
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

DISSERTATION THESIS

Distribuovaná správa dat v experimentech

na

RHIC a LHC

Michal Zerola

Distributed Data Management in Experiments at

RHIC and LHC

DEPARTMENT OFMATHEMATICS

2012

Název: Distribuovaná správa dat v experimentech na RHIC a

LHC

Autor: Mgr. Michal Zerola

Obor: matematické inženýrství

Druh práce: Disertǎcní práce

Vedoucí práce: doc. Michal Šumbera, CSc., DSc.,

Ústav jaderné fyziky, Akademie vědČR

Dr. Jérôme Lauret,

STAR experiment, Brookhaven National Laboratory, USA

Konzultant: Doc. RNDr. Roman Barták, Ph.D.,

Katedra teoretické informatiky a matematické logiky,

Matematicko-fyzikální fakulta, Univerzita Karlova v Praze

Abstrakt: Táto dizertǎcná práca pojednáva o skutočných potrebách

prenosu dát jedného z najväčších bežiacich fyzikálnych ex-

perimentov na svete. Obsahuje teoretické štúdie a prezen-

tuje vývoj riešiaceho modelu založeného na podmienkach.

Praktickáčast’ sa skladá z návrhu architektúry, meraní a

vyhodnotenia výkonnosti automatického plánovacieho sys-

tému. Nad riešiacimi technikami dátových prenosov boli

tiež vytvorené ich deriváty, ktoré boli aplikované i v oblasti

robotiky a sú prezentované v záverečnej prílohe.

Klíčová slova: plánování, grid, p̌renos dat, programování s omezujícími

podmínkami, celǒcíselné programování

Title: Distributed Data Management in Experiments at RHIC

and LHC

Author: Mgr. Michal Zerola

Advisor: doc. Michal Šumbera, CSc., DSc.,

Nuclear Physics Institute, ASCR

Dr. Jérôme Lauret,

STAR experiment, Brookhaven National Laboratory, USA

Consultant: Doc. RNDr. Roman Barták, Ph.D.,

Dept. of Theoretical Computer Science and Math. Logic,

Faculty of Mathematics and Physics, Charles University in

Prague

Abstract: This thesis discusses the real life data transfer and place-

ment needs of one of the largest physics experiments in the

world. It inheres the theoretical studies of the underlying

problem and presents the evolution of the constraint-based

solving model. Practical part consists of the architecture

design, measurements and performance evaluation of the

automated planning system. Derived techniques from data

transfers were applied also in the field of robotics and are

discussed in the appendix.

Keywords: planning, Grid, data transfer, constraint programming, inte-

ger programming

Contents

1 Introduction and problem statement 9

1.1 Document structure and work overview 10

1.2 RHIC complex and STAR . 11

1.2.1 The STAR experiment . 13

1.3 Computing challenges . 14

1.3.1 Flow and data management in STAR 15

1.3.2 Scalla system . 20

2 Problem analysis 24

2.1 Use case and requirements . 24

2.2 Related works . 26

2.2.1 Static vs. dynamic scheduling 27

2.3 Workflow analysis . 29

2.3.1 Working with chunks . 33

2.4 Fair-share . 33

2.5 Cache policy . 36

2.5.1 Water marking . 37

3 Planning problem formalization 39

3.1 Constraint programming approach 40

3.1.1 Planning stage . 41

3.1.2 Scheduling stage . 43

3.1.3 Complexity of the problem . 44

3.1.4 Unary resources . 45

3.1.5 Constraint model and solving strategy 49

3.1.6 Comparative studies . 54

3.2 Mixed Integer Programming approach 57

3.2.1 Extension of the model . 59

1

3.2.2 Implementation . 61

3.3 Coupling with CPUs . 62

4 Technical implementation 69

4.1 Architecture . 69

4.1.1 Web interface . 72

4.1.2 Database design . 73

4.1.3 Watcher . 80

4.1.4 Planner . 82

4.1.5 Data Mover . 83

4.1.6 Show case . 86

4.1.7 Performance comparison . 92

5 Conclusions and future work 96

A Routing for Autonomous Robots 101

A.1 Introduction . 101

A.2 Problem formulation . 103

A.3 Model on network flows . 104

A.3.1 Search procedure . 106

A.4 Model on finite state automata .107

A.4.1 Search procedure . 110

A.5 Embedding CP models into LS . 111

A.6 Experimental results . 112

A.6.1 Performance of the network flow model 112

A.6.2 Performance of the network flow model within local search 113

A.6.3 Performance of the finite state automaton model 114

A.7 From high-level planning to real world 116

A.8 Conclusions . 119

Bibliography 127

2

Acknowledgements

Because work included in this dissertation thesis is the final outcome of a synergy

with many STAR colleagues I would like to initially thank to people involved in this

work in a way or another. At the same time I would like to apologize to those who were

important in completing this thesis and I could not mention them personally line by line.

First and foremost I offer my sincerest gratitude to each of my supervisors, Dr. Michal

Šumbera, Dr. Jérôme Lauret, and Dr. Roman Barták. They all showed me their shared

enthusiasm and passion on the research, while each of them was providing me with a

specific guidance, expertise and inspiration. As a result, research life became smooth

and rewarding for me. Having such professionals covering diverse, but still overlapping

fields of science, is often a dream for a student, moreover if their balanced attitude passes

beyond the engagements and turns into care. One simply couldnot wish for better super-

visors; and it has been a honor and pleasure for me to work withthem.

I was lucky to meet several great colleagues from STAR Collaboration, discuss with

them not only work-related topics and spend a lot of free timeduring my stays at Brook-

haven National Laboratory. My co-workers and great friendsfrom the Prague’s heavy-

ions group have been definitely a fundamental element and support in physics and com-

puting related discussions along a lot of fun we have gone through together. My great

thank goes especially to Jana & Jaroslav Bielčík, Peter Chaloupka, Jan Kapitán, Michal

Bysterský, and Pavel Jakl. My friend and colleague from Institute of Computer Science

Stanislav Slušný deserves another big thank for the help andperfect time we had during

the work on our common papers in robotics.

Last but definitely not least, there is my family I want to thank to, without which

none of this work would be possible. My parents, grand parents, and sister provided me

constant support, encouragement and help all the time and stayed by me especially when

it was most needed.

3

Declaration of Originality

This doctoral thesis contains results of my research carried out at the Nuclear Physics

Institute between years 2007 and 2011. Most of this work was carried out within STAR

Collaboration. Excluding introductory parts, the research described in this thesis is orig-

inal unless where an explicit reference is made to work of others. I further state that

no part of this thesis or any substantially the same has been submitted for any qualifica-

tion other than the degree of Doctor of Philosophy at the Czech Technical University in

Prague.

