jet production
- gluon jets produce more baryons than quark jets
- probe energy loss for quark and gluon jets
 - a difference was expected, but not seen

Richard Hollis University of Illinois at Chicago

19-24 February 2007

motivation: partonic path length

o in the simplest way:

can look at the modification of particle production due to the created medium

central Au+Au collisions

motivation: partonic path length

o in the simplest way:

can look at the modification of particle production due to the created medium

varying the collision
 centrality/system size
 varies the path length

centrality peripheral Au+Au collision system size central Cu+Cu collision

motivation: participants and collisions

- nuclear collisions are characterized by the volume overlap
- divide data into fractional cross-section
- use models to derive quantities such as N_{part}, N_{coll}, b

defines the "centrality" of the collision

Lake Louise Winter Institute Richard Hollis University of Illinois at Chicago

data analysis and preliminary results

data: analysis analysis summary

- o low-p_T (0.2<p_T<1.2)
 - energy loss in TPC
 - clear particle separation
- o low- to intermediate- p_T (0.2< p_T <3.0)
 - TOF
 - clear particle separation
- **o** high- p_T (p_T >2.5)
 - relativistic rise of energy loss in TPC
 - statistical separation

Lake Louise Winter Institute

Transverse Momentum, p_T (GeV/c)

data: preliminary results π and proton spectra

 $1 < p_T < 2 \text{ GeV/}c$ gap to be filled by TOF - analysis underway in STAR

Lake Louise Winter Institute Richard Hollis University of Illinois at Chicago

data: preliminary results $R_{AB} = \frac{\sigma_{NN}^{inel}}{N_{bin}^{AB}} \frac{d^2 N_{AB}/dydp_{1}}{d^2 \sigma_{pp}/dydp_{T}}$ $\pi \text{ nuclear modification factor}$

A+A collisions: suppression of produced π 's at high-p_T

- o larger suppression for more central data
- more suppression, energy loss, for increasing path length in the medium

Lake Louise Winter Institute Richard Hollis University of Illinois at Chicago

Phys. Rev. Lett. 97 (2006) 152301 Phys. Lett. B 637 (2006) 161

data: preliminary results baryon/meson enhancement

- intermediate-p_T
 enhancement in baryon
 production is observed
 relative to p+p data
 - maximal enhancement at p_T~2GeV/c
 - intermediate-p_T: strong centrality dependence
 - centrality independent for p_T>5GeV/c (Cu+Cu) and p_T>7GeV/c (Au+Au)

data: preliminary results baryon/meson enhancement

- baryon/meson
 enhancement also
 evident in
 strangeness sector
 - Λ/K⁰ shows the same systematic dependencies

data interpretation

what does all this mean?

data: interpretation partonic energy loss in the medium

- strong suppression of π yields, relative to p+p collisions
 - indicative of partonic energy loss of the initial quark jet
- suppression is dependent on centrality, but independent of energy
 - at 62.4 and 200 GeV
- are gluon jets suppressed in the same way?
 - look at protons

data: interpretation quark and gluon jet medium modification

- **o** excess proton production at intermediate- p_T **o** suppression is similar at high- p_T
 - energy loss is similar for quark and gluon jets

Lake Louise Winter Institute

- we have a systematic data sample of identified π and p(p) measured at RHIC
- systematic effects are observed versus the system size of the collision
 - π suppression at large transverse momenta (R_{AA}) for larger system sizes (i.e. more central data)
 - enhanced p/π ratio at intermediate p_T
 - no enhancement at high-p_T
 - similar suppression for π and proton: indicating quark and gluon jets are subjected to the same energy losses

