

Strangeness production in U+U collisions at RHIC

Srikanta Kumar Tripathy (for the STAR collaboration) Institute Of Physics, Bhubaneswar

>Motivation
>STAR experiment at RHIC
>Analysis technique
>Results
>Summary & Outlook

Motivation

Strange quark production and its thermalization in the medium created aftermath in HIC, is an interesting probe to understand the medium properties, since net strangeness is zero in colliding nuclei.

Advantages over Au+Au:

> Different Geometrical orientation in same nuclei
(R. Haque, Z. Lin and B.Mohanty, Phys.Rev.C 85,034905,2012)

Larger energy density than Au+Au system (D. Kikola, G.Odyniec, and R.Vogt, Phys.Rev.C 84,054907,2011)

> Larger life time of fireball
(John Campbell,QM -2014 Poster,I-08)

STAR experiment at RHIC

Colliding systems: Au+Au, Cu+Cu, Cu+Au, U+U, d+Au, h+Au, p+p

Center of mass energy: $\sqrt{s_{NN}} = 7.7 \text{GeV}$ to 500GeV

Magnetic field: 0.5T
 Large acceptance: |η|<1.8, 0<φ<2π
 Excellent particle identification capabilities (Using Time Of Fight and Time Projection Chamber)

Dataset & track Cuts

System	U+U
Energy	193GeV
Event cuts	V _z <40cm,V _r <2cm
Statistics	~ 300 Million

Reference multiplicity: No. of charged particles with $|\eta| < 0.5$ $\eta = \frac{1}{2} \ln \left(\frac{|\vec{p}| + p_z}{|\vec{p}| - p_z} \right) = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]$

$$-\left\langle \frac{d\mathbf{E}}{d\mathbf{x}} \right\rangle \sim \mathbf{A} \left(1 + \frac{m^2}{p^2} \right)$$
$$N\sigma = \frac{1}{R} \times \log \left(\frac{dE/dx_{measured}}{dE/dx_{theory}} \right)$$

4

Topological cuts:

Strange particles are reconstructed via their dominant hadronic decay channels as listed below:

	Dominan mode, b ratio(i	t decay ranching n %)	Mass (in MeV)		Decay length (in cm)	Mean Life time
K_{s}^{0}	π⁺π⁻ ,69	0.2±0.5	497.614±0	.024	2.68	(0.8954±0.0004)×10 ⁻¹⁰ s
٨	pπ,63.9	±0.5	1115.683±0.006		7.89	(2.632±0.020)×10 ⁻¹⁰ s
		$K^{^{0}}_{^{\mathrm{s}}}$	٨	Reconstru	uction of V0 vert	rices Positive Track (P+)
Dca dau	1	≥2.0 cm	≥1.0 cm			
Dca dau	2	≥2.0 cm	≥2.0 cm		, Reconstructo	ed Helix P ⁺ to P ⁻
Dca dau dau2	1 to	≤0.8 cm	≤0.8 cm	Primary Vertex-		No Reconstructed Particle Track

GGGE		
Pointing away cut	>0.0	>0.0
V_{0} dca	≤0.8 cm	≤0.7 cm
V ₀ decay length	≥6.0 cm	≥6.0 cm
$ V_0 $ rapidity	≤0.5	≤0.5

Signal extraction

Signal extraction

Mass & Width variation

particle	Mass PDG value	Mass variation	Width measured
$oxed{K}^{ extsf{o}}_{ extsf{s}}$	497.614±0.024 MeV	4.2 MeV(~ 0.9%)	10 MeV
٨	1115.683±0.006 MeV	7.4 MeV(~ 0.7%)	5 MeV
$\overline{\Lambda}$		6.9MeV(~0.6%)	5 MeV

Uncorrected p_T spectra

> First measurement of K_{s}° , $\Lambda \& \overline{\Lambda}$ in U+U collisions > p_{T} reach upto 7GeV/c

Summary

> First measurement of single-strange hadrons(K_{s}^{0} , $\Lambda(\overline{\Lambda})$) in U+U $\sqrt{s_{NN}}$ =193GeV data via their hadronic decay channels.

Measured mass of these particles are consistent with PDG value(less than 1% deviation).

Outlook

> To correct spectra for detector acceptance and efficiency.

> To look for multi-strange hadrons

Thank you