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Azimuthal Anisotropy of K2 and A + A Production at
mid-Rapidity from Au+Au Collisions at /syy = 130 GeV

and Erraticity Behaviour of Event Factorial Moments in
Hadron-Hadron Collisions

Abstract

The operation and first collisions of Au nuclei in the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven National Laboratory (BNL) during year 2000 began
a new era in the study of nuclear matter at high energy density and the search
of Quark-Gluon Plasma (QGP). The properties of the QGP and the transition to
it have to be identified from the final state which is of a hadronic nature. Mea-
surements of azimuthal anisotropies in the transverse momentum distribution of
particles can probe the very early stages of ultra-relativistic heavy-ion collisions.
This dissertation presents the STAR results on the azimuthal anisotropy parame-
ter vy for strange particles K3, A and A at mid-rapidity in Au+Au collisions at
Vsny = 130 GeV at RHIC. The value of vy as a function of transverse momentum
p; and collision centrality is presented for both particles up to ~ 3.0 GeV/e. A
strong p; dependence in vy is observed up to 2.0 GeV/c. The vy measurement is
compared with hydrodynamic model calculations. The physics implication of the p;

integrated v, magnitude as a function of particle mass is also discussed.

Erraticity analysis provide new opportunity in measuring event by event fluc-
tuations in high energy nuclear collisions. In the second part of this dissertation
(chapter 6 and chapter 7), it is demonstrated that in low multiplicity sample, the
increase of the fluctuation of event factorial moments with the diminishing of phase
space scale, “erraticity”, are dominated by the statistical fluctuations. Applying
erraticity analysis to high multiplicity sample at RHIC and LHC energy is recom-

mended.
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Chapter 1

Introduction

What is the ultimate building blocks of matter has puzzling us for thousands of years.
Over the past hundred years our knowledge on this fundamental question have gone
through a considerable evolution. Atoms were found to be divisible into electrons
and nuclei. Nuclei in turn consist of nucleons, bound together by strong short-range
forces. The basic theory of strong interaction, quantum chromodynamics (QCD),
predicts all strongly interacting elementary particles (hadrons) are bound states of
quarks (q) or their anti-particles (q)[49]. Quarks themselves are never seen in iso-
lation, but strongly interact and form particles (hadrons), which are either baryons
(qqq) or mesons (qq). QCD predicts that at high energy density, hadronic matter
will turn into a plasma of deconfined quarks and gluons (QGP), which probably
exist in the early universe or the core of neutron stars. In 1986/1987, experimental
studies of high energy nuclear collisions began from fixed-target machines at the
BNL (Brookhaven National Laboratory)-AGS (Alternating Gradient Synchrotron)
and the CERN (European Centre for Nuclear Research)-SPS (Super Proton Syn-
chrotron). At BNL, the Relativistic Heavy Ion Collider (RHIC) started operating
in 2000. In its first run, RHIC collided Au ions at a center of mass energy of 130
GeV per nucleon pair, about 7.5 times higher than that previously possible in fixed
target experiments at CERN. The main features of the three accelerators are listed
in Tablel.1. At CERN, the Large Hadron Collider (LHC) is under construction and

planned for five years later at even higher collision energy.



Accelerator | System | Beam Energy | COM Energy | Beam Rapidity
AGS Au+Au 4 3.08 2.16
AGS Au+Au 6 3.63 2.55
AGS Au+Au 8 4.10 2.84
AGS Au+Au 10 4.54 3.06
AGS Au+Au 10.8 4.70 3.14
AGS Au+Au 11.6 4.86 3.21
SPS S+S 200 19.41 6.06
SPS Pb+Pb 40 8.76 4.45
SPS Pb+Pb 80 12.32 5.14
SPS Pb+Pb 158 17.27 5.82
RHIC Au+Au 65 130 +4.93
RHIC Au+Au 100 200 +5.36

Table 1.1: The main features of the different accelerators used in relativistic heavy
ion physics, the unit for beam energy and COM energy is GeV/A.

The goal of the ultra-relativistic nuclear collision program is the creation of a
system of deconfined quarks and gluons, an entirely new phase of nuclear matter.
The properties of the QGP and the transition to it have to be identified from the final
state which is of a hadronic nature. If this system is created, its evolution should be
governed by the physics of deconfined matter. There is still no reliable signatures
for the QGP state and the transition. Measurements of azimuthal anisotropies in
the transverse momentum distribution of particles can probe early stages of ultra-
relativistic heavy-ion collisions[96, 97, 81]. Up to now most of the anisotropic flow
parameters measured are for non-strange particles[23, 41, 89, 80, 28, 32, 39] and only
a handful of studies for identified strange particles have been reported[41, 33, 34, 31,
30, 29, 42], all at much lower collision energies. Moreover, previous measurements
of strange particle flow correspond to directed flow. We make the first measurement
of the azimuthal anisotropy parameter for the strange particles K%, A and A from

Au+Au collisions at /syy=130 GeV.

This thesis starts with general aspects of heavy ion collisions (chapter 2), followed
by a description of the RHIC experiment and STAR detector (chapter 3). The

method to reconstruct neutral strange particle in STAR and reconstruct flow signal



experimentally are presented in chapter 4. The result of K% and A + A anisotropy
analysis from first year STAR data are presented in chapter 5.

Central ultra-relativistic nuclear collisions at RHIC produce about ~ 10® parti-
cles and thus present remarkable opportunity to analyze, on an event-by-event basis,
fluctuations in physical observables. The capability of measuring several different
observables event-by-event is also unique to STAR experiment. Analysis of single
events with large statistics can reveal very different physics than studying averages
over a large statistical sample of events. Erraticity method was recently proposed|11]
for event by event analysis by studying event (phase) space patterns with event-
factorial-moments. The influence of statistical fluctuations on this method was
studied with Monte Carlo simulation and CERN NA22 7*p and K*p experiment
data in chapter6 and chapter?7.



Chapter 2

Relativistic Heavy lon Collisions

2.1 States of Strongly Interacting Matter

Ultra-relativistic heavy-ion collisions will produce strongly interacting matter with
energy density much higher than normal nuclear matter. It provides a way to
investigate the behavior of matter under extreme conditions of temperature, pressure

and energy density.

2.1.1 From Hadronic Matter to Quark-Gluon Plasma

Quarks are point-like and confined to “their” hadron by a binding potential
Vo(r) ~ or, (2.1)

where the string tension o measures the energy per unit separation distance. Vy(r)
increases linearly with quark separation, which makes quark cannot exist by itself.
Similar to Debye screening in QED[76], at sufficiently high density we expect colour
screening to set in and the potential(2.1) becomes [19]
1 —exp(—pur
V(r) ~or [Ml : (2.2)
ur

where, p is the color screening mass, which is also the inverse of the screening radius

for colour charges. As shown in Fig.2.1, when p # 0 potential V(r) does not go

5
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Figure 2.1: Color screening of the confining potential, figure from[92].

into infinite as r increases. Color screening thus transform a color insulator into a
color conductor, turning hadronic matter into a quark matter, where the interactions
between quarks and gluons become relatively weak and short range. We call this

new phase of strongly interacting matter the Quark-Gluon Plasma (QGP) [91].

In relativistic thermodynamics, higher densities can be obtained either by in-
creasing the net baryon number density, or by “heating” the system which will
produce further hadrons through collisions. This result in a “T-ug” phase diagram
of strongly interacting matter as shown in Fig.2.2, where pp is the baryon chemical
potential. It is usually represented as a continuous curve connecting the high tem-
perature transition region at up = 0 and the high baryon density region at 7" = 0.
Also shown on the plot the regions that can be reached from the SIS to RHIC at
different beam energy. At low temperature and high density, a diquark conden-
sates may be formed, leading to the appearance of a “color-superconducting” phase,
similar to the superconducting phase in QED, resulting from the Cooper pairs of
electrons[8]. RHIC experiment might probe the near-zero baryon chemical potential
and high temperature region. The region where pup = 0 is believe to exist in the

early universe.

For the study of critical behavior, long range correlations and multiparticle in-
teractions are important, hence perturbation theory (pQCD) cannot be used. Only

numerical lattice QCD (IQCD) methods [64] can provide reliable predictions for the
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Figure 2.2: The phase diagram of strongly interacting matter, figure from|[17].

thermodynamic properties of the QGP phase of the matter. This method is so far

valid only for the case of vanishing net baryon number density.

In Fig.2.3 (left), a plot of the energy density, € scaled by T* is shown vs. tem-
perature, T for different light quark flavours as well as two light and a heavier
quark. This variable €¢/T* is roughly proportional to the number of particle degrees
of freedom important at the energy scale corresponding to 7. The curves clearly
reflect the strong changes in the number of degree of freedom when going through
the transition. At high temperatures, the degrees of freedom are roughly that of a
massless gas of quarks and gluons. In the limit of very high temperature, we expect
them asymptotically approach the Stefan-Boltzmann free gas limit, indicated by the
arrows in Fig.2.3 (left) At low temperatures, the number of degrees of freedom is
small and consistent with a gas of pions. A sharp transition occurs between the
meson system and that of the quarks and gluons where ¢/7* changes by an order of

magnitude.
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Figure 2.3: Lattice QCD results, (left) the energy density in QCDI[64], arrows show
the ideal gas values; (right) order parameter for chiral symmetry breaking in the
chiral limit (m, — 0) and its susceptibility x,, = l%q(\lflm as a function of the

coupling 3 = 6/g%[64].

The origin of the proton and neutron mass is one of the mysteries of QCD.
The masses of the up and down quarks inside a proton are only a few percent of
the nucleon mass. It is believed that this mass is obtained by breaking of a chiral
symmetry of the strong interactions. The symmetry is broken at low temperature
but will restore at high temperature. A measure of this symmetry breaking is (U),
the typical value of a condensate which is composed of quark-antiquark pairs. At
low temperatures, this is non-zero, and rapidly goes to zero at the phase transition
temperature, as shown in Fig.2.3 (right). The nucleon mass is proportional to this
condensate, and so it goes to zero in the Quark Gluon Plasma phase. This mass
shift transition in QCD is often referred to as chiral symmetry restoration. It can

but does not have to coincide with deconfinement transition.

2.1.2 Nucleus-Nucleus Collisions

The rapid growth in this field in the past two decades was to a very large extent
stimulated by high energy nuclear collisions which produce in the laboratory strongly
interacting matter large enough and long-lived enough for a study of statistical QCD.

By varying the bombarding energy as well as projectile and target combinations, it
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Figure 2.4: The space-time picture of nucleus-nucleus collisions.

is possible to create systems of different energy and baryon density.

The head-on collision of two nuclei can be represented as two thin disks approach-
ing each other at high speed due to the Lorentz contraction. For Au+Au collisions
the size of each “disk” in the direction transverse to the beam axis is about 7fm. In
a low energy nucleus-nucleus collision, the two nuclei will remain intact and simply
“bounce off” each other. With increasing energy, they will penetrate each other
more and more, leading to highly excited nuclear matter, which rapidly breaks up
into nuclear fragments and some additional mesons. If the collision energy increase
further, nuclear transparency begins to set in: the two colliding nuclei pass through
each other, leaving behind them a “fireball” of deposited energy, which eventually

decays into hadrons.

The different stages of a nuclear-nuclear collision can be illustrated in the space-
time diagram as Fig.2.4 with the space coordinate z and the time coordinate ¢.
Thick lines represent the trajectories of the colliding projectile nucleus and the

target nucleus, respectively.
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The Relativistic Heavy Ion Collider (RHIC) at BNL is currently studying Au +
Au collisions with center of mass energy /syy = 200 A GeV. At RHIC energies
most of the baryons are expected to be carried away by the receding nucleons (the
fragmentation region) while in the region of the collision a large energy (density) is
deposited in the form of quark pairs and gluons. Therefore, the collision region is a
system with high energy density and small net baryon density, which is similar to

the condition in the early universe.

2.1.3 Collision Evolution and Dynamics

Nuclear collisions produce dense matter in a highly dynamical environment and the
produced matter expands anisotropically near the speed of light. Before a collision,
the partons of the two colliding nuclei are locked into a coherent field configuration.
After the nuclear valence quark disks pass through each other the nuclear QCD
field continue to interact which spans a space-time hypersurface over a proper time
V12 — 22 ~ 30fm/c = 10~??sec. The field then hadronize in a way that is still not
well understood. The dense final hadronic matter can further interact as it expands

toward the detector. The collision evolution process thus can be summarized as:

Initial Conditions: Creating an incoherent gas of gluons from the initial nuclear
field,

Parton Transport: Evolution of the created parton gas toward equilibrium,

QGP evolution: Equilibrated QGP evolutes and finally converts (hadronizes)

into hadronic gas,

The dense hadronic matter expands until the final state interactions cease and

the observed final state hadrons “freeze-out”.

There exists unfortunately no complete computable dynamic theory that consis-
tently takes into account all elementary processes mentioned above. QCD is believed

to be the theory, but it is still not computable except at high p; where perturbative
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or classical methods may apply. Two generic approaches to A+A can be classified
by whether the initial conditions are (1) fit by extrapolating final observables back-
wards via a suitable dynamical scenario, or (2) computed via pQCD or classical
Yang Mills(cYM) and subsequent evolution followed by a dynamical scenario. At
lower energies (AGS, SPS) only the first approach is available since the momentum
scales are simply too low to apply either pQCD or ¢YM. At collider energies (RHIC
and beyond), the production of mini-jets [103, 102, 48] with p; > py ~ 2GeV makes
it possible for the first time to pursue the second approach via pQCD.

Microscopic models were intended to describe nucleus-nucleus collisions based on
a superposition of elementary hadronic interactions and thus provide a description

of what we would expect in a hadronic system without a QGP.

Almost every model started from independent, incoherent collisions between the
interaction elements (hadrons or partons), and then included the effects of rescat-
tering and coherence through string fusion, color ropes, quark droplets, interacting
baryon junctions [53, 2, 1]. “Independence” here means that the successive colli-
sions of a projectile nucleon with the target nucleons do not influence each other.
“Incoherence” means that adjacent nucleons in the projectile do not influence each

others’ interactions with the target nucleons.

Hadronic cascade models are ideal tools for describing the late stages of heavy-
ion collisions, the chemical and thermal freeze-out of hadrons when the dense phase
is over. At RHIC and LHC energies, the conditions for applicability of perturbative
QCD during the very early stages of a collision will be reached. The perturbative
cascade has to be followed by a hadronization model and then an evolution of the

dilute hadronic phase.
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pQCD

The computable lowest order pQCD differential cross section for inclusive p +p —

h + X invariant cross section is given by

doPPh do Dy /e(2e, Q?
Ey—pe = KZ/dxadxbfa/p(xa,QZ)fb/p(a:b,Qg)—A(ab—>cd)w,@ﬁ)
p abed dt TZe

where z, = p,/Pa,z, = py/Pp are the initial momentum fractions carried by the
interacting partons, z. = p,/p. is the momentum fraction carried by the final ob-
servable hadron, f,/,(%, Q?) is the proton structure function for parton of flavor a,
and Dy, (2, Q?) is the fragmentation function for the parton of flavor ¢ into h. At
very high energies classical Yang Mills theory[73, 3, 74] provides a general method
which reduces to pQCD at high p,.