4

Glossary

cache policy heuristic used to select the entry to eject with the regard tocache space. 36

cluster group of closely linked computers, working together through fast local area net-

works; in opposite to Grid, resources are not geographically spread. 27

Data Carousel system developed in STAR in order to coordinate requests forHPSS. 21

fair-share strategy to achieve equal resource usage among system usersand groups with

the respect of their priorities. 34

graph combinatorial structure that holds collection of verticesor ’nodes’ and a collec-

tion of edges or ’links’ that connect pairs of vertices. 41

Grid distributed and dynamic computer environment consisting of various loosely cou-

pled resources acting together to perform large tasks. 26

heuristic experience-based technique used to speed up the process of finding a good

enough solution, where an exhaustive search is impractical. 28

HPSS High PerformanceStorageSystem. software that manages petabytes of data on

disk and robotic tape libraries. 15

job-shop optimization problem in which jobs are assigned to resources at particular

times. 45

linear programming mathematical method for optimizing some objective over list of

requirements represented as linear relationships. 57

load balancing methodology to distribute workload across multiple resources to achieve

optimal utilization. 19

5

Glossary Glossary

makespan total length of the schedule (that is, when all the tasks havefinished process-

ing). 66

NERSC/PDSF NationalEnergyResearchScientific Computing Center /Parallel Dis-

tributedSystemsFacility at Lawrence Berkeley National Laboratory, USA. 18

NP-hard non-deterministicpolynomial-time hard. Class of problems from computa-

tional complexity theory that are, informally, “at least ashard as the hardest prob-

lems in NP”. 33

planning selection and organisation of actions in order to reach the goal or change of

the system. 41

pruning eliminating branches of a search tree that do not contain (better) solution. 50

QOS Quality of Service. ability to guarantee a certain level of performance. 72

queue structure which stores tasks waiting for execution; tasks are selecting according

to the applied dispatching rules. 28

race condition execution ordering of concurrent flows that results in undesired behavior.

32

RCF/BNL RHIC ComputingFacility at BrookhavenNationalLaboratory, NY, USA.

15

resource entity which executes, processes or supports the task (CPU,storage, link, etc.).

24, 43

scheduling allocation of resources to planned tasks over given time periods. 43

simulated annealing probabilistic metaheuristic for the optimization problem, where

making a ’move’ uses inspiration from annealing in metallurgy. 28

stream sequence of data packets used to transmit or receive information usually over the

network. 46

symmetry breaking process of identifying and breaking symmetries (set of solutions

which can be obtained by simple transformations from existing ones) in the search

space. 51

6

Glossary Glossary

thread smallest unit of processing that can be scheduled by an operating system. 48

unary resource resource with ability to execute only one task at any time. sometimes

called alsoserial. 43

weighted graph graph with an associated label (weight) with every edge; often used in

networking where weight represents speed/bandwidth of a link. 39

7

8

Chapter 1

Introduction and problem statement

A primary purpose of information technology and infrastructure is to enable people to

perform their daily tasks more efficiently or flawlessly. Distributed computing offers

large harvesting potential for computing power and brings other benefits as far as it is

properly exploited [32]. On the other hand it introduces several pitfalls including concur-

rent access, synchronization, communications scalability as well as specific challenges

such as answering key questions like “how to parallelize a task?” knowing where my data

and CPU power are located. Unlike the resources addressed bya conventional operating

system, these are distributed, heterogeneous and loosely coupled.

In data intensive experiments, like the one from High Energyand Nuclear Physics

(HENP) community to which e.g. the STAR1 [2] experiment belongs, the problem is

even more significant since the task usually involves processing and/or manipulation of

large datasets. The STAR experiment is primarily discussedand used for experiments

and software deployment in this thesis.

For the colossal volumes of data being produced every year tobe treatable, the tech-

nology and system must be manageable. In global collaboration, the needs for coor-

dinated resource sharing and efficient plans solving the problem in a dynamic way are

fundamental.

The massive data processing in a multi-collaboration environment often exploits ge-

ographically spread diverse facilities. Apparently, it will be hardly “fair” to users and

hardly using network bandwidth efficiently unless we address and deal with planning and

reasoning related to data movement and placement. This thesis addresses the paradigm

of distributing the data focusing on one of the largest running physics experiment in the

present. It exploits and applies the solving techniques fordesigning and building the

1Solenoidal Tracker at Relativistic Heavy Ion Collider is anexperiment located at the Brookhaven
National Laboratory (USA). See http://www.star.bnl.gov for more information.

9

http://www.star.bnl.gov

1.1. Document structure and work overview 1. Introduction and problem statement

automated planning and transferring system; enabling scientists to reach fruits of their

research leveraging the potential of their resources.

1.1 Document structure and work overview

We will first outline some primary ideas of the content, thesis structure and underline the

most important results that have been presented and published. We will arrange them

along the timeline and point out also few other projects we have been involved in.

The first chapter introduces the environment of the physics experiment, background

motivation and outlines the general scope of the project. Computing challenges and flow

of data processing are highlighted while currently used data services are summarized.

TheTier model leveraging regional resources is briefly described; and the experience of

setting up a local computing site for offline analysis was published in [12].

The next chapter dives into the more detailed problem analysis related to data place-

ment. We propose the concept of automated planning, introduce main use cases and

requirements, including the goal proposal of the work and intermediate steps and mile-

stones. Related work is described in section 2.2 and covers the difference and benefit of

our planning approach with respect to the current attitudes. The problematic of fair-share

and cache policy is covered in this part as well.

The principles of the constraint based modeling approach are covered in the third

chapter and this chapter includes the underlying constraint based models. The initial

ideas and simulated measurements were published in [69]. More elaborated planning

heuristics were shown in [71] and in [72] we covered the full Constraint Programming

model with computational complexity. In the sequel, further section 3.2 introduces the

extension of the model and presents the Mixed Integer Programming approach. The mu-

tual comparison and performance is immediately revealed inconsequent text. The MIP

approach was published in [70]. The last section of this chapter is devoted to “Holy

Grail” in Data Grids - coupling computing elements with datamovement inside the auto-

mated planner. We present the ultimate extension and modification to the model in order

to cover full reasoning.

Chapter 4 offers the insider view into the technical implementation and software en-

gineering part of our work, concentrating on the framework work-flow, database design

and implementation details of the fundamental components.The main principles and

real evaluation were published in [73]. The chapter includes practical proof of the prin-

ciples, real-case experience and closes the loop of initially proposed requirements. The

last chapter summarizes the overall status and outlines theeventual future direction.

