Systematic study of small system collectivity from STAR

Shengli Huang, Prithwish Tribedy

1 How collectivity originates and evolves with collision system size is a highly debated topic in the heavy ion community. To address this, we propose the study of collision systems with decreasing system sizes: $\mathrm{Ru}+\mathrm{Ru} / \mathrm{Zr}+\mathrm{Zr}$ ${ }_{4}{ }^{3} \mathrm{He}+\mathrm{Au}>\mathrm{d}+\mathrm{Au}>\mathrm{p}+\mathrm{Au}>\mathrm{p}+\mathrm{p}>\gamma+\mathrm{Au}$.

We present results on the elliptic $\left(v_{2}\right)$ and triangular $\left(v_{3}\right)$ anisotropy on $\mathrm{p}+\mathrm{Au}, \mathrm{d}+\mathrm{Au}$ and ${ }^{3} \mathrm{He}+\mathrm{Au}$ collisions at 200 GeV with a comprehensive evaluation of the non-flow effects using different subtraction methods with the minimum-bias $\mathrm{p}+\mathrm{p}$ collisions as a reference. We find v_{3} to be weakly de${ }^{9}$ pendent on the system and centrality. This puts constraints on shape engi${ }_{10}$ neering at nucleon scale and provides strong evidence of fluctuations at the ${ }_{11}$ sub-nucleon scale.

In addition to the results obtained from the mid-rapidity acceptance ${ }_{13}(|\eta|<1)$, we also use the Event Plane detector over $2.1<|\eta|<5.1$ to in14 vestigate the potential influence of longitudinal flow de-correlations using ${ }_{15}$ peripheral $\mathrm{Ru}+\mathrm{Ru} / \mathrm{Zr}+\mathrm{Zr}$ data.

Our key addition of photo-nuclear $(\gamma+\mathrm{Au})$ processes can push the bound${ }_{17}$ aries of small systems scan at RHIC. Measurements on long-range di-hadron ${ }_{18}$ correlations and harmonic anisotropy coefficients in high activity $\gamma+$ Au-rich 19 events are presented to search for evidences of collectivity.