Relativistic Hydrodynamics

The other approach, trying to “fit” the initial conditions by extrapolating the final
distributions backwards with a suitable dynamical model has been traditionally
based on relativistic hydrodynamics[67, 58, 16]. The central assumption is that
thermal and chemical equilibrium are maintained locally in spite of the possible
large gradients in the fluid variables. The approximate longitudinal boost invariant
boundary conditions at ultra-relativistic energies simplify hydrodynamic equations

greatly as pointed out by Bjorken[9]. For up = 0 the hydrodynamic equations are

2,T" = 0, T"(z) = vu'u’(e+ P) — g"'P
gt = 0, jf'(x) = niu” (2.4)

where €(z), P(z) and n;(x) are the proper energy density, pressure and number
density of charge i in the local rest frame of the fluid, and u*(x) is the four ve-
locity field of the fluid. The great advantage of hydrodynamics is that it provides
a covariant dynamics depending only on the equation of state P(T'(x)) that is di-
rectly related to the lattice QCD (IQCD) predictions. When a specific space-time

freeze-out hypersurface is assumed together with the assumption, the Cooper-Frye
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prescription[45, 27], the computed four fluid velocity field can be used to predict
the final anisotropic flow pattern of hadrons. Since this process is assumed to be
reversible, the final distributions together with an assumed freeze out hypersurface
can be used to compute the initial conditions on any desired initial hypersurface.
The disadvantage of this approach[75] is that both the initial and final freeze-out
hypersurfaces must be guessed. Also finite mean free path in reality is outside the
scope of ideal hydrodynamics, and transport theory solution[75] do not support
“sharp” freeze-out hypersurfaces. In spite of some of the theoretical problems, ini-
tial conditions for RHIC have been successfully constructed by ideal hydrodynamics
which reproduce very well many of the low p; observables at RHIC[18, 56]. Some
recent development tries to determine the initial state by using some other model

to calculate it, e.g. event generators[93] or perturbative QCD calculations[63].

2.2 Collective Flow in Heavy-Ion Collisions

The macroscopic properties of nuclear matter under extreme conditions should be
visible most clearly in collective features of the available data[88, 80], which arises
naturally from the many collisions in a heavy-ion interaction but is absent from
elementary processes. Here, the term collectivity denotes a common feature that is
observed for several particles emerging from one reaction. Collective flow is the pro-
totype of such a common feature and describes the movement of a large number of
ejectiles either in a common direction or at a common magnitude of velocities. Re-
stricting this very general definition of collective behavior to kinematic observables

leads to the definition of collective flow:

e “Longitudinal flow” describes the collective motion of the particles in their

original direction defined by the beam.

e “Radial flow” characterizes particles that are emitted from a source with a
common velocity field independent of the direction, i.e. a velocity field with

spherical symmetry.
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e “Transverse flow” is the term used whenever the velocity field is found to be

independent of the azimuthal angle.

e “Anisotropic flow” describes an emission pattern in which particles are found

to be preferentially emitted with respect to a certain azimuthal angle .

All forms of flow are interrelated and represent different parts of one global picture.

We study elliptic flow in this analysis which belongs to anisotropic flow.

2.2.1 Anisotropic Flow in Non-central Collisions

The physics interpretation of non-central collisions is more complicated than that
of very central collisions, since the azimuthal symmetry is no longer present in the
initial state of the interaction. Every event should therefore ideally be analyzed with
respect to this initial azimuthal asymmetry, which would be fully determined by the
orientation and the size of the impact parameter. We define the plane expanded
by the impact parameter vector and the momentum vector of the projectile as the

“reaction plane”.

Non-central collisions offer additional observables due to their deformed, almond
shaped overlap region, which can lead to angular dependencies (relative to the reac-
tion plane) of final state observables which do not appear in central collisions with
azimuthal symmetry [81]. Microscopically, large anisotropies in momentum space
perpendicular to those in configuration space arise only if there is strong rescattering
already in the first moments (~ fm/c) of the collision, and in a hydrodynamical pic-
ture (anisotropic) pressure gradients are building up in the transverse plane, deter-
mining the subsequent evolution of the matter. The stronger forces in the direction
of steepest pressure gradients lead to more transport of matter in those directions
which eventually even out the differences between the radial gradients in the short
and long direction of the initial almond, see Fig2.5. Thus anisotropies observed in
the final state are built up early and in the hottest stages of the collision, as the

cause of these anisotropies disappears during the system’s evolution (on a timescale

of less than ~ 4 fm/c [96, 7, 83]).
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Figure 2.5: From initial spatial anisotropy (left) to final state momentum anisotropy
(right) in non-central collisions

Anisotropic flow is defined as azimuthal asymmetry in particle distribution with
respect to the reaction plane. It is convenient to characterize the magnitude of this
asymmetry using Fourier decomposition of the azimuthal distributions. Then the
first harmonic describes the so-called directed flow, and the second harmonic corre-
sponds to elliptic flow. The word “elliptic” comes from the fact that the azimuthal
distribution with non-zero second order harmonic represents an ellipse. Elliptic
flow characterize the anisotropic emission of particles “in” or “out” of the reaction
plane. Non-zero higher harmonics can be also presented in the distribution. The

corresponding Fourier coefficients, v, are used to quantify the effect[101, 86].

Elliptic flow is a correlation between the azimuth ¢ of an outgoing particle and

the azimuth ®x of impact parameter [101],

vy = <62i(¢_q>R)>

, (2.5)

where brackets denote a statistical average. It is usually characterized in terms of

w= (). (26)

P2’ + Dy?

The initial “ellipticity” of the overlap zone is usually characterized by the quantity

22— 2
5:<x2+y2>, (27)

assuming the reaction plane being xz-plane.

particle momenta as




16

In contrast to this self-quenching effect e.g. for elliptic flow, other dynamical
quantities such as radial flow continue to grow until freeze-out and carry information
about the full expansion stage. This makes elliptic flow particularly sensitive to the

early stages of the system expansion[97].

Changing the centrality leads to a varying number of participating nucleons and
a changing size of the interaction region. The amount of energy deposited in the
collision region as well as the energy density in the system will be largest in central

collisions and decrease with increasing impact parameter.

Anisotropic flow has been measured in relativistic nuclear collisions[88, 23].
Theoretic calculations and Monte Carlo simulations, for SPS and RHIC energies,
has been done over a variety of frameworks: hydrodynamics[81], the low density
limit of kinetic theory[52], parton cascade[7], hadronic cascade codes[96], pQCD jet
quenching[103] and color glass condensate[73].

Cascade calculations based on the incoherent scattering of classical on shall par-
ticles and the low density limit of classical kinetic theory are expected to work best
for peripheral collisions where the density of produced particles is sufficiently low
and only a few rescattering occur. Central collisions produce higher particle densities

where the hydrodynamic limit may be more suitable.

Hydrodynamic Elliptic Flow

The evolution of a hydrodynamical system is determined by its initial conditions
and equation of state (EOS). The initial conditions can be fixed by requiring a good
fit to the p; spectra of particle distributions in central collisions. Including phase
transition or not and different freeze-out temperature lead to different equation
of state. The p, averaged elliptic flow vy as a function of collision centrality is
shown in Fig.2.6 (left) for Au+Au collision at \/syy=130 GeV at RHIC. The data
points are from STAR experiments including all charged particles with || < 1.3
and 0.1 < p; < 2GeV/c. Hydrodynamics successfully reproduces the elliptic flow

measured at RHIC for central and semi-central collisions. Fig.2.6 (right) shows the
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Figure 2.6: Elliptic flow coefficient vy for charged particles from Au+Au colli-
sions at \/syny=130A GeV from hydrodynamic calculation[56] and RHIC STAR
experiment[23], left panel shows centrality dependence, right panel shows p; depen-
dence. The letters Q and H in the labels stand for an EoS with a first order phase
transition and a hadron gas EoS without a phase transition, respectively. Numbers
in parentheses stand for the freeze-out temperature in MeV. For Low Density Limit,
LDL, numbers in parentheses stand for the fraction of final charged multiplicity arise
from resonance decays, figure from[56].

p; dependence of elliptic flow for minimum bias Au+Au collisions at RHIC. Tt is

calculated by
Jbdbvy(py; b) %(b)

dy pt dp:

[bdb P (p)

dy pt dpt

(2.8)

V2\Pt) =

with a cut-off at b,,,, = 13.5fm. The data agree well with hydrodynamical calcula-
tion at low p;. For p; above about 1.5GeV /¢ the measured elliptic flow lag behind
the hydrodynamic prediction, indicating departure from thermalization for high p,
particles. The hydrodynamic curves start out quadratically at low p;, then quickly
turn over to an approximately linear rise and keep increasing monotonically with
pi, eventually saturated at vo(p;) = 1 as p, — 0o. The influence of the initial spa-
tial anisotropies in terms of a hydrodynamic picture represents the limiting case of
maximum response to the initially produced pressure gradients due to strong (in-
finite) rescattering already at the early stages of the expansion. Such an approach
seems appropriate at RHIC energies [56] and is valuable to understand the global

(macroscopic) characteristics of the expansion stage of an ultra-relativistic heavy ion
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collision. The rapidity dependence can be studied by relaxing the boost invariance

assumption and using a genuinely three dimensional model[57].

2.2.2 Transverse Flow in Central Collisions

For central collisions a dense zone of compressed nuclear matter is formed. It is the
pressure that drives the system apart. Only the particles on the surface of the hot
and dense zone are likely to decouple early. Particles on the inside undergo frequent
collisions with each other. Their motion becomes less random because collisions
with other particles toward the inside and toward the outside have different proba-
bilities. In this way, a net collective velocity is attained on the freeze-out surface at
each moment in time. For symmetric systems, the investigation of transverse mass
or of kinetic-energy spectra at midrapidity of particles with different mass yields
information on the collective transverse expansion of the emitting source. We can

fit the transverse mass spectra with a simple exponential distribution

N X exp (—ﬁ> (2.9)

and interpret the inverse slope parameter 7" as the combination of apparent temper-

ature and the effect of collective flow of the emitting source[55], cf. Eqn.2.11.

2.3 Strangeness Production in Heavy-Ion Colli-
sions

Particle production is, at all incident energies, a key quantity to extract information
on the properties of nuclear matter under extreme condition. The study of strange
particle production has consistently played an important role in revealing the pro-
duction mechanisms in relativistic heavy-ion collisions. The K2 is a single strange
meson with quark content (ds) (or (ds) for antiparticles). The A is a single strange

hyperon with quark content (uds) and A(ids) is its anti-particle.

In a hadronic scenario, strangeness particle can be produced through inelastic
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collisions which will drive the system toward chemical equilibrium. A typical process
of this type is 7° + p — K™ + A. In a deconfined QGP, the s§ pair can be copiously
produced through gluon fusion (gg—ss) because the coupling for gluon splitting
into u, d or s quark-antiquark pairs are all equal and the energy threshold for
these processes are much lower than those for strange hadron production. The
enhancement of strangeness production was proposed as a probe for QGP phase

transition[87].

In heavy-ion collisions, a strongly interacting system persists for some consid-
erable time. There are many collisions, and these collisions provide the means for
achieving equilibrium. Thermal equilibrium is driven by the total cross section,
whereas chemical (flavor) equilibrium is driven by the inelastic cross section. What
is measured in heavy-ion collisions is the set of abundances in the final stage, when
hadronic final-state interactions cease. The equilibrium abundances for different
particle species can be predicted in terms of the baryon-chemical potential g, the
strange chemical potential ug, and the temperature 7. These define the standard
partition function Z of statistical mechanics. The hadron abundances are then given
by

N; = \j——1n Z(T,V,...). (2.10)

i,
Here ); is the fugacity [68] for particle species j, given by \; = exp(—pu;/T). The
average chemical potential y; is in turn given by p; = ng-uq + 1l s n? and n are

the net numbers of non-strange and strange quarks, respectively, for species j.

The inverse slope, T', of the m; spectra from all kinds of particles were measured
at SPS energy, see Fig.2.7 and Eqn.2.9. For most of the particles, inverse slope (T')
increase almost linearly with particle mass. This can be explained as the “fireball”
expands with a certain velocity and all particles freeze-out at approximately the
same temperature, then the slope parameter increases with the mass of the particle,
ie.

T = Tihermal + m<6t>2' (2]-]-)

Although the heavier strange particles A and =, along with their anti-particles, still
can fit into the systematics, the slope of 2 and € are significantly lower. A physical



20

scenario in which multi-strange baryons do not participate in a common expansion
and thus decouple early from the collision system due to their small hadronic cross
sections, was proposed to explain this observation[54]. This explanation suggests
that it may be possible to obtain insight into very early stages of the collisions by

studying the elliptic flow of strange particles.
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Figure 2.7: Inverse m; slopes’ dependence on particle mass in central Pb-Pb collisions
at 158GeV /nucleon, figure from[71].



Chapter 3

Experimental Setup

3.1 RHIC Accelerator Complex

The Relativistic Heavy Ion Collider (RHIC)[10] consists of two concentric rings of
superconducting magnets. It is constructed in an existing ring tunnel of ~ 3.8 km
circumference located in the northwest section of the Brookhaven National Labora-

tory (BNL) site.

The major RHIC performance parameters are summarized in Table 3.1. The
top kinetic energy will be 100 x 100 GeV /u for gold ions. At a Bn = 839.5 T-m
of the magnet system set for 100 GeV/u Au beams, the operational momentum
increases with the charge-to-mass ratio, resulting in kinetic energies of 125 GeV /u
for lighter ions and 250 GeV for protons. The collider will be able to operate
over a wide range from injection to top energies. The collider is designed for a
Au+Au luminosity of about 2 x 10% cm™2sec™! at top energy, while maintaining
the potential for future upgrades by an order of magnitude. The luminosity is energy
dependent and decrease in first approximation proportional to the operating energy.

2sec™! for pp

The luminosity for lighter ions will be higher, with ~ 1 x 103! cm~
collisions. The collider will allow collisions of beams of equal ion species from Au-
Au all the way down to p-p. It will also allow operation of unequal species such
as protons on gold ions. The existing tunnel and the magnet lattice configuration

provide six experimental areas where the circulating beams cross. The crossing point

21



22

configuration foresees head-on collisions, but allows crossing angles up to 1.7 mrad.

Physics Parameters

No. Intersection Regions 6

No. Bunches/ring 60

Bunch Spacing (nsec) 213

Collision Angle 0

No. of Au-ions/bunch 1 x10°
Operational lifetime Au ~ 10 h
Diamond length 18 ¢cm rms
Beam separation in arcs 90 cm
Acceleration time 75 sec
Performance Specifications Au P
No. Particles/Bunch 1 x 10° 1 x 10"
Top Energy(Gev/u) 100 250

Luminosity, average(cm 2sec ) ~ 2 x 10?6 ~ 1 x 103

Table 3.1: RHIC Physical Parameters and Performance Specifications

Bending and focusing of the ion beams are achieved by the ring magnets. The
required field is generated with single-layer cosine-theta magnets which are contained
in vacuum vessels separate for each ring, except those near the collision points.
The beam tube in the superconducting magnets is at the temperature of liquid
helium and an extremely good vacuum is required to avoid beam loss and radiation

background.

The complete RHIC facility is a complex set of accelerators interconnected by
beam transfer lines. Formation of the bunches occurs prior to injection. The existing
accelerator complex at BNL consisting of Tandem Van de Graaff accelerators, the
Booster synchrotron, and the Alternating Gradient Synchrotron (AGS), serve as the
injector for RHIC.