10

1. Introduction and problem statement 1.2. RHIC complex andSTAR

The planning techniques we were researching in the network and data movement en-

vironment are applicable also in other fields. We investigated also the area of autonomous

robots and related vehicle routing issues under constrained circumstances. The appendix

is discussing this work which was published in [57] and recent results of the model based

on finite state automaton can be found also in [5].

Along the international conferences the work has been continuously presented at

STAR Collaboration Meetings and Regional Meetings as well.Several Czech&Slovak

proceedings of local conferences were published too. Thereis definitely a lot of open

topics for enhancement of the work and several issues need tobe addressed in order to

flawlessly deploy the system into an everyday production environment. The outlook is

discussed in the final chapter of the thesis.

1.2 RHIC complex and STAR

The Relativistic Heavy Ion Collider [36] (RHIC) allows physicists from all around the

world to study what the universe may have looked like in the first few moments after its

creation. This may lead to better understanding why the physical world works the way

it does, from the smallest subatomic particles, to the largest stars. The RHIC machine

is located at Brookhaven National Laboratory (New York, USA), where many important

discoveries were achieved (5 of them have been awarded a Nobel Prize).

It is a very versatile collider, capable of accelerating heavy ions (atoms having their

outer cloud of electrons removed), primarily ions of gold, because its nucleus is densely

packed with particles. RHIC collides two beams of ions head-on when they’re traveling

at nearly the speed of light. It provides access to the most fundamental building blocks of

nature known so far - quarks and gluons. By colliding the nuclei of gold atoms together

at nearly the speed of light, RHIC heats the matter in collision to more than a billion

times the temperature of the sun. In so doing, scientists areable to study the fundamental

properties of the basic building blocks of matter and learn how they behaved 15 to 20

billion years ago, when the universe was barely a split-second old. In parallel with this

program, with increasing importance, there is also a uniqueproton-proton program to

study proton spin structure [53].

The RHIC complex (Fig. 1.1) is composed of a “chain” of particle accelerators.

Heavy ions begin their travels in theTandem Van de Graaffaccelerator, travel through a

circularBoosterwhere, with each pass, they are accelerated to higher energy. From the

Booster, ions travel to theAlternating Gradient Synchrotron, which then injects the beams

via another beam line into the two rings (identified as yellowand blue in Fig. 1.1) of

11

1.2. RHIC complex and STAR 1. Introduction and problem statement

12:00 o’clock

2:00 o’clock

4:00 o’clock

6:00 o’clock

8:00 o’clock

PHOBOS
10:00 o’clock

BRAHMS

STAR
PHENIX

RHIC

AGS

LI NAC
BOOSTER

TANDEMS

Pol. Proton Source

High Int. Proton Source

Design Parameters:

Beam Energy = 100 GeV/u

No. Bunches = 57

No. Ions /Bunch = 1×109

Tstore = 10 hours

L ave = 2× 10
26 cm-2sec -1

9 GeV/u

Q = +79

1 MeV/u

Q = +32

HEP/NP

µ g-2

U-line

BAF (NASA)

Figure 2. The Relativistic Heavy Ion Colli der (RHIC) accelerator complex at Brookhaven

Figure 1.1: Layout of the RHIC complex at BNL - schematic drawing.

RHIC. Counter-rotating particle beams can cross at six intersections around the 2.4 mile

RHIC ring. A different detector is located at each of the fourintersection points currently

in use. The RHIC was designed [27] to accelerate nuclei to topenergy of 100GeV/A for

A& 200 (nucleon’s density), and at the same time being able to gocontinuously as low

as 5GeV/A with species from almost the full periodic table.

Just after the collision, thousands more particles form as the area cools off. Each of

these particles provides a clue as to what occurred inside the collision zone. Physicists

sift through those clues for interesting information.

Currently, there are four active experiments at the RHIC:

• STAR The Solenoidal Tracker at RHIC is used to search for signatures of the form

of matter that RHIC was designed to create: the quark-gluon plasma.

• PHENIX The Pioneering High Energy Nuclear Interaction eXperiment, is a detec-

tor designed to investigate high energy collision of heavy ions and protons.

• PHOBOS& BHRAMS The PHOBOS detector was designed to examine and an-

alyze a very large number of unselected gold ion collisions.The BHRAMS was

designed to measure charged hadrons over a wide range of rapidity and transverse

momentum to study the reaction mechanisms of the relativistic heavy ion reactions

at RHIC and the properties of the highly excited nuclear matter formed in these

reactions.

This work was supported and primarily intended for the STAR experiment, within

which the research was carried out.

12

1. Introduction and problem statement 1.2. RHIC complex andSTAR

Figure 1.2: Perspective view of the STAR detector, with a cutaway for viewing inner
detector systems.

1.2.1 The STAR experiment

STAR is a general-purpose high energy physics detector (seeFig. 1.2) with a variety

of subsystems optimized for the detection of diverse types of particles emitted from the

collisions of heavy ions or polarized protons. It is featuring detector systems for high

precision tracking, momentum analysis, and particle identification at the center of mass

rapidity. The large acceptance of STAR makes it particularly well suited for event-by-

event characterizations of heavy ion collisions and for thedetection of jets. With rel-

atively short run periods, high statistics data can be takenthat will allow analysis of

unprecedented detail over the energy range planned.

STAR is situated in the six o’clock position in the RHIC ring.The experiment is a

large collaboration of more than 500 scientists and engineers representing≈ 60 institu-

tions in dozen countries. The geographical distribution ofthe institutions in the STAR

Collaboration is given in Table 1.1.

STAR collects several gigabytes of raw data every second during data taking. These

raw data are promptly compressed and translated into a format that can be analyzed

by physicists, but even the produced dataset contains millions of interesting “events”

13

1.3. Computing challenges 1. Introduction and problem statement

Country Institutions Percentage
USA / North America 24 46%
Europe 12 23%
Asia (China / Korea) 8 15%
India 6 12%
South America 2 4%

Table 1.1: Geographical distribution of institutions in the STAR Collaboration as of 2008.

Figure 1.3: Projection of data for the STAR experiment.

and measures in the hundreds of terabytes up to several peta bytes for a given year of

experimental running.

1.3 Computing challenges

Very often, the physics topics of HENP experiments are statistically driven. In order

to get a significant statistical data sample, the experiments have to generate and acquire

enormous data for further analysis. During the normal operation mode, the STAR detec-

tor produces raw data with the speed of≈ 500−600 MB/s (an average size of an “event”

is 0.62 MB and the frequency of acquisition system is 1000 Hz). TheFigure 1.3 is outlin-

ing the continuous growth in STAR’s stored data at tape drives, reaching the magnitude

of several Peta bytes.

