Status of Dijet Cross Section and Double Longitudinal Spin Asymmetry Measurement in 200 GeV Proton+Proton Collisions at RHIC

Tai Sakuma MIT

10/10/2008

1. ΔG measurement at STAR

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \langle L_q \rangle + \langle L_g \rangle$$

2. The status and projections of the dijet analysis

∆G measurement at STAR

Polarized DIS found that quarks carry ΔG is only loosely only a small fraction constrained from of the proton spin polarized DIS data. $\Delta\Sigma \approx 0.3$ p $\Delta \Sigma + \Delta G + \langle L_q \rangle + \langle L_g \rangle$ 9 2 quarks gluons orbital motions proton spin $\Delta G = \int_0^1 \Delta g(x) \mathrm{d}x$ $\Delta g(x) = g^+(x) - g^-(x)$ g polarized pp

In polarized pp collisions, A_{LL} is the most important quantity to measure to determine ΔG .

 A_{II} - the double longitudinal spin asymmetry

$$A_{\rm LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

- sensitive to ΔG

 A_{LL} is sensitive to ΔG

The cross section measurement is to confirm pQCD framework

Perturbative QCD

 $A_{\rm LL} = \frac{\sum_{i,j} \int dx_1 \int dx_2 \Delta f_i(x_1, Q^2) \Delta f_j(x_2, Q^2) \hat{\sigma}(\cos \theta^*) \hat{a}_{\rm LL}(\cos \theta^*)}{\sum_{i,j} \int dx_1 \int dx_2 f_i(x_1, Q^2) f_j(x_2, Q^2) \hat{\sigma}(\cos \theta^*)}$

 $\Delta g(x) = \Delta f_i(x)|_{i=g}$

STAR measures A_{LL} **for various final states.**

Motivation for Dijet A_{LL} is to constrain ΔG with initial event kinematics

The initial state variables can be written in terms of the final state variables

Compared to the inclusive jet A_{LL}

Evolution of STAR Dijet program

• 2005

- First cross section measurement
- west barrel west barrel dijets

• 2006

- First A_{LL} measurement
- barrel barrel dijets,
 barrel endcap dijets

• 2009

- May provide better constraint on ΔG than inclusive jets
- Wide acceptance including endcap endcap dijets

Dijet Definition

• Jet Definition

- Collection of charged tracks and tower energy deposits in a circle in $\eta \ x \ \phi$ plane
 - Charged Tracks
 - TPC
 - Pion mass assumption
 - Tower Energy Deposits
 - BEMC
 - Photon mass assumption
 - MIP energy subtraction for track
- Midpoint Cone Algorithm hep-ex/0608030
 - Cone Radius: 0.4(2005), 0.7(2006)
- Dijet Definition
 - Two leading pT jets

Cross Section Measurement

 $\mathrm{d}\sigma$

- **Data Collection**
 - RHIC 2005 Run
 - 200 GeV, 2.2pb⁻¹
- Phase Space
 - $\min(p_T) > 7 \text{ GeV}, \max(p_T) > 10 \text{ GeV}$
 - $-0.05 < \eta < 0.95, |\Delta \eta| < 0.5$
 - $|\Delta \phi| > 2.0$
- Data NLO comparison
 - The comparison is made at particle level.
 - Detector jets are corrected to particle jets with Pythia
 - The corrections for hadronization and underlying events on NLO calculation are evaluated with Pythia

Unfolding dijet cross section with Pythia MC sample

• The particle level distribution is different from the detector level distribution due to the detector response.

Dijet distributions are well described by MC

(One normalization factor fixed by M distribution)

2005 BJP2

 $\sqrt{s}=200~{\rm GeV},\, 0.2\leq\eta\leq0.8,\, p_{\rm T}\geq5.0~{\rm GeV/c},\, M\geq20~{\rm GeV/c^2}$

Dijet distributions with asymmetric p_T cuts more appropriate for NLO comparisons -Direct comparisons require full evaluation of hadronization and underlying event corrections \Rightarrow Next steps full comparison of absolute cross-sections! 2005 BJP2 cosθ* invariant mas average r 10^{3} STAR preliminary 10^{3} 10² 10^{2} 10^{2} -Data 10 Pvthia 20 30 40 50 60 80 0.2 0.6 0.8 0.05 0.1 0.15 0.2 0.25 0.3 0.35 70 -0.2 0.4 1.2 0 $\frac{1}{2}(\eta_{1} + \eta_{1})$ |cos(θ*)| M [GeV/c²] χ^2 / ndf χ^2 / ndf χ^2 / ndf 7.33/5 5.618 / 9 2.347 / 4 Prob 0.1972 Prob 0.7775 Prob 0.6722 1.5 1.5 1.5_c 0q 1.002 ± 0.018 1.003 ± 0.019 0q 0q 1.004 ± 0.019 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.21.2 1.1 1.1 1.1 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 ratio data/pythia 0.6 0.6 0.6 0.5 0.5^년 20 0.5 70 30 40 50 60 80 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 $\frac{1}{2}(\eta_{1} + \eta_{4})$ M [GeV/c²] |cos(θ*)| $\sqrt{s} = 200 \text{ GeV}$ $\min(p_{\rm T}) \ge 7.0 \ {\rm GeV/c}, \ \max(p_{\rm T}) \ge 10.0 \ {\rm GeV/c}$ $-0.05 \le \eta \le 0.95$ $|\Delta \eta| < 0.5$ $|\Delta \varphi| > 2$

Size of reconstructed statistical errors on dijet A_{LL} (2006)

 $\sqrt{s} = 200 \text{ GeV}, -0.7 \le \eta \le 0.9, p_{\mathrm{T}} \ge 5.0 \text{ GeV/c}, M \ge 20 \text{ GeV/c}^2 \text{ BJP1}$

2009 STAR Beam Use Request dijet A_{LL} Projections (50pb⁻¹, P=60%)

< 1.0, 0,0 < η < 1.0

40

50

60

70

M [GeV/c²]

80

0.0 < n

30

-0.020

Summary

- The dijet A_{LL} allows us to constrain $\Delta g(x)$ with initial parton kinematics (x).
- The dijet cross section measurement in pp collisions at 200 GeV are in progress.
 - Data NLO comparison will be made at the particle level jets.
 - The effects of, e.g. underlying events and hadronization are being evaluated.
- The first dijet A_{LL} will come from 2006 data
- With 2009 data, the dijet A_{LL} is expected to put further constraint on $\Delta g(x)$ with the event kinematics.