The sequence of steps in the chain of accelerators is shown in Fig.3.1 for gold

ions. Gold (Au) ions with charge -1 are generated in the Pulsed Sputter Ion Source
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# OF BUNCHES: 60
100 GeV/u 100 GeV/u # OF IONS/BUNCH: 1x10°
RFycc © 28.15 MHz, 0.6 MV
RFSTORAGE 1197 MHZ, 6 MV
TriLLing : ~1min
TACC :~75sec
T, :~10hrs

10.8 GeV/u, 0 =+79
# OF BUNCHES: (4x1)x 15

95 MeV/u, Q=+77

PROTON

BOOSTER

GOLD BEAM
1 MeV/u, Q=+32, 1 particle uA

PULSED SPUTTER ION SOURCE ’/TANDEM 5

100 A, 700 psec, Q = -1 STRIPPERS

Figure 3.1: RHIC Acceleration Scenario for Gold

and initially accelerated in Tandem Van de Graaff accelerators. Passing through
two stripping foil Au ions exit the Van de Graaff at kinetic energy 1 MeV /u and
+32 charge. The beam from the Tandem is transferred to the Booster where it is
accelerated to 95 MeV /u, stripped once again to +77 charge and then enter the AGS.
In the AGS, the beam is accelerated to full energy, 10.8 GeV/u for gold and 28.3
GeV for proton. It is finally stripped from +77 to +79 charge before injection into
the RHIC ring. Once injected into RHIC, the bunches are accelerated to collision

energy and stored for data taking.

A radio frequency (rf) system are employed at RHIC to capture, accelerate and
store the beam. The acceleration rf system operate at ~ 26 MHz for capture of
the injected beam, acceleration to top energy and bunch shortening at top energy.
After having reached the operating kinetic energy the bunches are transferred from
the acceleration to the storage rf system at 196 MHz. This frequency was chosen
for sufficient longitudinal focusing to keep bunches short over 10 hours storage time.
The beam will be dumped in a single turn (13 psec) by activating the ejection kicker
which deflects the beam horizontally onto a dump block.



24

Four of the six interaction regions are currently occupied by four experiments,
BRAHMS, PHOBOS, PHENIX and STAR. The first commission run occurred in
the summer of year 2000. The first beam-beam collision event at RHIC at collision
energy of \/syy = 60 GeV was recorded by STAR. A few weeks later, STAR recorded
collisions at /syy = 130 GeV, which is the nominal beam energy for the year 2000
summer run. An end view of a central trigger event in the TPC is shown in Fig.

3.2. Tracks are reconstructed from online level-3 trigger.

Figure 3.2: Central trigger event in STAR TPC view from beam direction

3.2 The STAR Detector

The STAR (Solenoidal Tracker at RHIC) detector is one of the two large detector
systems at RHIC. Tt is designed to study pp, pA and AA collisions. It is a large
acceptance cylindrical geometry detector system with complete azimuthal coverage
over the central rapidity region, focusing on measurements of hadron production.
STAR will measure many observables simultaneously on an event-by-event basis to
study signatures of a possible QGP phase transition and the space-time evolution

of the collision process at their respective energy.
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Figure 3.3: The STAR Detector

The configuration of the STAR detector is illustrated in Fig.3.3. It is designed
primarily for measurements of hadron production over a large solid angle. The
entire detector system is located within a 0.5 Tesla solenoidal analyzing magnet.
Inside the magnet are detectors for tracking charged particles and an electromagnetic

calorimeter for detecting photons and identifying electrons.

The RHIC colliding beams collide in the center of the detector and then move
radially outwards from the beampipe. The primary tracking device at STAR is
a large Time Projection Chamber (TPC)[21], which has a diameter of 4 m and a
length of 4.2 m. It begins at 50 cm radially from the beam collision point and
covers the pseudo-rapidity () region [-2, 2]. The TPC allows both momentum
and particle identification information to be gathered, the latter accomplished by

measuring the energy lose of a particle through the TPC’s gas volume. Inside
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of the main TPC, just outside the beampipe, is a 3-layer Silicon Vertex Tracker
(SVT), which is based on silicon drift technology. It consists of three layers of
ladders of silicon drift devices to provide three independent space points with a
resolution of less than 50 microns and three samples of ionization for each track
that traverses the device. The additional information from SVT will improves the
momentum resolution and particle identification over using simply the TPC. The
full SVT covers |n| < 1 with one layer covering |n| < 2. Along with the TPC
there is one Forward Time Projection Chamber(FTPC) on each side, which provide
charge and momentum information in the pseudorapidity range between 2.5 < |n| <
4.0. A radial TPC scheme is used for FTPC, where ionization electrons drift in
an electric field perpendicular to the axial solenoidal magnetic field. Outside the
tracking, covering || < 1 is the barrel electromagnetic calorimeter (EMC). The
STAR detector also includes endcap electromagnetic calorimeters that cover the
magnet poletips between 1 < |p| < 2. They will provide complete coverage for

photons and electrons.

The STAR trigger is designed to operate at a number of levels, allowing more and
more sophisticated decisions to be made as the information from various detectors
becomes available for processing. For triggering on the nuclear collision geometry,
the lowest level trigger system consists of a set of 240 scintillator slats surrounding
the main TPC forming the Central Trigger Barrel (CTB) and two Zero Degree
Calorimeters (ZDC) located 18 meters up and downstream along the beam direction.
The CTB measures charged particle multiplicity in these segments of n and ¢ via
the analog pulse height of the photomultiplier output. The ZDCs measure beam-
like neutrons from the fragmentation of colliding nuclei. Displayed in Fig.3.4 is the
correlation between the summed ZDC pulse height and that of the CTB for event
with a successfully reconstructed primary vertex in TPC. The largest number of
events occurs for large ZDC values and small CTB values, which corresponds to
collisions at large impact parameters. A minimum bias trigger was obtained by
selecting events with a pulse height larger than that of one neutron in each of the
forward ZDC’s which corresponds to 95% of the geometrical cross section. The

design of the ZDCs is the same for all RHIC experiments, allowing for a meaningful
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Figure 3.4: Correlation between ZDC and CTB for events with successfully recon-
structed primary vertex in TPC

comparison of event centrality among RHIC experiments.

During the first year (year 2000) of data taking, the STAR experimental setup
consisted of the TPC, CTB, two ZDCs and a small acceptance Ring Imaging Cherenkov
(RICH). The TPC operated in a 0.25 Tesla solenoidal magnet and gives track-
ing information for charged particles in a pseudorapidity interval of approximately
In| < 1.8. Particle identification at higher momenta was made possible using
RHIC. The RHIC covers only a narrow acceptance window centered at mid-rapidity
(0¢ = 20° in azimuth and |n| < 0.3), thus its measurements in year-1 were statistics

limited.

The design of STAR detector make it possible to measure many quantities on
an event-by-event basis, so that events can be categorized and correlated based on
these characteristics. For the first year, STAR has detected all quantities listed in
table 3.2, as well as the 7°. With EMC we can measure a) 7°, n distributions, b)
High p; particles and jets.
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Hadronic Observables

a) Charged hadrons: p,p, s, K's, =t =7, Q7. Q. d,d

b) Neutral hadrons: A A K b, p, K K*

¢) Spectra: P, particle ratios, slope parameters

d) Collision Geometry: Flow, HBT, E-by-E correlations, FEvent
Multiplicity

Table 3.2: Quantities detected in STAR for year one

3.3 The STAR Time Projection Chamber

The STAR TPC measures 4 m in diameter by 4.2 m long, making it the largest
TPC in the world. As the primary tracking device[22] in STAR, the TPC records the
tracks of particles, measures their momenta, and identifies the particles by measuring
their ionization energy loss (dE/dz). Particles are identified over a momentum range
from 100 MeV/c to greater than 1 GeV/c and momenta are measured over a range

of 100 MeV/c to 30 GeV/c.

TPC is divided into two longitudinal drift regions, each 2.1 m long, with a high
voltage cathode located at the center, as shown in Fig.3.5. Charged particles can
be detected in drift chambers because they ionize the gas along their flight path.
Electrons created from track ionization will drift in the longitudinal direction, along
the TPC electric field lines, toward either end-cap of the TPC, depending on their

point of origin, where their time of arrival and location are recorded.

The uniform electric field is defined by a thin conductive Central Menbrance
(CM) at the center of the TPC, concentric field cage cylinders and the read out
end caps. The central membrance is operated at 28 kV and the end caps are at
ground. The field cage cylinders provide a series of equi-potential rings that divide
the space between the central membrance and the anode planes into 182 equally
spaced segments. Electric field uniformity is critical since any distortions in the
field will result in a distortion of the recorded tracks. The field cage cylinders

serve the dual purpose of both gas containment and electric field definition. The
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Figure 3.5: STAR TPC

mechanical design has been optimized to reduce mass, minimizing track distortions
from multiple coulomb scattering and reducing background from secondary particle

production.

Located on the ends of the TPC, the readout planes consist of Multi-Wire Pro-
portional Chamber (MWPC) with pad readout. Each end-cap is instrumented with
72,000 pads which give zy coordinate information. The TPC is divided into 24 su-
per sectors, each subsequently divided into an inner and outer sector. Two pad size
are used, one for the inner sectors (50 cm<radius<125 cm) and one for the outer
sectors (125 cm<radius<200 cm). Each pad will be read out into 512 time samples
which give z-position for each hit. The chambers have four components, a pad plane

connected to the front end readout electronics and three wire planes, see Fig.3.6.

Different pads designs are used for inner and outer radius, see Fig.3.7. The

outer radius sub-sectors have continuous pad coverage to optimize the dE/dx res-
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Figure 3.6: A cutaway view of an outer sub-sector pad plane

olution(i.e. no space between pad rows). For the inner radius region of the TPC,
where track densities are high, a sub-sector design have been used to improve the

two track resolution.

The three wire planes are the gating grid, the ground grid, and the anode grid.
The ground grid and gating grid help to define the drift field of the TPC. The
anode wires are biased to a high voltage to provide the necessary electric field to
avalanche the electrons from the track ionization. The outermost wire plane on the
sector structure is the gating grid located 6mm from the ground grid. This grid is
a shutter to control entry of electrons from the TPC drift volume into the MWPC.
It also blocks positive ions produced in the MWPC from entering the drift volume
where they would distort the drift field. It is transparent to the drift of electrons
while the event is being recorded and closed in the rest of the time. The ground
grid lies between the anode wires and the gating grid. It helps to define the anode
wire avalanche cells and shield the pad plane and anode grid from feeling the full

impact of the gating grid noise.

P10 (90% Argon + 10% Methane) is the working gas in TPC. The gas sys-
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Figure 3.7: The anode pad plane with one full sector shown

tem circulates the gas in the TPC and maintains purity, reducing electro negative

impurities such as oxygen and water which capture drifting electrons.

The tracks of a primary particle passing through the TPC is reconstructed by
finding ionization clusters along the track. The x and y coordinates of a cluster
are determined by the charge measured on adjacent pads in a single pad row. (The
local = axis is along the direction of the pad row, while the local y axis extends from
the beamline outward through the middle of, and perpendicular to, the pad rows.
The z axis lies along the beam line.) The z coordinate of a point inside the TPC is
determined by measuring the time of drift of a cluster of secondary electrons from
the point of origin to the anodes on the endcap and dividing by the average drift
velocity. To minimize the variations in drift velocity, the cathode voltage are set so
that the electric field in the TPC corresponds to the peak in the drift velocity curve.
Typical drift velocity in STAR TPC is 5.45 cm/pus.

The discrete signals from each sector are delivered to DAQ from 6 readout cards
and the data from each read-out card are then send to a DAQ receiver card via
an optical fiber. TPC readout starts after the Lg trigger latency (~ 1 ps). In the
DAQ), these data are processed, including pedestal subtraction, gain correction and

zero suppression etc. Data from each detector subsystem are assembled together for
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recording and distribution. Combined with the L3 trigger system, the DAQ allows
event selection based on physics criteria. Compared to the beam crossing rate, the
STAR TPC data-taking is relatively slow due to the event size. The trigger system
will allow us to look at every RHIC crossing and decide whether or not to initiate

recording that event.



Chapter 4

Analysis Methods

4.1 Event Reconstruction in the STAR TPC

Tracking software will associate space points to form tracks and fit the points on a
track with a track-model to extract particle information, such as the momentum.
The track-model is a 3D helix with energy lose and multiple scattering effects in
the gas which will deviate a particle trajectory slightly from the helix. For year
2000 run we only get track information from TPC. The tracking efficiency depends
on the acceptance of the detector, the electronics detection efficiency, as well as
the two-hit separation capability of the system. Embedding simulation studies’
results indicate that the systematic error on the tracking efficiency is about 6%.
Fig.4.1 shows the pion reconstruction efficiency in Au+Au collisions with different
multiplicities as a function of the transverse momentum of the primary particle[17].
In high multiplicity events it reaches a plateau of 80% for high p, particles. Below
300 MeV /¢ the efficiency drops rapidly because the primary particles spiral up inside
the TPC and donot reach the outer field cage. In addition, these low momentum
particles interact with the beam pipe and the inner field cage before entering the
tracking volume of the TPC. The overall track reconstruction efficiency, finding
and accurate track parameter determination, is a very critical parameter in the

strangeness reconstruction.

33
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Figure 4.1: The pion tracking efficiency in STAR for central Au+Au events at RHIC
for different multiplicity in a 0.25T magnetic field, figure from|[60].

4.1.1 Helix Model

In principle five parameters are needed to define a helix. A 3D helix track-model
suitable for STAR geometry and magnetic field to the first order can be parameter-

ized as

x = xy+ R(cos(P(s)) — cos(Py))
y = Yo+ R(sin(P(s)) — sin(Py)) (4.1)

z = 2zp+ ssinA

where R is the radius of the curvature, ®, = ¥ — hn/2 is the azimuthal angle of
the starting point, h = —sign(¢B) is the sense of rotation of the projected helix
in the zy-plane, ¢ is the charge of the particle in units of positron charge, B is
the z component of the homogeneous magnetic field (B = (0,0, B)) and ®(s) =
@y + h(s/R) * cos(A), s is the path length along the helix, xq, yo, 2o is the starting
point at s = 0, ¥ = (dy/dz)s—p is the azimuthal angle of the track direction at the
starting point, see Fig.4.2. We define bend plane relative to the B field which is
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along the beam axis while the transverse plane perpendicular to the beam axis.

s>0 Z\

Vi

X S

Figure 4.2: Projection of a helix onto the transverse plane (a) and onto the bend
plane (b)

The helix parameters are given by two simultaneous 2D fits, in the bend plane
and the transverse plane respectively. The circular fit in the zy-plane gives the
center of the fitted circle (zy, o) and the curvature k = 1/R while the linear fit in
bend plane gives 2, and A\. The curvature of the track is related to the transverse

momentum by
P = cqB/k, (4.2)

with the following units: x in [m™!'], B in [Tesla], ¢ the speed of light in [m/ns| and

pe in [GeV/¢]. Longitudinal momentum can be evaluated as:

P, = pitanA. (4.3)

Transverse momentum resolution is estimated with embedding simulation. Fig.4.3
shows the p; resolution for pions and kaons in STAR[60]. At low momentum, mo-
mentum resolution is dominated by multiple Coulomb scattering while, at high
momentum, it is limited by the strength of the magnetic field and the TPC spacial
resolution. The best relative momentum resolution falls between these two and it is

1.9% for pions.
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Figure 4.3: Transverse momentum resolution of the STAR TPC for pions and kaons
in a 0.25T magnetic field, figure from[60]

4.1.2 Primary Vertex Reconstruction

With all of the tracks reconstructed in the TPC, the primary vertex is found by
extrapolating tracks back to the origin. The global average is the vertex position.
First, the helices are projected to a reference point which is close to an estimated
vertex. The natural choice of the reference point would be the center of the beam
profile which in 3D is the central axis of the beam diamond. Then, a x? minimization
of the perpendicular distances from the track vectors to a point, distance of closest
approach (DCA), is used to decide the primary vertex position. Nearby the central
axis, instead of helix, straight line approximation is used for an analytical solution,
see Fig.4.4. Tracks at large distances from the central cluster (outliers) have a strong
influence on the results. A simple “truncation” method is used in an iterative way
to remove the outliers and improve the “robustness” of the fit. We first use all
reconstructed tracks to get an estimate of the vertex parameters. Then we use that
as a seed to the next iteration and we remove from the track pool all tracks with
distances greater than a certain cut value. The new vertex, is then used as a seed

to the next iteration. The whole process converges after 3-4 iterations.