The data volumes will even more likely grow in the future generations of such ex-

14

1. Introduction and problem statement 1.3. Computing challenges

periments. Running an analysis means, firstly, to develop anapplication (usually using

a data analysis framework), then obtain input data the application depends on, and, fi-

nally, execute these tasks on computer elements and produceuser derived results. From

the yearly data sets, the experiment may produce many physics ready derived data sets

which differ in accuracy as the problem is better understoodas time passes. In addition to

a typical Peta-scale challenge and large computational needs, such running experiments

acquiring a new set of valuable real data every year need to provide data for physicists

from previous years and consequently at any point in time.

With such demands from hundreds of collaborators in parallel, requesting time and

computing wise intensive processing of large-scale data sets, one can easily see the emi-

nent needs for efficient storage and computing solution.

1.3.1 Flow and data management in STAR

We will outline the basic procedure the STAR experiment has developed for handling

and managing acquired data (Fig. 1.4). The raw detector datais immediately transferred

to the set of low level tuned Linux boxes calledBuffer box. Using the water marking, if

the use of local disk of any buffer box machine exceeds some level, raw files are moved

(usingpftp protocol) to the tape storage at local computing facility atBNL, called RHIC

Computing Facility (RCF) [22], using the optical fibers. TheMass Storage System (MSS)

at RCF/BNL is called High Performance Storage System2 (HPSS) and is based on the

robotic tape system. The graph from Fig. 1.5 shows the data mover statistics from STAR

online to Mass Storage. This system works as a tertiary storage repository for STAR

where all raw data sets reside.

The raw data needs to be processed by the reconstruction software with appropriate

calibration information to be usable for later physics analysis. This raw reconstruction

process (main operation is tracking the particles) happenson the computing farm nodes.

Reconstruction jobs are submitted to the machines using local Resource Management

System (on top of the Condor dispatcher) and jobs pull data from HPSS to local disks for

full chain processing.

In addition, to relieve the RCF resources, part of the raw data (15%) are planned

to be processed in Korea Institute of Science and TechnologyInformation (KISTI) in

Asia. Recent promising transfer studies and tests showed the inter-continental link full

bandwidth saturation is possible in a sustainable mode.

The processed files are called Data Summary Tapes (DSTs), often reffered to as DAQ

2HPSS: http://www.hpss-collaboration.org/

15

http://www.hpss-collaboration.org/

1.3. Computing challenges 1. Introduction and problem statement

Figure 1.4: Schematic drawing of data flow in STAR. The data flow starts from the single
point - the detector.

Figure 1.5: Data mover statistics from STAR online to Mass Storage. Over the run period,
the averages sustained at the level of 250 MB/sec.

16

1. Introduction and problem statement 1.3. Computing challenges

DAQ raw DAQ reco DAQ µDST
Run year avg size count avg size count avg size count

2010 1.143 GB 774 808 1.340 GB 25 782 208.720 MB 240 320
2009 925.836 MB 250 102 2.447 GB 62 111 333.256 MB 255 065
2008 436.765 MB 353 947 795.685 MB 66 255 136.375 MB 489 013
2007 470.104 MB 317 167 564.371 MB 325 511 165.575 MB 331 062
2006 433.809 MB 115 472 583.802 MB 135 339 84.915 MB 135 365
2005 441.356 MB 326 809 323.758 MB 528 850 71.419 MB 545 502
2004 461.349 MB 406 091 364.974 MB 399 003 153.526 MB 453 405
2003 479.092 MB 124 956 95.428 MB 209 552 26.339 MB 206 428

Table 1.2: Average file size of different file types during theyears 2003 - 2010.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2003 2004 2005 2006 2007 2008 2009 2010

A
ve

ra
ge

 fi
le

 s
iz

e
(M

B
)

Year

Average file size in 2003 - 2010

DAQ raw
DAQ reco

DAQ µDST

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2003 2004 2005 2006 2007 2008 2009 2010

F
ile

 c
ou

nt
 (

x
10

00
)

Year

File count in 2003 - 2010

DAQ raw
DAQ reco

DAQ µDST

Figure 1.6:Left. Average size of different file types.Right. Counts of different file
types. The raw data sets from 2010 have not been fully processed at the time of writing
this text.

reco, and contain all the information the physicists can uselater. Mostly, physicists do

not need all the saved information in DST files and since the files can be fairly big, for the

space and later computing efficiency, the files are transformed into the smaller files, with

only the essential information left. These files are calledµDST. All copies of the raw,

DST, andµDST files are copied and kept back on the HPSS. One has to also consider

the fact, that STAR has several productions ofµDST files from the single set of raw files,

passed with different reconstruction criteria and software settings.

The Table 1.2 and the graphs from Figure 1.6 represent the average size of different

file types together with their appropriate count as a function of years. With the installation

of the DAQ1000 upgrade in 2009, the size of the raw datasets almost doubled. We can

see that accumulated size of reconstructed files (over all passes) usually oversteps the

size of raw data sets.

17

1.3. Computing challenges 1. Introduction and problem statement

2010 2011 2012 2013 2014 2015 2016
Typical number of Tier-2 4 3 4 5 4 4 3
Bandwidth @ Tier-2 0.84 1.06 1.08 1.24 1.67 1.47 1.47
Bandwidth from BNL 2.24 2.11 2.87 4.14 4.44 3.93 2.94
Bandwidth from LBNL 1.12 1.06 1.43 2.07 2.22 1.96 1.47

Table 1.3: Data transfer rates for sustaining redistribution ofµDST to otherTier-2centers.

Tier model

Given the international composition of the collaboration,the STAR Software and Com-

puting (S&C) model has naturally evolved toward a Tier structure, similar to that utilized

by other major international S&C efforts. TheTiers (Tier 0, 1, 2) are defined by the

services and capabilities available at the institutions within a given classification.

Since BNL is hosting the STAR detector, it is the uniqueTier-0 center by definition.

A Tier-1 center in STAR is defined as a site providing persistent storage, Mass Storage

System (MSS), as a local service and also a site providing resources (storage or pro-

cessing power) to level of 15% or more to perform any specific task. Since 2000, the

ParallelDistributedSystemsFacility at theNationalEnergyResearchSupercomputing

Center (NERSC/PDSF) at Lawrence Berkeley National Laboratory has been the only

Tier-1 center in STAR. A STARTier-2 site is an institution having several tens of TB

of storage which can be utilized for local or regional needs for user analysis. Wayne

State University, MIT, and NPI/ASCR in Prague are examples of STAR Tier-2 centers.

