Recent Longitudinal Spin Asymmetry Measurements for Inclusive Jet Production at STAR

David Staszak (UCLA) for the STAR Collaboration PANIC 2008, Eilat, Israel November 9-14, 2008

<u>Outline</u>

- * Introduction
- * 2005 Results
- * 2006 Results
- * Summary and Outlook

The Proton Spin Structure Puzzle

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \left\langle L_{q,g} \right\rangle$$

• From polarized-DIS measurements we know quark contribution to 1/2 is small:

 $\Delta\Sigma~pprox$ 20-30%

x∆G

x 1

• Gluon polarized distributions are not well constrained

0.1

Leader et al, PRD 75, 074027 (2007)

David Staszak, Inclusive Jet $\rm A_{LL}$ at STAR

 $Q^2 = 2.5 \text{ GeV}^2$

∆G > 0

-∆G<0

change sign x∆G

0.4

0.3

0.2

0.1

0.0

0.01

Accessing ΔG via A_{LL}

Inclusive Jet Signal: High Cross Section + Avoid fragmentation functions

pp Run Year	2003-2004	2005	2006	2009 (Requested)
Polarization	30-45%	50%	~55% (60% online)	60%
Luminosity	0.3 pb ⁻¹	2 pb ⁻¹	5 pb ⁻¹	50 pb ⁻¹
$FoM = P^4L$	0.01 pb ⁻¹	0.1 pb ⁻¹	0.5 pb ⁻¹	6 pb ⁻¹

David Staszak, Inclusive Jet A_{LL} at STAR

STAR Detector

All detectors have full azimuthal coverage

*(hep-ex/0005012)

Jet Reconstruction

midpoint-cone algorithm*

- Adapted from the Tevatron
- 0.5 GeV seed energy, split/merge fraction = 0.5
- Cone Radius:

correct data to theory

- Use Pythia+GEANT to quantify detector response
- Estimate corrections to go from "*detector*" to the *"particle*" level

Inclusive Jet Cross Section

$$\frac{1}{2\pi} \frac{d^2 \sigma}{d\eta dp_T} = \frac{1}{2\pi} \cdot \frac{N_{Jets}}{\Delta \eta \Delta p_T} \cdot \frac{1}{\int L dt} \cdot \frac{1}{c(p_T)}$$

• Agreement within systematics with NLO QCD over 7 orders of magnitude

- MB and HT agree in 3 overlapping bins
- Other channels have shown agreement with pQCD at RHIC: π^0 , π^+ , π^- , K⁺, photons

 \Rightarrow pQCD works here!

• Theory: B. Jager et. al, Phys Rev D70 034010

• Error bars are statistical uncertainty only, grey bands are systematic

• Data are compared to predictions within the GRSV framework with several input values of ΔG . Model calculations from:

B. Jager et. al, Phys Rev D70 034010, T Gehrmann et. al, Phys.Rev.D53 6100-6109(1996) David Staszak, Inclusive Jet A_{LL} at STAR

2005 A_{LL} Systematics

A _{LL} systematics	(x 10 ⁻³)
Reconstruction + Trigger Bias	2-5 (p _T dep)
Non-longitudinal Polarization	0.1-0.8 (p _T dep)
Relative Luminosity	0.94
Backgrounds	0.70
p _T systematic	(-5.4%,+6.7%)

Trigger Bias: The natural interaction mix (gg/qg/qq) can be biased in our sample from our triggers which rely on neutral energy only.

Reconstruction Bias: 25% jet resolution mixed with steeply falling p_T spectrum means on average that we over-estimate the jet energy. Leading Systematic

Trigger and Reconstruction Bias Systematic

Step 2: Combine Pythia partonic information with polarization models of ΔG , and calculate:

- A_{LL} (Pythia)
- A_{LL}^{--} (Geant +Trigger)

Trigger + Reconstruction Bias is the difference between A_{LL}(Pythia) and <u>shifted</u> A_{LL}(Geant+Trigger)

- Systematic is conservatively the greatest +/- difference of all models for each pT bin

2005 GRSV Comparison

GRSV: PRD 63, 094005 (2001)

Comparison with additional global analyses

Comparison with additional global analyses

David Staszak, Inclusive Jet A₁₁ at STAR

$2006 A_{LL}$

A _{LL}	A _{LL} systematics	(x 10 ⁻³)
0.08 GRSV Δg=0 GRSV Δg=-g GS-C	Reconstruction + Trigger Bias	(-1,+3) (p _T dep)
0.06	Non-longitudinal Polarization	~ 0.03 (p _T dep)
0.02	Relative Luminosity	0.94
0	Backgrounds	1 st bin ~ 0.5 else ~ 0.1
	p _T systematic	±6.7%
10 15 20 25 30 35 p _T (GeV/c)		

• Full Barrel instrumented, Endcap towers included in jet finding

- Increased trigger thresholds from 2005 \rightarrow better statistics at high p_T
- 4 pb⁻¹ (more data still being analyzed), 60% Polarization (online polarization)

2006 GRSV Comparison

Summary and Outlook

- pQCD calculations of the inclusive jet cross section agree with STAR data
- + 2005 and 2006 inclusive jet A_{LL} significantly constrain ΔG for 0.02(x(0.3
 - Contributions in this range are not large and can be negative
 - Large contributions at x < 0.02 are still allowed
- Correlation measurements at STAR di-Jet and gamma-Jet are a next important step towards pinning down ΔG (see B. Surrow this session)

17

Backup Slides

2005 and 2006 Comparison

Single Spin Asymmetries

- Longitudinal single spin asymmetries are consistent with zero, as expected

STAR 200 GeV pp jet sensitivity for a sub-sample of models