The primary vertex resolution decreases as the square root of the number of

tracks used in the calculation. A resolution of 350 pm is achieved when the number
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Figure 4.4: Concept of minimization of distances of closest approach.

of tracks is above 1000, see Fig.4.5[60]. It is calculated by comparing the position

of the vertices that are reconstructed using each side of the TPC, separately.
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Figure 4.5: Primary vertex resolution in the transverse plane, figure from[60]

Primary vertex determines the interaction point. Global tracks with distance
of closest approach to primary vertex less than 3 cm will be refitted including the
vertex as an additional space point, which gives different parameters associated with
primary tracks. The accurate determination of the main vertex thus is essential for
the ability to discriminate between primary and secondary tracks, which in turn
decide the reconstruction of secondary vertices. Weak decay strange particles K3

and A(A) used in this analysis are identified this way.
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4.1.3 Particle Identification with dFE/dx

The calculable charge particle energy loss through the TPC gas is a valuable tool
for particle identification. It works especially well for low momentum particles but
as the particle energy rises, the energy loss becomes less mass-dependent and it is
hard to separate particles. By truncating the largest 30% of the dE/dx samples on
a track, the mean value of the remaining 70% of the dF/dx sample were calculated.
In the STAR TPC, the maximum possible number of dE/dz is the TPC pad rows’
number, 45. The measured mean (dE/dz) can be described by the Bethe-Block
function and the resolution 0. We can select a certain kind of particles by applying
that particle’s mass in Bethe-Bloch formula and cut on number of o. Fig.4.6 shows
the energy loss for particles in the TPC as a function of the particle momentum.

dExh vw p |
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Figure 4.6: Particle energy loss versus momentum

4.2 Secondary Vertex Reconstruction

The neutral strange particles with two-body charged weak decays, K2 mesons and A
and A hyperons, are detected through their typical decay topology. The properties

of these decays are summarized in Table4.1. The mean lifetime of these particles
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implies that their decay vertex will, in most cases, be well separated from the primary
vertex. In Collider experiments the separations between secondary vertex and the
primary vertex are on the order of a few centimeters because of the lower momenta
in a collider environment while it range from a few tens of centimeters up to a
few meters in fixed-target experiments. A well-separated secondary vertex and two
tracks of opposite charge (“V” topology with “0” net charge) is the signature for
neutral strange decay, cf. Fig.4.7.

Particle ~ Decay  Fraction(%) c¢7(cm) Mass(GeV/c?)
Kg T 68.6 2.68 0.496
A(A)  pr(prt) 63.9 7.89 1.115

Table 4.1: Decay parameters of VO particles

The majority of V0Os decay before they reach the TPC Inner Field Cage and the
neutral VOs can not ionize the TPC gas. They are reconstructed in STAR with
the standard VO analysis method, i.e. looking for charge decays of K2 and A(A)
particles. Fig.4.7 shows a schematic representation of a V0 decay: a neutral particle
emitted from the primary vertex V travels a distance ry (decay length) and decays

into two charge daughter particles which are consequently detected in the TPC.

The main steps of VO reconstruction can be described as below, considering all

tracks in each event that do not originated from the primary vertex.

e For any pair of tracks of opposite charges in an event checks for a common
vertex. This is done by checking the distance between them at the point of the
closest approach. If a 3D distance between the tracks at that point is greater
than a certain value, the pair is consided as not originated from a common

point and rejected.

e The next check is the distance between the secondary vertex and the primary
vertex (the main vertex position assumed to be known with infinite accuracy).

The decay vertex has to be beyond a certain distance. This avoids the very
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VO reconstruction

VO (pt)
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Figure 4.7: VO decay topology and some important associated parameters, figure
from[95].

large number of random crossings close to the primary vertex.

e Then an invariant mass analysis is performed which gives the mass and the

three momentum components of the parent particle.

e Finally we require the parent particle to be emanated from the primary vertex.

It’s impact parameter has to be less than a cut value.
However, due to

e The high multiplicities at RHIC, up to 2000 in a central Au+Au event around
mid-rapidity

e Most of the VO vertices are close to the primary vertex
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e Finite position and momentum resolution

e Multiple Coulomb Scattering (MCS)
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Figure 4.8: Characteristic cut distributions for either real(left) or fake(right) VO

decays, figure from[95].

many fake secondary vertices are formed, which is known as combinatorial back-

ground. We can minimize the background by putting cuts on various quantities.

The distribution of three most common cut variables from FRITIOF MC simulations

are shown in Fig.4.8. These cuts are, the impact parameter (b) of the reconstructed

VO from the event vertex (upper), the distance of closest approach (dca) of the two
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daughter tracks (middle), and the decay distance of the VO from the primary vertex
ry (lower). The left column shows the distributions for real VO particles (K3 here),

whereas the right column shows the combinatorial background.

The VO information will be used further to reconstruct multiple strange particles

= (strangeness 2) and  (strangeness 3) which decay into As and pions or kaons.

4.3 Event Selection

During the summer 2000 run, real data was taken with two different trigger condi-

tions:

e minimum-bias trigger requiring a coincidence between the ZDC’s

e central trigger requiring ZDC coincidence and a high multiplicity in the CTB

The central trigger corresponds to approximately the top 15% of the measured cross
section for Au+Au collisions. The results presented here are from about 200,000

minimum-bias trigger events and 180,000 central trigger events.

During the summer 2000 run, the collision vertex position varied considerably.
Since the collision vertex position has a great effect on the particles acceptance in
transverse momentum (p;) and pseudo-rapidity (1) phase space due to pure geomet-
ric effects or the material distributions in the TPC, only events with primary vertex
position within 75 cm longitudinally of the TPC center and within 1ecm radially of
the beam line are used in the analysis. The total charged track multiplicity distribu-
tion with pseudo-rapidity window |n| < 0.75 is used for the centrality measurement,
see Fig.4.9. The eight centrality bins and the corresponding cross sections are listed
in Table4.2. The integral under the curve is 1.0 and the cumulative fraction corre-
sponding to the lower edge of each centrality is indicated in percentage. The three
centrality bins used in this analysis are 85-45%, 45-11% and the top 11% which are
respectively a combination of bin 1-2 in low multiplicity centrality, bins 3-6 for the

mid-central bins and bins 7-8 for the most central bins, cf. Table4.2.
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Figure 4.9: The primary track multiplicity distribution as a function of the number
of tracks normalized by the maximum observed number of tracks, figure from|[23].

Centrality Bin  Multiplicity Measured Cross Section Geometric Cross Section

1 20-100 58-85% 53-77%
2 100-180 45-58% 41-53%
3 180-270 34-45% 31-41%
4 270-360 26-34% 24-31%
5 360-460 18-26% 16-24%
6 460-560 11-18% 10-16%
7 560-660 6-11 % 5-10 %
8 > 660 Top 6 % Top 5 %

Table 4.2: Centrality bins in Fig.4.9 from reference[23] and corresponding measured
cross section as well as associated geometric cross section for Au+Au collisions

4.4 Anisotropic Flow Analysis Relative to the Re-
action Plane

Some important development has been made in recent years in the approach suitable
for flow studies at high (AGS/SPS/RHIC) energies [4] where the longitudinal flow
is well decoupled from transverse flow. This means that at high energies we do
not have to rotate to the flow axis to study the flow pattern[89], instead use the
plane transverse to the beam axis. Thus we discuss anisotropic transverse flow

from the particle azimuthal distributions at fixed rapidity or pseudorapidity. The
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azimuthal distribution is generally described by means of a Fourier expansion[15],
and the different kinds of anisotropies are characterized as corresponding to different

harmonics.

The essence of the method can be summarized as:

e First estimate the reaction plane, i.e. event plane.

e Then evaluate the Fourier coefficients in the expansion of the azimuthal dis-

tribution of particles with respect to event plane.

e Correction for finite number of detected particles and detector acceptance if

it does not have full azimuthal coverage.

4.4.1 Fourier Expansion

The most often used triple differential particle distribution can be written in terms
of Fourier series of particle emission azimuthal angle measured with respect to the

reaction plan

BN 1 &N (

- = 1 20, -0 , 44
d*p 21 pudpdy + 2, 2omcosfnls R)]> 44

n=1
where Wy is the true reaction plane angle, i.e. the angle between the z-axis and the
reaction plane. We define the longitudinal or beam direction as the z-axis, and the
transverse plane as x-y plane. The sine terms in the expansion vanish due to the
reflection symmetry with respect to the reaction plane. In a given rapidity (y) and

p; interval the coefficients are determined by
v, = (cos[n(¢ — ¥g)]). (4.5)

Similarly this Fourier expansion can be done in coordinate space, where for a given

rapidity and p, interval the coefficients are determined by

rm = (cosn(arctan((y/z) — Ur)]), (4.6)

where x, y are the particle space coordinates at freeze-out.
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4.4.2 Estimation of the Reaction Plane

The reaction plane can be reconstructed only if the final state of the interaction
products retains some memory (azimuthal asymmetry) of the initial collision ge-
ometry. The method uses the anisotropic flow itself, i.e. different order azimuthal
event shapes, to determine the reaction plane. That means the reaction plane can
be determined independently for each harmonic of the anisotropic flow. The reac-
tion plane vector (), and the reaction plane angle ¥,, from the nth harmonic of the

distribution are defined by

Queos(n¥,) = X, = wcos(ng;),

Qnsin(n¥,) = Y, = Zwisin(nqﬁi), (4.7)
and
3 wsin(ng;)
U, = [tan 'L~ / 4.8
< a > wicos(ng;) " (48)
where n=1, 2, 3, ..... For odd values of n, the weighting factor w; has a different sign

in the forward and backward hemispheres to account for momentum conservation.
The reaction plane angle ¥, determined from the nth harmonic is in the range
0 < ¥, < 27/n. For a given n the corresponding Fourier coefficient v, can be
evaluated using the reaction planes determined from any harmonic m, with m < n,
if n is a multiple of m. That is, the first harmonic plane can be used, in principle,
to evaluate all v,. However, in general, it is true that better accuracy for the
determination of v, is achieved by using the event plane (¥,) determined from
the same harmonic because the resolution deteriorates as k = n/m increases. The

quantity ¢ — ¥, has a lowest order periodicity of 27 /m.

4.4.3 Reaction Plane Resolution

The magnitude of the anisotropy and the finite number of particles available to

determine the reaction plane leads to a finite resolution. Therefore, the measured

obs

v’ coeflicients with respect to the reaction plane have to be corrected for the
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reaction plane resolution

vobs

"= s (T, — U]} (4.9)

The mean cosine values are less than unity thus this correction always increases the

flow coefficients. However, the true reaction plane angle, Ug, is unknown experi-
mentally. Following Ref.[4], if one constructs the reaction plane from two random

subevents, the corresponding correlation function can be written as
(cos[n(¥y, — Wy)]) = (cos[n(¥}, — Wg)]) x (cos[n(¥;, — ¥g)]), (4.10)

where ¥,,°, U, are the angles of the event planes determined in the subevents. The
assumption made here is that there are no other correlations except the ones due
to flow, or that such other correlations can be neglected. This relation permits the
evaluation of the event plane resolution directly from the data. For two subevents

with equal multiplicity the resolution of each of them is

(cos[n(We — Wg)]) = 1/ {cos[n(Ta — Wt )]). (4.11)

The full event plane resolution can be calculated from the sub-event resolution,
taking into account that the multiplicity of the full event is twice as large as that of

the sub-event

(cos[n(T,, — Tg)]) = V2(cos[n(Te — Up)]). (4.12)

Generally, we have

(cos[n(W, — Ug)]) = C x \/(cos[n(Te — W))), (4.13)

where C'is a correction[86] for the difference in subevent multiplicity compared to

the full event.

Biases due to the finite acceptance of the detector which cause the particles to
be azimuthally anisotropic in the laboratory system can be removed by making the
distribution of event plane isotropic in the laboratory. This is not needed in STAR

because of its full azimuthal coverage.



Chapter 5

Results

5.1 Reaction Plane Evaluation

5.1.1 Reaction Plane Distribution

Primary tracks passing the selection criteria listed in Table5.1 were used for reaction

plane reconstruction. Tracks were required to have at least 15 space points to ensure

Track Selection Criteria

Number of hits on track > 15
DCA to primary vertex < lem
Proton-like track DCA to primary vertex < 0.5cm (for A + A vy )
Transverse momentum 0.1 <p <20 GeV/e
Pseudorapidity In| <1.0

Table 5.1: Track quality and kinematic cuts for reaction plane reconstruction

the quality of tracks and get rid of short tracks which are mostly coming from “ghost”
tracks in tracking. In order to have a constant tracking efficiency within £10% tracks
were selected with 0.1 GeV/c < p; < 2.0 GeV/e. Also, the ratio of the number of
space points to the expected maximum number of space points for that particular
track was required to be greater than 0.52, which will largely suppress split tracks

from double counting. These cuts are used for getting better reconstructed reaction

47
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plane. However, the analysis results are not sensitive to these cuts.

The reaction plane angle are calculated with the subevent method. In our anal-
ysis, the two subevents are obtained by dividing all particles of an event randomly
into two subevents. Reaction plane vector is calculated from each subevent, (@1,
(1y) and (Qay, Q2y). Average the results from two subevents we get the reaction

plane vector for the full event:

Q:v = %(le + QQm) ) Qy = %(Qly + Q2y)

and the reaction plane angle:

\IIR = (tan_1%> /2

If a particle is used for both reaction plane evaluation and v, calculation, strong
correlation will be introduced by using the same particle. This is generally called
“auto-correlation”. To avoid this effect, correlation of each particle with the event
plane of the other particles should be considered. Since only primary track with DCA
less than 1cm are used for reaction plane reconstruction and neutral strange particle
are reconstructed from decay particles, or secondary particles, most of which has
relatively large DCA to primary vertex, this will help us solve the “auto-correlation”
problem in an “simple” way. For K2 reconstruction we ask for decay tracks having
DCA to primary vertex larger than 1.5 ¢cm. Thus, there is no overlap between
particles used for reaction plane reconstruction and particles used for VO vertex
reconstruction. Since one of the A(A) decay particle, proton(anti-proton), is much
heavier than the other one, 7= or 7™, it usually take most of the mother-particle’s
momentum, which make it in many cases more like a primary track instead of a
secondary track. In this analysis we have proton(anti-proton) DCA to primary
vertex cut at 0.7 cm which is less than lcm. To remove “auto-correlation”, a 0.5
DCA to primary vertex cut on proton-like track are added when we evaluate reaction
plane for A(A) vy. A track is considered proton-like if its energy loss (dE/dx) is
within three standard deviations of that expected for protons. The uncorrected

reaction plane angle distributions for K% and A(A) are shown in Fig.5.1.
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Figure 5.1: Reaction plane angle distribution before correction for Kg (left) and
A(A) (right) vy calculation

5.1.2 Flattening of Reaction Plane Distribution

The good azimuthal symmetry and large phase space coverage of STAR TPC is a
great advantage for flow analysis. Since the orientation of the impact parameter
vector is random, the distribution of the determined reaction plane should be uni-
form (flat). The non-flat event plane angle distributions in Fig.5.1 are the direct
result of deficiencies in the acceptance of TPC ( bad read-out board during the run).
Multiplicity dependent corrections are applied by generating a weighting file in ev-
ery centrality bin, cf. Table4.2, according to particle azimuthal distribution. This
weight file is then used in reaction plane angle determination, cf. Eqn.4.7, which
goes into the w; term. After correction the event plane angle distribution becomes
flat, see Fig.5.2. Such corrections ensure the absence of spurious flow signals which

could result from distortions in the reaction plane distributions.