The distribution of “physics ready” data allows for an enhanced productivity where they

become available. Table 1.3 presents typical number ofTier-2 sites for upcoming years

(line 1) and expected network estimate. From the STAR observations typicalTier-2 site

replaces the local data on the order of 4 times a year. The projected numbers for total

bandwidth required (lines 3 and 4) assume a target goal where2/3 of institutions would

acquire data from BNL and 1/3 from LBNL.

Magellan Cloud STAR has recently made also massive use of Magellan Cloud facility

where two government-funded testbeds NERSC/PDSF and the Leadership Computing

Facility (ACLF) at Argonne National Laboratory (ANL) jointvirtual clusters made up of

IBM iDataplex solution in order to provide a cost-effectiveand energy-efficient paradigm

for science. This collaboration resulted in a real-time cloud-based data processing system

running a coherent cluster of over 100 Virtual Machines fromthree Magellan resource

18

1. Introduction and problem statement 1.3. Computing challenges

pools -Eucalyptus3 at NERSC,Nimbus4 at ANL andOpenStack5 at ANL. The total

number of cores has exceeded 800. While set at national laboratories, Magellan cloud

has predictable network path (in opposite to true commercial cloud).

Data services The RCF facility at BNL has three major components, namely HPSS,

the Linux Farm and the centralized disk system. Various storage systems mutually differ;

and usually huge and cheap amount of storage is payed off by high latency time or data

access inconvenience. It is clear that application benefitsoften require the data to be

“close enough”. By this we mean the data access from the application viewpoint must

be smooth, prompt and reliable. Therefore, the data movement from MSS to “closer”

storage elements, data placement strategy, and the data access solutions are the key blocks

in STAR S&C program.

The RCF has provided central storage (based on BlueArc or similar solution) made

available to the computational nodes via Network File System (NFS). As it was explained

above in the text about data flow, the reconstructedµDST files are moved back to the

permanent HPSS storage, however the system populates thesefiles also to other data

services. Daemons calledSpidersconstantly monitor the presence of reconstructed files

on NFS and also on distributed storage system (explained in the following section 1.3.2).

This infrastructure, keeping a catalogue of files up to date,also allows for further data

management tasks such as dataset replication on other elements, detecting missing files in

HPSS and automatic deletion of files from NFS (keeping a copy on distributed storage).

The distributed storage is primarily used for data access from jobs.

STAR has been intensively involved in deploying distributed model for storing and

accessing the data. The main reasons behind focusing on the distributed solution and its

basic advantages are:

• Scalability: distributed system can better scale with increasing requirements for

the capacity

• Load balancing: the distribution of data implies spreading the load among the

elements

• Fault tolerance: avoiding the centralized single point of failure leads to improved

fault tolerance

3Eucalyptus: http://www.eucalyptus.com
4Nimbus: http://www.nimbusproject.org/
5OpenStack: http://www.openstack.org

19

http://www.eucalyptus.com
http://www.nimbusproject.org/
http://www.openstack.org

1.3. Computing challenges 1. Introduction and problem statement

Figure 1.7: Confrontation of centralized and distributed capacity of storage in STAR.

The larger portion of the overall storage space used to be served by centralized systems

in the past; however, as we can see from the graph in Fig. 1.7 most of the data resides

on the distributed disk space and this tendency will be even more dominant in the future.

Since 2006, STAR has been using Scalla/Xrootd system to aggregate and access data in

a scalable way. We will outline the main concept of this approach.

1.3.2 Scalla system

The Scalla (Structured Cluster Architecture for Low Latency Access) [28] software suite

offers a framework for aggregating a commodity hardware to construct large fault-tolerant

high performance data access. The suite consists of a file server calledxrootdand a clus-

tering server calledcmsd. The xrootd server was developed for the ROOT6 analysis

framework to serve root files. However, the server is agnostic to the file type and pro-

vides byte level access to any type of file. The cmsd server is designed to provide file

location functionality and cluster health and performancemonitoring.

One of the fundamental principles of the suite is its structured hierarchical subscrip-

tion model. That is, cmsd’s connect to other cmsd’s in order to form a compactB−64

tree, as shown in Figure 1.8. A special cmsd, called the redirector, sits at the root of the

tree. This server is given the role of a manager. The manager is responsible for issuing

file queries and collecting the responses from nodes lower inthe tree. A server cmsd is in

one-to-one correspondence with a data server (i.e., a machine that serves data files). This

kind of architecture scales very quickly with a minimum amount of message traffic (due

to the logarithmic height of a search tree). The limit of 64 nodes is deliberate. Sixty-four

allows efficient bit-slice vector operations using 64-bit integers and deterministically lim-

6ROOT - A Data Analysis Framework: http://root.cern.ch

20

http://root.cern.ch

1. Introduction and problem statement 1.3. Computing challenges

Figure 1.8: Example of B-64 tree structure used for clustering servers (and aggregating
the distributed storage).

its the amount of work any particular server needs to do. The latter is critical in providing

a deterministic time bound for file queries.

DataCarousel

In the STAR environment, files not available at any xrootd data server are transferred from

the MSS as shown in Fig. 1.9. The component calledData Carouselwas developed for

this purpose - to coordinate the requests which would otherwise be initiated from all data

servers within the Scalla/Xrootd architecture and other client requests as well (this would

lead to a collapse of MSS or inefficiency). The DataCarousel works simply as a HPSS

front-end, managing the asynchronous requests. It aggregates the set of requests from

clients, re-orders them according to the internal policy, and passes them further to the

HPSS. The system itself is composed of a light client program, a plug-and-play policy

based server architecture component and a permanent process interfacing with the mass

storage using HPSS API calls. The client and server interacts via a database component

isolating client and server completely from each other. Policies may throttle the amount

of data by group (quota, bandwidth percentage per user) but also perform tape access

optimization such as grouping requests by the tape identification number.

Recently, the Scalla/Xrootd system development is trying to exploit also the bene-

fits of faster and lower latency Wide Area Networks (WAN). Theprincipal idea is that

missing files can be retrieved over WAN from other Scalla cluster (geographically in a

different location) on the fly. This operation allows to start an application at the clus-

ter even if some files are not available. The metric used for making decision where to

redirect a client considers only the load of the servers. As an addition, the site hosting

the Scalla cluster has to allow direct incoming connectionsfrom remote clients, what is

often not always feasible in such organizations. There is definitely a need for utilizing

21

1.3. Computing challenges 1. Introduction and problem statement

Figure 1.9: The Scalla/Xrootd overview with DataCarousel integration as deployed in
STAR.

