Systematic study of small system collectivity from STAR

Shengli Huang, Prithwish Tribedy

¹ How collectivity originates and evolves with collision system size is a ² highly debated topic in the heavy ion community. To address this, we propose ³ the study of collision systems with decreasing system sizes: Ru+Ru/Zr+Zr ⁴ > ³He+Au > d+Au > p+Au > p+p > γ +Au.

⁵ We present results on the elliptic (v_2) and triangular (v_3) anisotropy on ⁶ p+Au, d+Au and ³He+Au collisions at 200 GeV with a comprehensive eval-⁷ uation of the non-flow effects using different subtraction methods with the ⁸ minimum-bias p+p collisions as a reference. We find v_3 to be weakly de-⁹ pendent on the system and centrality. This puts constraints on shape engi-¹⁰ neering at nucleon scale and provides strong evidence of fluctuations at the ¹¹ sub-nucleon scale.

In addition to the results obtained from the mid-rapidity acceptance 13 ($|\eta| < 1$), we also use the Event Plane detector over 2.1< $|\eta| < 5.1$ to in-14 vestigate the potential influence of longitudinal flow de-correlations using 15 peripheral Ru+Ru/Zr+Zr data.

¹⁶ Our key addition of photo-nuclear (γ +Au) processes can push the bound-¹⁷ aries of small systems scan at RHIC. Measurements on long-range di-hadron ¹⁸ correlations and harmonic anisotropy coefficients in high activity γ +Au-rich ¹⁹ events are presented to search for evidences of collectivity.