5.1.3 Reaction Plane Resolution

The measured full reaction plane angle resolution was estimated from the two

subevent reaction plane angles. The reaction plane resolutions in 8 flow centrality
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Figure 5.2: Reaction plane angle distribution after acceptance correction for K2 (left)

ve and A(A)(right) ve

bins are shown in Fig.5.3. A maximum resolution of 0.683+0.005 and 0.652+0.006 is
reached for the K% and A+ A analysis respectively in mid-central events. This value
is much higher than that get at SPS energy (NA49 only reached 0.4[40]) and closer
to the ideal value of 1.0. The reaction plane resolution is lower for most periph-
eral and most central events because of low multiplicity and less event anisotropy
respectively. The event plane resolution for A + A v, is a little less than that for
K9 due to the additional proton-like track DCA cut. The reaction plane resolution
from minimum bias events is 0.528 + 0.002 for K v, calculation and 0.494 + 0.003

for A(A) vs.

5.2 K2 and A(A) Reconstruction

5.2.1 K9 and A(A) Invariant Mass Distribution

The cuts used for K2 and A(A) reconstruction are listed in Table5.2. A 30 dE/dx cut

is used for select proton (anti-proton) for A(A) reconstruction. Since all the events

were dominated by pions, this cut greatly reduces the combinatorial background,
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Figure 5.3: Reaction plane resolution for K% (left) v, and A + A (right) v,

while a cut on pion dE/dx do not show much effect. Decay daughter track DCA to
primary vertex cuts were applied to exclude primary tracks. DCA between the two
daughter tracks are used to eliminate track pairs that are not come from the same
common decay vertex. Reconstructed mother particle DCA to primary vertex cut
is used because the neutral strange particle are from the primary vertex. All these

cuts together reduce the combinatorial background greatly.

For track pairs passed all the cuts listed in Table5.2, the invariant mass for the

Track Selection Criteria K? AA
Number of hits on track > 15 > 15
Track (p, p) DCA to primary vertex N/A > 0.9 cm
Track (7—,7") DCA to primary vertex >15cm >25cm
Positive and negative track DCA <0.75 ecm < 0.75 cm
Track (K% or A(A)) DCA to primary vertex < 0.7cm < 0.7 cm
Decay Length > 5 cm > 5 cm
Pion PID N/A N/A
Proton PID N/A < |30|

Table 5.2: Track quality and kinematic cuts for K% and A(A) reconstruction
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Figure 5.4: Invariant mass distributions for 777~ showing a K% mass peak (left

panel) and pr~ (pr*) showing a A(A) mass peak (right panel)

decay vertex is calculated by

m = \/(\/mp2 + B2+ \/mn2 + P,%)? — P2, (5.1)

where subscript p and n represent positive and negative decay particle respectively.
For K reconstruction pion mass are used for both m, and m,,. For A(A) one of them
is substituted with proton (anti-proton) mass. P, and P, are positive and negative
track momentum at the DCA points and P = P, + P, is the total momentum. With
all the topological cuts used, clear signal is observed in invariant mass distributions.
Fig.5.4 shows the invariant mass distribution for reconstructed K% (left) and A(A)

(right) with the cuts listed in Table5.2 from minimum bias collisions.
A Gaussian fit to the invariant mass peak gives:
Massgg = 496 + 4 Mev /c?

Widthyg = 15+ 1 Mev/¢?

and

Massy = 1116 & 7 Mev/c?

Width, = 54 1 Mev/c?
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They are consistent with values listed in the PDG[25] and the widths are determined
by the particle momentum resolution of the detector. The cuts used in this analysis
are chosen to maximum the signal to background ratio in the mean time without

losing much statistics. The typical signal to background ratio in our analysis is

about 4:1 for K2 and 5:1 for A(A).

Podolanski-Armenteros plot

pArm

0.25

0.2

0.15

0.1

0.05

Figure 5.5: Podolanski-Armenteros plot for VOs

Fig.5.5 is the Podolanski-Armenteros plot[85], which is traditionally used to show
the three possible weak VO decays. Only V0 vertex candidates that fall into the mass
window equal to two times Gaussian fit width around the mass peak are used for this
plot. This plot decompose the momentum of each decay track into two components:
perpendicular to the total momentum (p;Arm) and parallel to the total momentum
(p1). For each decay, we plot the value of p,Arm (which is by definition the same for
both tracks) versus the variable o = (p;” — p;)/(p;” +p; ), constructed from parallel
momenta of the positive and negative tracks. Clear K% and A, A bands can be seen
on the plot. The maximum value of p,Arm occurs when the decay products are
perpendicular to the direction of the parent in the rest frame which means that for

K?, with identical mass daughters, « is equal to zero.
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5.2.2 Background Subtraction

The combinatorial background has to be subtracted before calculating v,. We can
fit the invariant mass distribution with either a combination of a Lorentzian (Breit-
Wigner) function for the signal and a 2nd order polynomial function for the back-
ground, or a combination of a Gaussian function for the signal and a 2nd order
polynomial function for the background. Comparing the two fits, Lorentzian fit, see
Fig.5.6, tends to overshot the mass peak while the Gaussian fit, see Fig.5.7, always

under-estimate the raw yield[71].
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Figure 5.6: K2 (left) and A (right) invariant mass fit with Lorentzian function.
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Figure 5.7: K3 (left) and A (right) invariant mass fit with Gaussian function.
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For vy analysis we need to subtract background in individual ¢ and p; bins. In
higher p; region, much less statistics can be got in a particular bin, which makes
it even harder to have a good fit of the signal peak. It turns out that the track
rotation together with bin counting method is more suitable for this analysis to get
K% and A(A) raw yields. The basic idea of this method is similar to the mixing
event method[65] and first used by Hui Long[71] in A(A) analysis in STAR. Instead
of taking a track from another event, one of the two decay tracks is rotated by 180
degree in the azimuthal plane with respect to the primary vertex. In this way, all
the decay vertices were destroyed because one of the daughter tracks is rotated away
without changing the symmetry of the whole event statistically. After track rotation,
secondary vertex is reconstructed again in exactly the same way, but this time only

combinatorial background is reconstructed, see Fig.5.8. With this method most of

2] [%2]
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Figure 5.8: Invariant mass distributions for 747~ (left panel) and pr~(pr™) (right
panel) after rotating one of the daughter tracks

the combinatorial background can be subtracted. The invariant mass distribution
after background subtraction from minimum bias events for K§ and A are shown in

Fig.5.9.

The raw yield is estimated by bin counting method. This method obtain the

yield by simply summing the number of counts in the peak. Since some background
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underneath the peak remains, by simply summing the entries in the histogram be-
tween the limits, the background is also being counted in the yield. The two limits
used in the bin counting method are 2 times Gaussian fit width around the mass
peak value for both K2 and A(A). For K2, a first order polynomial function is used
to fit the background and the fitted background within the same limits are sub-
tracted to get the raw yield, see Fig.5.9 (left). For A and A almost no background
is left after the track-rotation background subtraction. We suppose the background
is linear in shape and background shape do not change under the mass peak. Thus,
we can simply subtract the background values from either side of the peak, in such
a way that the total range of the background subtraction is equal to the range under
the peak, see Fig.5.9 (right). The bin counting method is reliable in the limit of low
statistics, where a fit may fail. The differences that occur when using different cuts
in VO vertex reconstruction and different yield subtraction methods is used later to
estimate the systematic error. The typical raw yield per event for this analysis is

about 0.7 for K3 and 0.3 for A for minimum bias events.

) a
c r 0 c
S 10000 K > C
3 C ©10000
O L S O L
8000 8000
6000~ 6000k
4000~ 4000}
2000~ 2000}
el L
O_...I...I...I...I...I...I...I... 0 Ly v by by by by by
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 106 108 11 112 114 116

M. (GeVic?) M, (GeVic?)

Figure 5.9: K2 and A invariant mass distribution after track-rotation background
subtraction. Raw yields are got by add the histogram bin content and subtract the
fitted background for K2 or subtract background from either side of the peak for
A(N).

After background subtraction and extracting the raw yield, K% and A(A) phase

space coverage of raw data can be calculated. The y-p; coverage for the K% and A
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Figure 5.10: Phase space coverage for K (left) and A (right) in p; and rapidity, the
box size is proportional to the contents.

from minimum bias collisions are shown in Fig.5.10 . The A has the same phase space
coverage as A. The cut-off at low p; is due to the detector acceptance effect for low
p¢ pions and protons. The reconstructed neutral strange particles are concentrated
between |y| < 1 and p; < 2 GeV/c. For our analysis a rapidity cut —1 < y < 1is
added to keep a roughly constant acceptance in rapidity. The particle identified and
used for the vy analysis are from the kinematic region 0.2 GeV/c < p; < 3.2 GeV/c
for K2 or 0.3 GeV/c < p; < 3.2 GeV/c for A + A.

5.3 Elliptic Flow of K2 and A + A

With the determined azimuthal angle of the reaction plane (¥p) event by event and
the reconstructed neutral strange particles, azimuthal angle distributions of K2 and
A(A) with respect to reaction plane, ¢ — Wg, can be reconstructed, which is done
in several steps. Here, ¢ is azimuthal angle of the reconstructed neutral strange
particle. Since no significant differences in elliptic flow are observed between A and

A, to compensate for limited statistics, A and A are summed together in the analysis.

e First, the invariant-mass distribution calculated from the raw data for every
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studied trigger and reaction centrality window were divided into transverse
momenta p; and azimuthal angle ¢ — Wg bins, with p; bin width of 400 MeV /¢
and ¢ — ¥ bin width 10 degree.

e Then, the combinatorial background was generated and divided into the same

p; and ¢ — WU bins and subtracted.

e Finally, after background subtraction, we count the raw yields in the mass

peak and get the azimuthal angle distributions.
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Figure 5.11: Azimuthal angle distribution for K from minimum bias events in two
pe bins 0.8 GeV/c < p; < 1.2 GeV/c (left) and 1.6 GeV/c < p; < 2.0 GeV /¢ (right)
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Figure 5.12: Azimuthal angle distribution for A + A from minimum bias events in
two p; bins 0.8 GeV/c < p; < 1.2 GeV/c (left) and 1.6 GeV/c < p, < 2.0 GeV/c
(right)
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The result for K2 in 0.8 GeV/c < p; < 1.2 GeV/c and 1.6 GeV/c < p; < 2.0 GeV/c
are shown in Fig.5.11. A 4+ A azimuthal angle distributions in the same p, region
are shown in Fig.5.12. The uncertainty in the ¢ distribution comes from both the
signal and the background subtraction. Use S for signal, T' for total reconstructed

candidate and B for background, we have
S=T-8B
(AS)? = (AT)? + (AB)?
AT=vT , AB=VB

From the ¢ — g distribution, we calculate vy = (cos[n(¢ — ¥g)]) and the center

position of every ¢ — WUy bin is used in the calculation.

5.3.1 K2 and A + A v, from Minimum bias Collisions

The differential elliptic flow vo depends on mass, rapidity and p;. In Fig.5.13, va(p;)
is shown for K% and A + A for minimum bias collisions, integrated over rapidity and
centrality by taking the multiplicity-weighted average. The uncertainties shown are
statistical only. The dashed-lines represent the hydrodynamic model calculations
[100] for (from top to the bottom) pions, kaons, protons and lambdas. Also shown
in the figure is the elliptic flow vy for charged particles[66]. Within statistical un-
certainty, the K9 results are in agreement with the vy of charged kaons in the p;
range they share (300 MeV/c < p, < 700 MeV/c)[41]. We observe that vy for both
strange particles increases as a function of p; up to about 1.5 GeV/c, similar to
the hydrodynamic model prediction. In the higher p; region (p, > 2 GeV/c), how-
ever, the values of v, seem to be saturated and less than the hydrodynamic model

predictions. This is also seen in the behavior of charged particles.

5.3.2 K2 and A + A v, Centrality Dependence

The differential elliptic flow wvy(p;) is plotted for K2 for two different centrality
selections in the left panel of Fig.5.14, and for A + A in the right panel. The
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Figure 5.13: Elliptic flow v, as a function of p; for the strange particles K9 (solid
circles) and A + A (open squares) from minimum bias Au+Au collisions. For com-
parison, vy of charged particles (open circles) are also shown. The lines are from
hydrodynamic model calculations[100].

circles represent the most central 11% of the measured cross section. The filled
squares correspond to 11-45% of the measured cross section. The uncertainties on
the points are statistical only. The two particles show a similar p, dependence in the
two centrality intervals. At a given p;, the more peripheral collisions have the larger
value of vy(p;). The p; dependence is stronger in more peripheral collisions than
in the central collisions. A similar dependence was observed for charged hadrons
in Au+Au collisions at the same RHIC energy[41]. In the hydrodynamic limit, the
centrality dependence of elliptic flow is mainly determined by the initial elliptic
anisotropy, ¢, of the overlapping zone in the transverse plane[82], c¢f. Eqn.2.7. The
ratio of the two should be approximately constant[81], i.e. (v2/¢)nhydaro =~ Const,
depending on the equation of state used. This gives large vy for more peripheral

collisions because of large initial spacial eccentricity.
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Figure 5.14: Elliptic flow v, as a function of p; for K% (left) and A+ A (right). Filled
circles and open squares are for central (0-11%) and mid-central (11-45%) collisions,
respectively. Both minimum bias trigger and central trigger events are used.