22

1. Introduction and problem statement 1.3. Computing challenges

the more and more available sources over the WAN and the rising demand for a “decision

maker”. The question whether to retrieve missing files on fly,or whether to distribute the

data in advance to achieve the proper optimization is then just leveraging the decision in

one way or another.

23

Chapter 2

Problem analysis

This chapter, after the preliminaries, introduction and overview of the STAR’s comput-

ing challenges, is devoted to more elaborated problem analysis. We will introduce the

goal of the automated planning system remarking the main workflow principles, opti-

mization features and the motivation for further software architecture. We will discuss

the related works, give summary of the current approaches and techniques, and bring the

basic solving attitudes the system is based on. Because of the broad range of factors the

components have to deal with, we will not step into the deep discussion about all of them,

but present an overview of some like fair-share, cache policy, etc.

2.1 Use case and requirements

The purpose of our research and work is to design and develop an automated planning

system acting in a multi-user and multi-service environment as shown in Fig. 2.1. The

system acts as a “centralized” decision making component with the emphasis onopti-

mization, coordination andload-balancing. The optimization guarantees the resources

are not wasted and could be shared and re-used among users andsources. Coordination

ensures multiple resources do not act independently so starvation or clogging do not oc-

cur, while load-balancing avoids creating bottle-necks onthe resources. The intent is not

to create another point-to-point data transfer tool, but touse available and practical ones

in an efficient manner.

We describe the most important optimization characteristic with the help of figures

Fig. 2.2 and 2.3. Let us suppose there are requests for the same (or overlapping) dataset

from two users, while each of them needs the dataset to be processed at his/her specific

location. The system has to reason about the possible repositories for the dataset, select

the proper ones for every file (the granularity is specified bythe files in our case) and pro-

24

2. Problem analysis 2.1. Use case and requirements

Figure 2.1: General view of the automated planning system. The goal is to achieve
controlled and efficient utilization of the network and dataservices with a proper use
of existing point-to-point transfer tools. At the highest level of abstraction, the planner
should appear as a “box” between the user’s requests and the resources.

duce the transfer paths for each file. The output plan should be optimal with an objective

of the overall completion time of all transfers. Thus, this optimization characteristic is

focusing on the network structure and respective link bandwidth. As illustrated in Figure

2.2, it is conceivable in our example that optimization willcause data movement to occur

once on some network links while datasets will be moved to twodifferent destinations.

Moreover, the files are usually served by several data services (such as Xrootd, Posix

file systems, Tape systems [58]) with different performanceand latencies. Therefore,

the optimization and reasoning on where to take the files available from multiple sources

Figure 2.2: Optimization of the transfer paths with regardsto the network structure and
link bandwidth. Some network path may be re-used to satisfy multiple requests for the
same data.

25

2.2. Related works 2. Problem analysis

Figure 2.3: Optimization of the transfer paths with regardsto the different data service
performance/latency. Multiple sources for the same data may be naturally combined
alternatively to avoid overload and service clogging.

choice will allow making the proper selection for a file repository, respecting their in-

trinsic characteristic (communication and transfer speed) and scalability (Fig. 2.3). In

other words, as soon as multiple services and sources are available, load balancing would

immediately be taken into account by our planner.

2.2 Related works

The needs of large-scale data intensive projects arising out of several fields such as bio-

informatics (BIRN, BLAST), astronomy (SDSS) or HENP communities (STAR, ALICE)

have been the brainteasers for computer scientists for years. Whilst the cost of storage

space rapidly decreases and computational power allows scientists to analyze more and

more acquired data, appetite for efficiency in Data Grids becomes even more of a promi-

nent need.

While the “traditional”Computational Gridswere developed due to the need to solve

problems that require processing a large quantity of operations, theData Grids[13] pur-

pose was extended for another dimension. They primarily deal with data repositories,

sharing access and management of large amounts of distributed data. In such systems

many types of algorithm, such as replication, are importantto increase the performance

together with data copy and transfer. In other terms, data location is important in such a

type of scheduling, because it is not only important to allocate tasks, jobs or application

to the fastest and reliable nodes but also minimize data movement and ensure fast access

to data.

Decoupling of job scheduling from data movement was studiedby Ranganathan and

Foster in [47]. Authors discussed combinations of replication strategies and scheduling

algorithms, but not considering the performance of the network. The nature of high-

energy physics experiments, where data are centrally acquired, implies that replication to

26

2. Problem analysis 2.2. Related works

geographically spread sites is required in order to processdata distributively. Intention

to access large-scale data remotely over wide-area networkhas turned out to be highly

ineffective and a cause of often sorely traceable troubles.

The authors of [55] proposed and implemented improvements to the Condor, a pop-

ular cluster-based distributed computing system. The presented data management archi-

tecture is based on exploiting the workflow and utilizing data dependencies between jobs

through study of related direct acyclic graphs. Since the workflow in high-energy data

analysis is typically simple and embarrassingly parallel without dependencies between

jobs these techniques don’t lead to a fundamental optimization in this field.

Sato et al. in [54] and authors of [46] tackled the question ofreplica placement

strategies via mathematical constraints modeling an optimization problem in Grid envi-

ronment. Solving approach in [54] is based on integer linearprogramming while [46]

uses Lagrangian relaxation method [21]. The limitation of both models is a characteriza-

tion of data transfers which neglects possible transfer paths and fetching data from a site

in parallel via multiple links possibly leading to the better network utilization.

We focus on this missing component considering wide-area network data transfers

pursuing more efficient data movement. An initial idea of ourpresented model origi-

nates from Simonis [56] and the proposed constraints for traffic placement problem were

expanded primarily on links throughputs and consequently on follow-up transfer allo-

cations in time. The solving approach is based on ConstraintProgramming technique,

used in artificial intelligence and operations research. One of the immense advantages

of the constrained based approach is a gentle augmentation of the model with additional

real-life rules. Constraints identify the impossible and reduce the realm of possibilities to

effectively focus on the possible, allowing for a natural declarative formulation of what

must be satisfied, without expressing how.

2.2.1 Static vs. dynamic scheduling

A workflow application is typically a set of tasks linked by producer-consumer commu-

nications. In general, it can be represented as a direct acyclic graph (DAG), where the

node is the individual job and edge represents the inter-jobdependence. If we restrict

ourselves to Grid environment and data transfers, a nodes can represent data transfers

over individual links and the connection between nodes represents the order of trans-

fers. One of the key functions of a workflow management systems [9] is to schedule and

manage the tasks on shared resources to achieve high performance. When it comes to

implementation, the planner and executor are two core components in terms of how the

27

2.2. Related works 2. Problem analysis

resource mapping decision is made and how a task (transfer) is planned. However, the

characteristics of the Data Grid environment make the coordination of its execution very

complex [11, 68].

Static approach, i.e. classical planning/scheduling, is built on creating full plan ahead,

where the planner makes the global decisions in favor of the entire workflow perfor-

mance. Assuming the environment is static, there is no uncertainty in the behavior of

resources and activities which are given in advance and assuming the performance of the

planning system is robust enough to cover the scale of the problem, this approach can

lead to (near) optimal plans.

However, in a grid environment static strategies may perform poorly because of the

Grid dynamics: resource can join and leave at any time; individual resource capability

varies over time because of internal or external factors; and requests (tasks) arrive as time

goes. Also computation cost of each job is not easy to accurately estimate, which is the

foundation of any static approach [64].

Because of several performance requirements and optimization criteria, the Grid prob-

lem is multi-objective in its general formulation. Therefore isolated simple heuristics

(also known as dispatching rules and policies) like First-Come First-Served, Earliest

Deadline First, Shortest Job First, etc. cannot meet all theneeds of the complex ob-

jective. However, since they are optimal for specific problems, easy to implement, and

adapt well to high dynamics, they (or some combination of them) are often used in theory

and practice [49]. To mention some production scheduling systems based on queue-based

policies, one can look at Condor [59], LSF [66] or PBS [20].

Local search (LS) [29], as a metaheuristic method for solving computationally hard

optimization problem, has been also applied to several Gridscheduling domains. Sev-

eral LS methods based on Hill Climbing have been studied in Ritchie an Levine [51].

Simulated annealing, which accepts also worse solutions with certain probability, has

been proposed for Grid scheduling by Abraham et al. [1] and Yarkhan and Dongarra

[67]. Tabu search is more sophisticated and usually requires more computation time to

reach good solutions. Several use were reported [33, 65] with a pursuit to optimise an

initial schedule computed with the help of dispatching rules in a dynamic Grid environ-

ment. LS methods are often considered to be very time consuming, but authors showed

that with an incremental approach based on a previously computed schedule one can

outperform queue-based approaches with very reasonable runtime requirements.

Another large family methods for solving combinatorial optimization problems is

population based heuristics. They often require large running time, but when objective

is reduced to find feasible solutions of good quality the use of them may be appropriate.

28

2. Problem analysis 2.3. Workflow analysis

Genetic algorithms for Grid scheduling have been addressedby Abraham et al. [1], Braun

et al. [10], Zomaya et al. [75], Page and Naughton [43].

There are many other approaches that have been applied to particular Grid related

problems and research papers frequently report some benefits of one sort or another.

However, most of the work has been done in academic ground within some simulated

environment and to our best knowledge most of them have not been applied and deployed

for the real production environment facing a comparable scale of problems like STAR

experiment does.

Designing and implementing the automated planning system in a dynamic environ-

ment like Data Grid is, will not be fruitful unless we addressthe three main issues:(1)

Accuracy of estimation. Estimating the computation cost of a job (w.r.t. either comput-

ing or transfer) is the key success factor, but at the same time the system can be hardly

effective if it has to reason about all peculiarities from the environment. The proper ab-

straction of the real world is needed to provide balance between accuracy and complexity.

(2) Adaptation to dynamic environment. Pure static approaches assume that resource and

task set is given and fixed over time. Since this assumption isnot always valid, the adap-

tation to the changing condition is needed. In other words, the system has to provide

proper balance between beingdeliberative andreactiveat the same time.(3) Separation

of planner from executor. Fundamentally the first two issues are related to the lack ofcol-

laboration between planner and executor. Without a cooperation the planner cannot be

aware of the grid environment change and cannot adapt to the more accurate estimations.

In the following chapters we will deep into the process of designing, implementing

and deploying the automated planning system in data intensive evironment targeting the

above mentioned issues.

2.3 Workflow analysis

In this section we explain the workflow of the planning process and further file transfer

execution with regard to the storage issue. The system offers file transfers over interme-

diate sites if it leads to higher performance or load balancing. By higher performance in

this case we mean achieving a higher network throughput (combination of faster network

links), while load balancing assures the network load is spread through the diverse path

if it is possible and beneficial. Since the transfer paths caninclude the intermediate site,

one can clearly see there is a need for a temporary storage at such a site. To handle this

there are two possible solving approaches.

The first one addresses the storage component directly in themodel. In this case, the

29

2.3. Workflow analysis 2. Problem analysis

model is extended for additional restrictions (namely the cumulative resources) which

emulate the selected disk usage increase (during the transfer) or decrease (after the trans-

fer). While the model would appear as “fully consistent” andencompassing all the de-

tails, this approach brings further complications to the model leading to the higher solving

complexity and also the fact that real data transfers do not always correspond to the com-

putations from the model (network is a dynamic environment with a lot of unpredicted

behavior). Therefore, handling these “exceptions” would be necessary outside of the

planner anyhow.

The second approach is based on the idea that the model itselfshould stay simple and

the storage resource handling is achieved dynamically during file transfers. To explain

how we handle the restrictions from a storage space without involving it into the planner,

let us first look into the workflow of the transfer mechanism over the link (Fig. 2.4).

We start with the general (high-level) explanation and later in the text we address several

details.

Figure 2.4: Flowchart of the transfer mechanism.

Before the transfer tool is executed, the free space at the destination site is checked

and compared with the required space for temporary caching the file. If there is enough

space, the actual information about the available space is updated and the transfer starts.

Otherwise, the system waits until some other process relieves the space. Upon the suc-

cessful transfer, the space at the starting site is released(if not, the transfer problem is

handled). Generally, each consequent transfer atomicallychecks and updates the required

space for itself.

When the next iteration of the planner is called, several files from some previous

plan may be still in a transfer. They may already be in a transfer on the last portion of

the planned path or still waiting to be transferred from an intermediate site. The system

keeps track of the current status of all files and the planner considers this information.

30

2. Problem analysis 2.3. Workflow analysis

Hence, if some link is being occupied (or files are waiting to be transferred over it), the

planner includes this “waiting” time into the reasoning. When some link is creating a

bottleneck because of the low bandwidth or similarly some site due to the very limited

storage space, the planner will automatically reuse other resources if it will lead to the

better (shorter) plan. Therefore, the dynamic storage handling outside of the planner will

not cause the separation between the plans and the reality.

This process is illustrated in figure 2.5. For the simplicity, let the network consist of

only three sites. In the beginning, there are no files in a transfer, so no link is occupied.