5.3.3 p; Integrated K2 and A + A v

The p; integrated anisotropy parameters for negatively charged particles, K2, and
A+ A are shown in Fig.5.15. Similar to Fig.5.13, the results are from minimum bias
collisions. The integrated values of v, are calculated by parameterizing the yield
with the inverse slope parameter of exponential fits to the K2 or A + A transverse
mass distribution[66]. Although the vy(p;) of A+ A is below the vy(p;) of K2 at each
p: as shown in Fig.5.13, the p; integrated v, values increase with the particle mass.
This increase reflects the relatively higher mean p; of the A + A compare to the K2
where the integrated vy is dominated by the region near the particles mean p; and is
insensitive to the upper or lower bounds of the integration. In hydrodynamic models,
although the spatial geometry of an anisotropic pressure gradient and the resultant
collective velocity are the same for all particles, massive particles tend to gain larger
transverse momenta and so develop a larger elliptic flow. The hydrodynamic model
calculations[100], shown as a gray-band and central dashed line, are, within errors,
in agreement with this result. The width of the gray-band in Fig.5.15 indicates the

uncertainties of the model calculation, mostly due to the choice of the freeze-out
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conditions. In the region near the particles mean p;, that dominates the value of the
integrated vy, assumptions used in the hydrodynamic model calculations are more
likely to be valid. As a result, the apparent deviation of the measured v, from the
hydrodynamic prediction for p, > 2 GeV/c seen in Fig.5.13 is not strongly reflected
in Fig.5.15. The increase of v, with particle mass is indicative that significant
collective motion, perhaps established early in the collision, is an effective means
to transfer geometrical anisotropy to momentum anisotropy. The nature of the
particles during this process, however, whether parton or hadron, and the degree of
thermalization for strange particles during the collective expansion remains an open

issue.
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Figure 5.15: Integrated elliptic flow v, as a function of particle mass. The gray-band
and central dashed line indicates the hydrodynamic model results[100].
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5.4 Systematic Uncertainties

For this analysis, three main sources contribute to systematic errors in the measured

anisotropy parameters:

e Particle identification
e Background subtraction

e Contributions to the anisotropy parameter from correlations unrelated to the
reaction plane such as resonance decays, jets or Coulomb and Bose-Einstein

correlations[77, 78]

The contributions from the first two sources are estimated by examining the variation
in v, after changing several track and event cuts and using different background
subtraction method. We estimate that these effects contribute an error of less than
+0.005 to vy in low p; region where more background is observed and high p; region
where statistics are low. Around mean p;, where we have most of our statistics, there
is almost no effect. The contribution to the azimuthal anisotropy from correlations
unrelated to the reaction plane, however, could be significant, especially in peripheral

collisions.

5.4.1 Four Particle Correlations

The standard flow analysis method as discussed above is based on a two-particle cor-
relation methods. It assumes that azimuthal correlations between two particles are
generated by the correlation of the azimuth of each particle with the reaction plane
and this is used to extract the orientation of the reaction plane. However, it has been
shown[66, 77| recently that, at ultra-relativistic energies, other sources of azimuthal
correlations are of comparable magnitude and must be taken into account in the flow
analysis. The most commonly discussed non-flow source of azimuthal correlations

are global momentum conservation which might affect directed flow measurement
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but not elliptic flow, Coulomb and Bose-Einstein correlations, resonance decay and

jets.

A cumulant method based on higher order azimuthal correlations can be used

to eliminate the non-flow effects[79]. The correlation between two particles is
<Un,1u*n,2> - <ein¢>1e—in¢2> — Un2 + 6, (52)

where n is the harmonic and the average is taken over all pairs of particles in an
event sample. 0, represents the contribution from non-flow correlations. Similarly,

the correlation between four particles,
(U 1 U 2U 30T ) = vt 22020, + 26%,. (5.3)

The pure four-particle non-flow correlation, which is of order 1/N® much smaller
than direct two-particle correlations, is omitted from this expression. Flow contribu-

tions can be got by subtract from expression(5.3) twice the square of expression(5.2),
<<un,1un,ZU*n,SU*n,4>> - <un,1un,ZU*n,3U*n,4> - 2<un,IU*n,2>2 = _'Un4- (54)

It is named “cumulant” to the order 4 and denoted by ((---)). Limited by statistics
we use the conventional flow analysis method and estimate our systematic errors
from non-flow contribution following the first two studies of elliptic flow in STAR[41,
23].

5.4.2 Estimate of non-Flow Effects

A previous study used the correlation of reaction plane angles from subevents to
estimate the magnitude of non-flow contributions[41]. The correlation between two

subevent reaction plane angle is

Msub . ZMsub u*

2(p@ _ gy <Zu Ui 2 j=1 a> 55
(cos(2(w? - wy) & (S ETS (55)
Msuszub <UU*>

Msub B

X Msub(”% + g)a



65

where My,; is the multiplicity for a sub-event, g denotes the non-flow contribution
to two-particle correlations. Non-flow effects are assumed to contribute to the first
and second harmonic correlations by similar amounts, so the magnitude of the first
harmonic correlation sets a limit on the non-flow contributions to v, see Fig.5.16.

The peaked shape of the centrality dependence of (cos[2(¥®—W?)]) is characteristic of
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Figure 5.16: Correlation between the event plane angles determined for two inde-
pendent subevents. The upper set is for the second harmonic (n = 2) and the lower
set for the first harmonic (n = 1), figure from|[23].

anisotropic flow whereas all known non-flow effects would be monotonic or almost
constant for this quantity. The first harmonic correlation, shown in Fig.5.16, is
significantly weaker than the second harmonic correlation. This sets an upper limit
for the contribution of all non-flow effects to the second harmonic correlation and
is the basis of our estimation of the systematic errors of elliptic flow. This study
showed that the non-flow systematic errors for charged particles are typically -0.005,
but are significantly larger in the more peripheral events where the error increases
to -0.035 for the 58-85% most peripheral events. These effects always act to increase
the measured value of v, above its true value so their contributions to the systematic
error are asymmetric. These estimates are confirmed by measurements of v, using

the 4th-order cumulant method[98]. The elliptic flow measured using this method
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was consistent with the lower limit of the systematic errors from the traditional
vy analysis method. The centrality averaged values of vy from the four-particle
correlations are 15% lower than those obtained from the reaction plane analysis.
The ratio of v, from the two method is approximately independent of pseudorapidity
and transverse momentum within 0.1 GeV/e < p; < 4.0 GeV/c. We assume the
systematic errors on v, for the neutral strange particles K2 and A 4+ A are similar

to that found in the analysis of charged particles.

5.5 Discussion and Conclusion

5.5.1 Azimuthal Particle Distribution

The Fourier expansion of azimuthal particle distributions approach studies the event
shapes which are sensitive to collective flow without assuming any model. The
information provided in this way can be used for a comparison with different models.
Fourier coefficients of different harmonics reflect different type of anisotropy. A three
dimensional event shape can be obtained by correlating and combining the Fourier

coefficients in the different rapidity windows.

Since the azimuthal distribution r(¢) is a periodic function it can be written in

the form of Fourier expansion:

r(¢)

To

+ l io: [»Tn Cos(nqS) + yp s1n(nd))] . (56)

= trl

The coefficients in the Fourier expansion of r(¢) are integrals of r(¢) with weights
proportional to cos(n¢) or sin(n¢). For the case of a finite number of particles,
the integrals become simple sums over particles found in the appropriate rapidity

window:

T, = /027r r(¢) cos(ng)dp = > r, cos(ng,),
Yp = /027r r(¢) sin(ng)de = Z r, sin(ne,), (5.7)

where v runs over all particles. Without any flow and neglecting fluctuations the

function r(¢) is constant, r(¢) = xzo/(27) = 1/(27) >, r,. All Fourier coefficients
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Figure 5.17: The azimuthal distribution r(¢) (solid line) approximate by ellipse
(dashed line), figure from[101].

except xy would be zero. If flow is present, r(¢) is no longer a constant, and the
shape of the distribution is no longer a circle centered at zero, see Fig.5.17. Each
non-zero pair of the Fourier coefficients z,, and 1, indicates the presence of the “nth
type” flow, which we characterize by the value of v, = /22 + y2, and by the angle
U,(0< ¥, <27r/n),

Tp = vy cos(n¥y,),

Yn = Up sin(n¥,). (5.8)

The first harmonic coefficients correspond to an overall shift of the distribution
in the transverse plane, see Fig.5.17. That’s directed flow v;. If r(¢) is the transverse
momentum distribution, v; is the magnitude of the total vector sum of transverse
momenta. In the case of negligible fluctuations the direction of flow due to symmetry
is to coincide with the reaction plane angle ¥ = Wg, or point in the opposite

direction ¥; = W + 7.

If approximates the azimuthal distribution by an ellipse, as shown in Fig.5.17,
the vy is proportional to the magnitude of the eccentricity. The orientation of the
major axis, defined by the angle WU, (or Wy + 7, which give the same orientation

for an ellipse) can be only Wi or Wy + m/2. In the case Uy = g, the major axis
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Figure 5.18: mean p,; as a function of azimuthal angle ¢ — ¥ unnormalized (left) or
normalize by (p;) from the corresponding p; region (right) for K2 from minimum bias
collisions. Thick line in the right panel is fitting result with function C' * cos[2(¢p —

Ur)l.

lies within the reaction plane, while ¥y = Wg + 7/2 corresponds to an orientation
of the ellipse perpendicular to the reaction plane. The coefficient v3 is non-zero if
the azimuthal distribution has a triangle-type “deformation”. Any transverse flow
would influence the p, distribution of the observed particles. Fig.5.18 shows the
mean p;, (pi)(¢), as a function of azimuthal angle in low p; and high p; region for
K? from minimum bias collisions. The left panel is unnormalized distribution while
the right panel is normalized by the average p;, (p;), in the corresponding p; region.
Thick line in the right panel is fitting with function C % cos[2(¢ — Ug)], where C'is a
fitting parameter. Large 2nd-order azimuthal variation is observed in low p; region
(black dots) which is the characteristic of elliptic flow and it decreases in high p,
region (open circles). That means the contribution to vy from (p;) oscillation is
different in different p; region. This is consistent with the results in a previous flow
study paper from STAR[41]. There, a simple hydrodynamic motivated model is
used to fit the transverse momentum dependence of anisotropic flow. Their results
indicate that to have a good fit of the data we need more source elements moving in

the direction of the reaction plane, i.e. the elliptic flow observed is not caused by an
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azimuthal transverse velocity variation along, but by the combination of a velocity

difference and a spatially anisotropic freeze-out hyper-surface.

5.5.2 Transverse Momentum Dependence

Mass Dependence at Low p;,

Fig.5.19 (left) shows the differential momentum anisotropy ve(p;) for different hadron
species for EOS Q and T ~ 120 MeV up to p, ~ 1.5 GeV/¢[100]. At a given value
of p;, the elliptic flow is seen to decrease with increasing particle mass. This is
also observed in our measurement, cf. Fig.5.13, and a previous flow measurement
from STAR[41], cf. Fig.5.19 (right), indicating the system created shows a behavior

consistent with collective hydrodynamical flow.

12
10
r ~ 01
g\? 8 B 8; [ T T
< C =" 0.08]
a 6 —
> — |
: 0.06/
4 — i
= 0.04-
2 [ i
r B 0.02F
O /. -ﬁl'ﬁ" I -l- I ‘ L1 ‘ L1 ‘ L1 ‘ L1 ‘ | 0:
00 02 04 06 08 1.0 12 14 Y W N WY e
p. (GeV/c) 0 010203040506070809 1

p; [GeV/(]

Figure 5.19: p;-differential elliptic flow at mid-rapidity from minimum bias Au+Au
collisions at \/syx = 130A GeV for various hadrons from hydrodynamic calculation
for EOS Q(120) (left), figure from[100], for pions, kaons and protons+antiprotons
from STAR experiment (right), figure from[41]. The solid and dash lines in the right
panel are hydrodynamic motivated model fitting.

This mass dependence can be understood as the result of an interplay between
the mean expansion velocity, the elliptic component of the expansion velocity and the

thermal velocity of the particles. A simple intuitive argument from hydrodynamics
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take into account radial flow shifting the p;-distributions to larger values of p;. For
non-relativistic, p; < m, this effect increases with the particle mass m and the radial
flow velocity (v, ). Relative to the case without radial flow, the spectrum is thus
depleted at small p,. The depletion as well as the p, range over which it occurs
increase with m and (v,). In the case of fully developed elliptic flow, the radial
velocity is larger in « than in y direction, |v,| > |v,|, which will result in a stronger
depletion effect in z direction. Thus it eventually reduces v, at small p;. This
reduction and the p;-range over which it occurs both increase with the particle mass
m and the average radial flow (v, ). This rest-mass-dependence effect disappear at
high p; region where the mass difference between different hadron species becomes

less relevant.

High p, Azimuthal Asymmetry

At high p;, a hydrodynamical description of the hadron production mechanism may
break down as processes involving hard scattering of the initial-state partons are
expected to play the dominant role. Calculations based on perturbative QCD predict
that high energy partons traversing nuclear matter lose energy through induced
gluon radiation[50], where the magnitude of the energy loss depends on the density
of the medium[51]. The fragmentation products of partons that have propagated
through the azimuthally asymmetric system generated by non-central collisions may
exhibit azimuthal anisotropy due to energy loss and the azimuthal dependence of
the path length. High p, parton production in the direction of long axis of the
overlapping region exhibits more collisions (inelastic and elastic) than that emitted
along the short axis. It results in smaller probability to fragment into high p,
hadron. It provide important information about the initial conditions and dynamics
in a heavy ion collision[104] and can be measured via the differential elliptic flow

parameter vy (py).

At p; < 2GeV /¢, soft non-perturbative hydrodynamic like flow effects have to
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be taken into account, this leads to

UZs(pt)st + U2h(pt)th
dN,; + dN,, ’

where subscript s and h represent the soft and hard component respectively. The

vo(py) & (5.9)

resulting ve(p;) ~ py is shown in Fig.5.20. In contrast to non-dissipative hydrody-
namical calculations , cf. Fig.2.6 (right), ve coefficient decreases with increasing p;

at high transverse momenta.
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Figure 5.20: The interpolation of v,(p;) between the soft hydrodynamic and hard
pQCD, solid and dash line corresponding to Wood-Saxon geometry and sharp cylin-
der geometry respectively.

The observed K% and A + A azimuthal anisotropy vo(p;) saturation at p; > 2
GeV/e, cf. Fig.5.13, deviate from non-dissipative hydrodynamics which predicts a
monotonically increasing v, with increasing p;. Recent measurements of inclusive
charged hadron distributions in Au+Au collisions at /syy = 130 GeV also show
a suppression of hadron yields at high p; in central collisions relative to peripheral
collisions and scaled nucleon-nucleon interactions[84, 99]. The data might indicate
the effect of dissipative dynamics with finite parton energy loss. It could help in
understanding the origin of particles in the region, do they acquire their transverse
momentum due to multiple scattering or they come from a fragmentation of even

higher p; partons.
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5.5.3 Conclusion

We made the first measurement of the anisotropy parameter v,, for strange parti-
cles K and A + A, from Au+Au collisions at Vsvn = 130 GeV. The v, values
as a function of p; from mid-central collisions are higher at each p; than v, from
central collisions. Hydrodynamic model calculations seem to provide an adequate
description for elliptic flow of the strange particles up to a p; of 2 GeV/c suggesting
the system might equilibrate early. For p, above 2 GeV /¢, however, the observed
vy seems to saturate whereas hydrodynamic models predict a continued increase
with p;. The p; integrated vy, as a function of particle mass is consistent with a
hydrodynamic picture where collective motion, established by a pressure gradient,
transfers geometrical anisotropy to momentum anisotropy. Although the hadronic
scattering cross sections of strange and non-strange particles may be different, we
have yet to see deviations in the measured vy from hydrodynamic calculations at
low p, for strange or non-strange particles. In a possible partonic phase prior to
the hadronization epoch, the hadronic scattering cross sections for the final hadrons
are not relevant. As such, if the elliptic flow of identified particles proves to be
independent of their relative hadronic cross sections, it may be evidence that vy is
established during a partonic phase. More theoretical work is necessary to under-
stand these measurements and what they tell us about the nature of matter in the

early stage of nuclear collisions.



Chapter 6

The Influence of Statistical
Fluctuations on Erraticity
Behavior of Multiparticle System

In a microscopic quantum system, such as inelastic collision of elementary particles
at very high energy, it is often impossible to track the time evolution of their state.
Instead the momenta of all charged particles in the final state can be determined
precisely in experiments. For each collision event the momenta of these particles con-
stitute a spatial pattern in momentum space. Erraticity method[11] was proposed
by Cao and Hwa to characterize the event to event fluctuation of those patterns in

experiments.

6.1 Sample Factorial Moments and Event Facto-
rial Moments

Since the finding of unexpectedly large local fluctuations in high multiplicity event
recorded by the JACEE collaboration[26], the investigation of non-linear phenomena
in high energy collisions has attracted much attention[20]. The anomalous scaling

of factorial moments, defined as

. i il (M (M — 1) =+ - (N — ¢ + 1))
Fy=; mzzjl i : (6.1)
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at diminishing phase space scale or increasing division number M of phase space[5,
6]:

F,oc M™%, (6.2)
called intermittency (or fractal) has been proposed for characterizing this phe-
nomenon in multiparticle system. The average (---) in Eqn.6.1 is over the whole
event sample and n,, is the number of particle falling in the mth bin. This anomalous

scaling has been observed successfully in various experiments [35, 36, 90].

A recent new development further along this direction was made by Cao and Hwa
in the event by event analysis[11, 12, 13]. They proposed to measure the (phase)

space patterns in multiparticle system by the event factorial moments
M
(@) — 3 et Mo = 1) (i = q + 1)
“ q
(% m=1 nm)

Oppose to sample factorial moments defined in Eqn.6.1, event factorial moments

(6.3)

Eqn.6.3 do not average over all events.

6.2 Erraticity

As pointed out by Cao and Hwa the event to event fluctuations of event factorial
moments or the space patterns it measures can be quantified by its normalized
moments as:
Cpyg = (@2), ¢y = F /<F(e)> ; (6.4)
and by dC,,/dp at p = 1:
Yy = (P, Ind,) (6.5)
If there is a power law behavior of the fluctuation as division number goes to infinity,

or as resolution 6 = A/M goes to very small, i.e.,
Chpg(M) oc M¥®) (M — 00), (6.6)

the phenomenon is referred to as erraticity[59]. The derivative of exponent ,(p) at

p=1
d %,

d—p%(P) =1 = IS (6.7)

Mg =
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describes the width of the fluctuation and so is called as “entropy index”. In the

following, we will refer to C, , or 3, in Eqn.6.4 and Eqn.6.5 as “erraticity moments”.

6.3 Statistical Fluctuations

It is well known that the obstacle of event by event analysis is the influence of
statistical fluctuations caused by insufficient number of particles. The big advantage
of sample factorial moments in Eqn.6.1 is that it can eliminate this kind of statistical
fluctuations. It has been proved[5, 6] that if the statistical fluctuations of particles
falling in a bin is poissonian like, then the sample factorial moments equal to the

corresponding dynamic probability moments, see Appendix C on page 99:
M
by =0y = Mt Z<p3> (6.8)
i=1

Again, the average is over the whole sample and p; is the probability of particle falling
in the ¢th bin in a certain event. However, we can not follow the same procedure
to get the similar equation for event factorial moments of Eqn.6.3, although there is
a horizontal average over bins in the equation. Since the number of particles in an
event is not large enough and so is the number of bin, event factorial moments can
not completely eliminate statistical fluctuations and present the dynamic probability
moments associated with it, see Appendix C. How large of the statistical fluctuations
in erraticity analysis is and how it depends on the number of multiplicity have not

been seriously estimated yet. We will answer these questions quantitatively here.

6.3.1 Flat Probability Distribution

To be direct and obvious, we first use an unique flat probability distribution in whole
studying interval and whole sample. It means that the probabilities in all bins are
equal and are the same for different events. For simplicity, we use only fixed number
of multiplicity. In this case the denominator in the definition of factorial moment,

Eqn.6.1 and Eqn.6.3, becomes simply N(N —1)--- (N — ¢+ 1) [5, 6]. We first take
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N =9, which is about the average multiplicity at ISR energies. The distribution
of particle in the whole studying phase region in an event can be readily located by

Bernouli distribution:

M

B(ny,...,num|p1y - 1) = WL'RM'MLI s p mZ:1nm =N (6.9)
By this way, we simulate a sample with 1000 events. The results of the second order
sample factorial moments F5, erraticity moments C,o and ¥y versus the division
number M of the phase space region are shown in Fig.6.1(a). The second order
sample factorial moment is a constant with the increasing of division number. This
is what we expect. Since no dynamic is input, it becomes a constant after eliminating
the statistical fluctuations. While the increase of erraticity moments C), 5 and X,
with division number is measurably large. These contributions come from pure
statistical fluctuations of event factorial moments due to the insufficient number
of particle in an event since there is no dynamic fluctuation from event to event
in the case. This result can fully recover what has observed in NA27 data[94],
cf. the open circles in the second figure of Fig.6.1(a). This means that in low
multiplicity sample, the statistical fluctuations of event factorial moments dominate
the erraticity behavior of multiparticle system. Event factorial moments is not a

good representation of event dynamics for low multiplicity events.

However, erraticity analysis proposed a very important way to study the event
by event fluctuations, though we are still not clear whether there are such fluctua-
tions and if there are what mechanism causes them. We have demonstrated in our
former paper[47] that if and only if different events have different dynamic fluctu-
ation strengths, the erraticity moments will keep increasing with the increasing of

division number and so has nonzero entropy index.

As is well known, the statistical fluctuations will become negligible if the mul-
tiplicity of an event is large enough. At how high a multiplicity the event factorial
moments can measure the dynamical fluctuations of a finite particle system is a very

meaningful question.

Let us switch the fixed multiplicity N to 20 and 300 in the above mentioned
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Figure 6.1: The dependence of the logarithm of the second order sample factorial
moments Fy, erraticity moments Cpo and Yy on that of the phase space division
number M for a flat probability distribution with particle number equal to 9(a),
20(b) and 300(c), respectively. The dashed lines are linear fit. The solid lines are
for guiding the eye. The open circles are result from NA27 data, taken from Ref.[94].

simulation. The corresponding second order sample factorial moments F;, erraticity
moments C), 9 and ¥y versus the division number M of the phase space region are
shown in Fig.6.1(b) and (c) respectively. The second order sample factorial moment
keep to be a constant as we know. The erraticity moments become flatter and flatter
with the increase of multiplicity. It means that pure statistic fluctuations of event

factorial moments are greatly depressed by the increase of multiplicity.

From Fig.6.1, we can see that, when multiplicity is larger than 300, event factorial
moments can be approximately used to describe the event spatial pattern associated
with it and its moments — erraticity moments — can represent the erraticity behavior

of the system.
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6.3.2 Simulation with Random Cascading o Model

In order to confirm this upper limit of multiplicity, we do following parallel analysis

for a system with dynamic fluctuation from event to event.

Random cascading o model is the simplest model which can be used to generate
a sample with non-zero entropy index. We will use it for our quantitative discussion
below. In the random cascading o model, the M division of a phase space region A is
made in steps. At the first step, it is divided into two equal parts; at the second step,
each part in the first step is further divided into two equal parts, and so on. The steps
are repeated until M = AY/dy = 2. How particles are distributed from step to
step between the two parts of a given phase space cell is defined by the independent
random variable w,,;,, where j, is the position of the sub-cell(1 < j, <2") and v is

the number of steps. It is given by[105]:
1 1 . v—1
Wyj—1 = 5(1 +ar) ; wyo = 5(1 —ar) , j=1,...,2 (6.10)

where, 7 is a random number distributed uniformly in the interval [-1,1]. « is a
positive number less than unity, which determines the region of the random variable
w and describes the strength of dynamical fluctuations in the model[69]. If it changes
from event to event, there will be different dynamical fluctuation strength in different
events. Here, let it has a Gaussian distribution. The mean and variance of the
Gaussian are both chosen as 0.22. After v steps, the probability in the mth window

(m=1,..., M) is pp = wij,waj, - * - Wyj,-

Using the model, we generate 1000 events. The logarithm of second order sample
probability moment InCs, and erraticity moments InC),» and X, as a function of
In M are shown in Fig.6.2(a). Now the sample probability moment In C5 has a power
law behavior as dynamic fluctuations have been input. The erraticity moments
also show a power law behavior at large division number region. It represents the
dynamic fluctuation from event to event. The corresponding entropy index obtained

from a linear fit to the last 3 points of %5 is uy = 0.0161.

Finite number of particle can also be added to the above pure dynamic fluctu-
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Figure 6.2: (a)The dependence of the logarithm of the second order probability
moments C, erraticity moments C,, and ¥y on that of the phase space division
number M for the a model with Gaussian distributed a. (b)The same as (a) but
for the sample factorial moments F, and the corresponding erraticity moments C), o
and Y, with 300 particles. (c)The same as (b) but with 9 particles. The dashed
lines are linear fit. The solid lines are for guiding the eye.

ation model by Bernouli distribution of Eqn.6.9. Again, we put N = 9 first. The
corresponding factorial moment and erraticity moments are given in Fig.6.2(c). The
value of erraticity moments now are much larger than those obtained from the orig-
inal pure dynamic fluctuations in Fig.6.2(a). The entropy index, us = 0.422, also
turns out to be more than one magnitude bigger. This results confirm us again that
the erraticity behavior is dominated by statistical fluctuations in low multiplicity
sample if we use event factorial moments to characterize it. Though there is dynamic
fluctuation from event to event, it will be merged to large statistical fluctuations in

the case.

Secondly, we let N = 300. The corresponding factorial and erraticity moments
are shown in Fig.6.2(b). The erraticity moments now approach to its original dy-

namic fluctuation values in Fig.6.2(a) and entropy index is pus = 0.0168 close to
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its real value 0.0161. So we get the same conclusion as pure statistic fluctuation
case. When multiplicity is larger than 300, erraticity behavior of the system can be

estimated by the fluctuation of event factorial moments.

6.3.3 Multiplicity Dependence

To show quantitatively the influences of statistic fluctuations on erraticity behav-
ior at different multiplicity cases, we simulate various number N = 5,...,1000 of
particles in an event for both flat probability distribution and above described «
model cases. The corresponding entropy indices are given in Fig.6.3 as full circles
(flat distribution) and full triangles (o model) respectively. We can see that both of
them decrease with multiplicity. For flat probability distribution, entropy index of
statistical fluctuation is depressed more than three orders of magnitude when multi-
plicity IV increases from a few to 300. After multiplicity N > 300, the entropy index
is unmeasurably small. Meanwhile, the entropy index of e model sample approaches
to its real dynamic value ps = 0.0161, cf. the solid line in Fig.6.3, after N > 300.
This means that the erraticity analysis given by event factorial moments is applica-
ble for heavy ion collisions, when the average multiplicity is higher than 300, where
the influence of the statistical fluctuations is weak. Note that the multiplicity of

heavy ion experiments at RHIC and forthcoming LHC is higher than this number.

6.4 Event Probability Moments

If the multiplicity is higher than a thousand, which has been recorded by NA49
experiment and RHIC experiments, the factorial moments analysis of a single event
is unnecessary anymore as 7, (n, — 1) - - - does not make much difference from n,, -
Ny, - -+ - in most of the phase space bins which provides main contribution to the
anomalous scaling of moments. In these cases the probability distribution in an

event can be approximately presented by[61]:

n M
SPCRLL - . 6.11
p N mglp (6.11)
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Figure 6.3: The dependence on number of particle of the entropy indices py for
Gaussian o model calculated from event-factorial-moments (full triangles) and from
probability-moments (open triangles). The same for flat distribution (full and open
circles). The solid line is the dynamical result without statistical fluctuation. The
dashed lines are for guiding the eye

The erraticity moments of event probability moments can be consequently defined
by:

Coa= (¥, 2= 3 st /(3 04 (6.12)

By this definition, we repeat the analysis for both the flat probability distribution
and the dynamic fluctuation distribution cases. It is a little smaller than the corre-
sponding event factorial moments analysis at flat probability distribution case, cf.
the open and full circles in Fig.6.3, and so it depresses the influence of statistical
fluctuations more. The dynamic fluctuations of event to event in the o model case
can still be abstracted out as done by the event factorial moments description, cf.

the open and full triangles in Fig.6.3.



82



Chapter 7

Erraticity Analysis of
Multiparticle Production in 77 p
and K™p Collisions at 250 GeV /c

Erraticity analysis has been performed in both hadron-hadron and nucleus-nucleus
collisions[94, 70]. All the results show positive value of entropy index, y,, indicating
the existence of erraticity behavior, i.e. fluctuations from event to event, in multi-
particle systems. However, the cause of these fluctuations is still unclear. Here, the
erraticity analysis results of 77p and K*p collisions at 250 GeV /¢ and comparison

with Monte Carlo simulation will be discussed.

7.1 Data Sample

In the CERN experiment NA22, the European Hybrid Spectrometer (EHS) was
equipped with the Rapid Cycling Bubble Chamber (RCBC) as an active target and
exposed to a 250 GeV/c tagged, positive, meson enriched beam. In data taking, a
minimum bias interaction trigger was used. The details of spectrometer and trigger

can be found in[24, 72].

Charged particle tracks are reconstructed from hits in the wire- and drift-chambers

of the two-lever-arm magnetic spectrometer and from measurements in the bubble
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chamber. The momentum resolution varies from 1-2% for tracks reconstructed in
RCBC, to 1-2.5% for tracks reconstructed in the first lever arm and is 1.5% for

tracks reconstructed in the full spectrometer.

Events are accepted for the analysis when the measured and reconstructed charge
multiplicity are the same, charge balance is satisfied, no electron is detected among
the secondary tracks and the number of badly reconstructed (and therefore rejected)
tracks is 0. The loss of events during measurement and reconstruction is corrected
for by applying a multiplicity dependent event weight normalized to the topological
cross sections given in [43, 44]. Elastic events are excluded. Furthermore, an event is
called single-diffractive and excluded from the sample if the total charge multiplicity
is smaller than 8 and at least one of the positive tracks has a Feynman variable
|zr| > 0.88. After these cuts, the inelastic, non-single-diffractive sample consists of

59 200 7*p and K*p events.

For laboratory momenta p,,, < 0.7GeV/e, the range in the bubble chamber
and/or the change of track curvature is used for proton identification. In addition,
a visual ionization scan is used for p,, < 1.2GeV/c on the full K*p and on 62% of
the 7*p sample. Positive particles with p;,, > 150GeV/c are given the identity of
the beam particle. Other particles with momenta p;,, > 1.2GeV /¢ are not identified

in the present analysis and are treated as pions.

In spite of the electron rejection mentioned above, residual Dalitz decay and -~y
conversion near the vertex still contribute to the two particle correlations. Their

influence on our results has been investigated in detail in[46].

The data are based on the CERN experiment NA22 with 43680 events which
has non-zero single event (charged) multiplicity so that its event factorial moment
can be calculated. The initial intervals of the three phase space variables, rapidity
y, azimuthal angle ¢ and transverse momentum p; for the analysis, are defined as:
—2<y<20<¢<2m0.001 <p; <10GeV/c respectively. In order to reduce

the effect of non-flat particle density distribution p(x) in phase space, cumulative
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variable

X(z) = / " o(x)da / / ’ o(2)de (7.1)

is taken for all variables. In Eqn.7.1 a and b are the extreme points of the distribution

p().

7.2 Results and Discussion

7.2.1 Erraticity Behavior in Different Phase Space

The results of ¥y in one dimensional rapidity, transverse momentum components
Py, D. and azimuthal angle ¢ are shown in Fig.7.1(a)-(d). The power law behavior
of ¥y as division number goes to large indicates that there is erraticity in 7 p and
K*p collisions at 250 GeV/c. They are similar to erraticity behavior given by NA27
datal94]. Entropy index ps can be obtained by linear fits of 35 vs. In M. For a
better linear fit, the first seven points are omitted. It can be seen from the figures
that the values of Y5 and s in different variables are almost the same. That is to

say, erraticity is independent of phase space variable in which we do the analysis.

Further, Cp, X5 vs. In M in three dimensional (y, p;, ¢) region are shown in
Fig.7.2. In comparison to one dimensional results, three dimensional results have
much better linear behavior after omitted first two points. This is different from
the intermittency behavior, where even in three dimensional phase space, sample
factorial moments still show a upward bending behavior and has been well explained

by self-affine fractal mechanism[107, 37, 38|.

7.2.2 Erraticity Behavior and the Single Event Variables p;
and N

A natural way to find out which factor does affect the erraticity behavior is to study
the relations between erraticity behavior and other physical quantities. In order to

see if erraticity has different behavior for different (hard or soft) processes, we first
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Figure 7.1: ¥, vs. In M in one dimension, (a) y (p,) region, (b) p, region, (c) p,
region, (d) ¢ region.

show how it changes with different average transverse momentum per event. The

later is defined as
=Y pu/n, (7.2)
i=1

where n is the total number of (charged) particles in the event. It has been
shown[106] that p; is a good variable to characterize the soft or hard degree of
an event. The (unnormalized) distribution of (charged) multiplicity n and average
transverse momentum per event p; in the studied sample are shown in Fig.7.3. The

average multiplicity and average transverse momentum of the whole sample are:

(n) = i ni/N = 7.979, (7.3)

=1
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N
(py) = Zp}i/N = 0.383, (7.4)

i=1
where N is the number of event used. We divide the whole sample into three
subsamples, i.e. p; < 0.28, 0.28 < p; < (py) and p; > (py), cf. the dashed lines
in Fig.7.3 lower left panel. The values of ¥y are calculated in these three different
p; regions respectively. The results in both one dimensional rapidity and three

dimensional (y, p;, ¢) are shown in two upper panel in Fig.7.4

It can be seen from Fig.7.4 that, in both one dimensional and three dimensional
cases, Yo is almost the same for different p; subsamples. It means that erraticity
behavior at this collision energy does not relate to the soft or hard degree of an

event, or to the gluon or quark jet as argued in NA27 erraticity analysis paper[94].
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Figure 7.3: Distribution of multiplicity n and single event average transverse mo-
mentum py, n, Py scatter plot (upper panel), distribution of p; (lower left panel),
distribution of n (lower right panel).

Then, we turn to study the relation between erraticity and multiplicity. We
divide the whole sample into two subsamples with n < (n) and n > (n), cf. the
dashed line in Fig.7.3 lower right panel. The results of ¥, calculated in these two
different multiplicity regions for both one and three dimensional cases, together with

the total sample result, are shown in two lower figures of Fig.7.4.

It can be seen from the figures that for different multiplicity subsamples, it
shows significantly different entropy indices. This means that the erraticity behavior
depends strongly on multiplicity. The value of entropy index in higher multiplicity
sample is much smaller than in lower ones. It means much less fluctuation from
event to event in high multiplicity sub-sample. As we demonstrated in the previous
chapter, when total multiplicity is very low, event factorial moments defined in

Eqn.6.3 can not fully eliminate statistical fluctuation due to insufficient number of
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dimension y, p;, ¢ (two right panels) phase space. The total sample result is shown
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comparison.

particles[62]. The lower multiplicity is, the bigger statistical fluctuations contain in

event factorial moments. So the relation between erraticity and multiplicity may

imply the contribution from this trivial statistical fluctuations.

argument, we made the following model comparisons.

To confirm this

7.3 Comparison with Monte Carlo Models

As we know, various models that simulate low p; processes in multiparticle produc-

tion can readily generate the average quantities, but failed in getting correctly the

fluctuations from the average[20]. In particular, few models can fit the intermittency
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datal43, 44]. A color mutation model ECOMB, proposed recently by Z. Cao and
R. Hwa, is one of the few that can reproduce intermittency data[14]. The results of
erraticity moments In C'y 5 and ¥4 versus the logarithm of the division number A in
one dimensional rapidity region getting from ECOMB at /s = 22 GeV are shown
in Fig.7.5 (open triangles connected by dotted line) together with the experimental
results from NA22 (full circles). We can see that the results from ECOMB agrees

with the experimental results well.
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Figure 7.5: Erraticity moments In C5 5 (upper panel) and X5 (lower panel) vs. the di-
vision number In M of the phase space region for NA22 data (full circles), ECOMB
MC result (open triangles connected by dotted line), PYTHIA MC result (open
rhombus connected by dot-dashed line) and a flat probability distribution with par-
ticle number equal to 7 (open squares connected by dashed line).

Then we use the LUND Monte Carlo event-generator PYTHIA 5.5 to simulate
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7tp collisions at 250 GeV/c to see if it has erraticity behavior or not. It has been
shown that PYTHIA MC cannot reproduce the intermittency data and its average
factorial moment value is almost the same for different division number. The result-
ing In Cy 5 and ¥, versus the logarithm of division number A from PYTHIA are also
shown in Fig.7.5 as open rhombus connected by dot-dashed line. It turns out that
the PYTHIA results agree with data even better than ECOMB. So, again, erraticity
behavior in such kind of low collision energy may not be something dynamical but

mainly due to trivial statistical fluctuations.

In order to be more convincing, 50,000 pure statistical fluctuation events (cf.
Sec. 6.1 on page 77) with fixed number of multiplicity N = 7 is generated. The result
of InC55 and ¥y from this sample are shown in Fig.7.5 (open square connected by
dashed line), which can also reproduce the tendency of erraticity behavior of NA22
data. It is a little smaller than experimental data as we fixed multiplicity. So the
erraticity behavior of NA22 data is mainly a reflection of the statistical fluctuations
due to insufficient number of particles at this low collision energy. This is consistent

with the results in [62].

7.4 Conclusion

From the simple discussion above, we can make the following conclusions: If we use
event factorial moments to measure spatial pattern, in very low multiplicity sample,
such as the sample at ISR energies, statistical fluctuations caused by insufficient
number of particle in an event will control the erraticity behavior of the system.
One dimensional and three dimensional (y, p;, ¢) analyses of 7#*p and K*p colli-
sions at 250 GeV/c indicate that erraticity behavior is independent of the phase
space variable used and the average transverse momentum of the sample. However,
it strongly depends on multiplicity which comes from large statistical fluctuations
of event factorial moments in low multiplicity sample. Therefore, the physical con-
clusions from the experimental data on these kind of sample can not be treated

seriously. However, if the multiplicity of studying sample is larger than 300, the in-
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fluence of statistical fluctuations on erraticity behavior is negligible. Therefore, the
erraticity behavior, if any, could be well observed in current and future heavy-ion
collisions. Furthermore, if the multiplicity of an event is larger than a thousand,
the probability moments defined by Eqn.6.11 and Eqn.6.12 can present erraticity

behavior of the system as well as the event factorial moments.



Chapter 8

Outlook

RHIC has completed two run cycles. The first run ended in September, 2000 at
Vsnny = 130 GeV and the second run ended in January, 2002 at /syy = 200 GeV.
The next run will start later this year. Ultra-relativistic heavy ion collisions continue
to offer a huge spectrum of exciting new opportunities, particularly on large distance
scales not reachable in few hadron collisions. Matter has been produced at densities
10 times greater than normal nuclear matter density and strongly interact with
itself. Quark and gluon degrees of freedom play a more visible role at RHIC than at
SPS and QCD is being more directly involved in the interpretation of the data. The
strength of the anisotropy flow, which describe the asymmetry momentum space
particle emission after a heavy ion collision, is directly connected to the mean free
path of the particles (partons, hadrons) forming the hot mid-rapidity region. The
measurement, of v, might therefore yield valuable information about the transport
properties of QCD-matter, like the interaction frequencies of the excited partonic
and hadronic matter at RHIC energies. Strange particles, K2 A = especially ¢ meson
and €2 baryon, with their small hadronic cross section, are supposed to measure QGP

properties without any additional disturbance due to the hadronic phase.

The measured mass dependence of vy(p;) below 2 GeV/c is in close agreement
with full hydrodynamic model calculations, suggesting that in Au+Au collisions at
Vsyn = 130GeV, the system created which for central and mid-peripheral collisions

evolve rapidly towards local thermal equilibrium followed by hydrodynamic expan-
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sion. More statistics is needed to address whether strange particles really follow
the hadrodynamic calculation like the other charged particles and how it behave at
high momentum region. By measuring v, at high p, for different hadron species,
we can determine whether jet quenching occurs or to what degree the matter has
thermalized and the fundamental thermalization time scale in the early stages of
a relativistic heavy ion collision. If thermalization has happened, we can measure
the equation of state which reflects (determines) properties of the matter created in

heavy ion collisions.

Event by event analysis will help identify phase transition in high energy nuclear
collisions, whether it is first order or a soft cross over. Density fluctuations may
be expected to show up in phase space. The high multiplicity at RHIC and LHC
energy makes erraticity analysis, at least for central and mid-central events, a very

good way to characterize anomalous event by event phase space fluctuations.

STAR has measured a wide range of hadronic probes in both central and mini-
mum bias Au+Au collisions at \/syxy = 130 GeV. It’s particular focus on a broad
spectrum of physics measurements will expand our understanding of heavy ion col-
lisions on multiple fronts in the very near future. Four complementary detectors
maximizes the RHIC discovery potential. We are still at the beginning of discovery

of the high energy phases of matter!



Appendix A

Kinematic Variables

For two body colliding system, the beam direction is usually defined as z-axis. Many
measurement are treated separately in the z-direction (longitudinal direction) and

transverse directions.

The transverse direction momentum, p;, is most often used,

P =\/p; + D} (A1)

p: is boost invariant along z since its components p, and p, are unchanged by =z-

direction boost. For identified particles the transverse mass is defined as,

my =/ p% + m27 (A2)

where m is the particle mass and the transverse kinetic energy of the particle is

my — m.

The most commonly used longitudinal variable is rapidity,

1 E+pz>
= —1 A3
y 2n<E_pz , (A.3)

where E and p, are the energy and longitudinal momentum component of the par-
ticle. Rapidity is additive under Lorentz transformation along z, which guarantees
the shape of the corresponding distribution independent of the Lorentz frame. For

65 GeV incident energy of the Au beams at RHIC, the initial rapidity of each beam
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is +4.94. When the beams are symmetric, the rapidity of the centre-of-mass system,
mid-rapidity, is y = 0. If particle mass is much smaller than its momentum, it is

convenient to use pseudorapidity, n, which is defined as

1. (E+p, 1 |ﬁ1+pz> (1+cos€>
=] ~ —1] =1 —— ) = —In(tanf/2) = A4
y 2“<E_p) 2n(|ﬁ_pz n(y n(tand/2) =5 (AA)

For massless particles n = y which only depends on it’s emission angle relative to

the beam axis.



Appendix B

Distance of Closest Approach
Between Two Helices

The closest distance D between two helices H1 and H2 can be solved with the

following literature approach,

d’D(¢1, ¢»)
dedg

where D is the distance between the two helices at ¢; and ¢,. The helix track model

—0, (B.1)

in section 4.1.1 on page 34 can also be parameterized with ¢ as a parameter of the

equations:

x = .+ Rcos(Py + ho)
y = Y.+ Rsin(Py + ho) (B.2)
z = 2.+ Rtan(\)¢

We first project the two helix onto XY plane and find their DCA points on it which
is simply the crossing points of the two circles. Let the solutions be ¢, ¢,2 for
trackl and ¢,,1, ¢,o for track2. Then we look for the DCA points in 3-dimentions for
each set of solutions. Take the first crossing point (@1, ¢n1) for example. In general,
the DCA points in 3D space is close to its 2D solution. Expand helix equation

around the first 2D crossing point,
Ty = X, + Rpcos(Po, + hpdp1) — Ryhysin(Po, + hypdp1)0d,
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Yp = Yo, + Rpsin(@o, + hypop1) + Rphycos(Po, + hypdpr )i,
Zp = Ze, + Rytan(),) o, + Rptan(),)do,

Tn = T¢, + Rn008(Po, + hndni) — Ryuhpsin(®@o, + hydn1)ddy
Un = Ye, + Rpsin(Py, + hpodn1) + Ruhncos(Po, + hntni)ddn
Zn = Ze, + Rptan(A,)on1 + Rptan(A,)0e,

The distance between the two helices is,
DZ(mpa Yps Zps Ty Yns Zn) = (xp - l‘n)2 + (yp - yn)2 + (Zp - Zn)Z-

The DCA point position is the solution of the set of linear equations,

o0 _ . 9D’
0(0dy) 7 0(00)

After a solution is found, the candidate vertex can be chosen as the mid-point of

=0.

the two DCA points on the two tracks.



Appendix C

On the Elimination of Statistical
Fluctuation in Sample Factorial
Moments and Event Factorial
Moments

If the statistical fluctuations are Poissonian, the multiplicity distribution @),, in the
1th bin is
—e "D(p)dp, (C.1)

o nl!
where D(p) is the dynamical distribution in the same bin. From the definition of fac-
torial moment Eqn.6.1, neglecting the denominator, which is only for normalization,

we get:

Fq:%%:n(n—l)---(n—q+1), (C2)
N is the number of event in a sample which is generally big and the sum is over
all the event in the sample. The crucial point is that, when N is big enough, the
bin-multiplicity n can take value from zero to very large (constrained only by energy

conservation). Therefore,

M8

F, = n(n—1)--(n—q+1)Qy

i
(o=}

/Ooo nn—1)---(n—q+ l)zjl—r;e_pD(p)dp

[
M8

3
Il
o
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— /Oooi P e PD(p)dp

n=0 (n - Q)’

- [z (fb(i_j)!e’j P Do)

= /Ooo p?D(p)dp = C, (C.3)

The normalization of Poisson distribution

S Eer=y, (C.4)

is used in the above derivation. The statistical fluctuations have been eliminated

successfully by averaging over the event sample.
Now we come to event-factorial-moments. There are two important points that
are different from sample-factorial-moments:
1. The number M of bins, unlike the number of events N, cannot be very large.
2. The total multiplicity in a single event is always fixed and this will result in a

maximum bin-multiplicity n,,q:.

Therefore, for event-factorial-moment,

Fq(e) = Y an—-1)(n-qg+1)QY
n=>0

= 2/0 n(n—1)---(n—q+1)%e‘pD(p)dp
n=0 :

= /OOO (ni P 6”) p*D(p)dp (C.5)

n=0 (n o Q)'

Because of the cutoff at n,.,;, normalization condition (C.4) cannot be used now,

and therefore
Fq(e)%/o pD(p)dp. (C.6)
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