The planner produces the transfer plan for requested filesA, B, andC , for demonstration

let us assume all files are available at the siteStart, have to be transferred to the siteEnd

through the intermediate siteInter. After a while, filesA andB are already transferred

at siteEnd, and fileC is in a transfer fromStart to Inter site. When the next pass of the

planner is executed, the two links will be occupied, therefore the next requested fileD

will be transferred directly fromStartto theEnd.

Figure 2.5: Illustration of links usage by the planner in time.

Regarding the storage issue, an important observation we need to mention is that the

31

2.3. Workflow analysis 2. Problem analysis

time while the file is stored at intermediate site is assumed to be short and the total space

needed at the site not to be a critical part of the mechanism (typical available disk space

versus an average space taken by files in a current transfer).In other words, if we look

at the flowchart in Fig. 2.4, the check whether there is enoughspace for a file at the

intermediate site would be mostly positive. However, from the flowchart one can also

see a possiblerace condition [62]which can theoretically occur. A race condition is

an execution ordering of concurrent flows that results in undesired behavior. Since the

transfer tool, in case of not enough storage space at the destination site, relies on another

tool instance to release the space, there exists a possibility of a deadlock (as can be seen

in Fig. 2.6).

Figure 2.6: Schematic drawing of a theoretically possible race condition.

Closer look at the flowchart 2.4 raises a question when to consider a transfer instance

as not possible to act due to the locked destination storage.Any “try-wait” block can lead

to the resource starvation and there is a need for maximum number of tries (with smartly

defined intervals in between). After reaching the maximum tries and if the storage lock

still persists, the deadlock state has to be checked and solved.

To be able to detect and jump out of a deadlock, we propose to use a directed cycle

detection in a resource graph. During operation, if the transfer tools are waiting and we

detect an oriented cycle in the corresponding graph they form, the race condition occurs.

To solve it we can restart one of the transfers from the beginning, while the other one

resumes itself. A transfer path (partial task of the plan) isselected, the intermediate file

copies are deleted and the transfer is marked to be planned again in the next batch. The

space is released and other transfer can be resumed.

Similarly, flowchart 2.4 also uncovers the possible transfer problem due to any rea-

son. The point-to-point transfer can fail because of a broken link (which can be temporal

or permanent), software failure (client or server side issues), or other third parties con-

tainment. Analogous to the previous case, there is a need forreasonable number of retries

with updating and storing the failure information, up to thepoint when the link is marked

as broken. This indicates to the next iterations of the planner to exclude the link from the

reasoning until it will get back to the normal operation (seeFig. 2.7).

32

2. Problem analysis 2.4. Fair-share

Figure 2.7: Handling the possible failure of a transfer overthe link.

2.3.1 Working with chunks

We decided to work and plan with chunks (batches) of files instead of reasoning about

the full waiting list at once. This brings a lot of benefits andsimplifications:

• Adaptability to the changing network situation.

• Smaller the input faster the computation we get. This is especially important, since

the problem is NP-hard (as we will see in 3.1.3).

• Adaptability to the new incoming requests from different users.

• User fair-share can be thus realized using queue-based mechanism.

The global optimality does not have to be achieved when considering chunks instead of

the whole list of queued files, but the very first measurementsshowed that planning file

transfers by small chunks (tested different sizes) does notlead to significant impact on

the lost on global optimum. This is demonstrated in the following graphs (Fig. 2.8).

TheX axes denote the number of files in a request whileY is the time (in units) needed

to generate the schedule and percentage loss on optimal solution. We can see that time

to find an optimal schedule without any additions grows exponentially and is usable only

for a limited number of files. Splitting the input into chunksresults both in the very

promising running time and also in the quality of the makespan.

2.4 Fair-share

The illustration of the batch selection is depicted in Fig. 2.9. This mechanism is also

called adispatching scheduling rule, where the idea is to assign priorities to the in-

coming tasks and the tasks with higher priorities win (they get allocated to the resources

faster).

33

2.4. Fair-share 2. Problem analysis

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Files to schedule

Time to produce a schedule (weighted)

CP optimum
Peer-2-Peer

CP with symmetry breaking
CP with increasing timelimit

Optimum CP with chunk size 1
Optimum CP with chunk size 6

Optimum CP with chunk size 11
Optimum CP with chunk size 16

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200Lo
ss

 c
om

pa
re

d
w

ith
 o

pt
im

um
 (

%
)

Files to schedule

Makespan loss on optimum (weighted)

Peer-2-Peer
CP with increasing timelimit

Optimum CP with chunk size 1
Optimum CP with chunk size 6

Optimum CP with chunk size 16

Figure 2.8: Approximation of the solver’s runtime depending on different strategies (left)
and corresponding loss of the makespan comparing to an optimal schedule (right) for the
weighted case.

Figure 2.9: Illustration of a dispatching process. Depending on several factors, the trans-
fers from distinct users are selected for the current batch.

Dispatching rules do not have to lead to the global optimality, but generally provides

very sufficient results and fit well into a dynamic environment with the requirements for

a high throughput (also used in routers, grids, etc.).

As we know, requests can be made by many users and asking for several different

datasets spread over many locations. These requests are naturally dis-organized (ahead

of the time) affecting an overall performance and a delay of delivery with respect to the

users. The ultimate goal of a dispatching rules is to “organize” requests according to

several criteria and deliver a sustained performance alongthe maximal quality of service

where all users have ideally identical allocations of the provided service (i.e. fair-share

for users). The criteria are for example parameters influencing the performance in order

to accomplish the sustained data throughput, but also user’s importance (e.g. priority)

34

2. Problem analysis 2.4. Fair-share

determining how the system’s allocation should be distributed among users. Generally,

such system has to present a strategy fulfilling many requirements.

If we look back at the Fig. 2.9, where there are incoming requests from multiple users,

the most simple dispatching rule can beFIFO (First In First Out) [34]. In this case, the

requests are ordered exactly as they appear in the system andno other attributes are taken

into an account. Introducing the priorities (i.e. importance of a request) to different users

can lead to assigning a different weights to their particular tasks, consequently give birth

to theWeighted Fair Queuing (WFQ) rule. This rule (WFQ) is a generalization of a

Round Robin (RR), where users are considered equal and their tasks are picked evenly.

RR strategy is one of the simplest algorithms, resources areassigned to tasks in equal

portions and in circular order, without priority (also known as cyclic executive).

Clearly, more attributes (requirements) we want to involveinto the dispatching rules,

more likely they will be “conflicting” (e.g. preferring higher throughput can lead to

unfairness between users, and vice versa). Most often the evaluation function looks like

a linear combination of the desired factors (Fi) with their appropriate weights (Wi):

Pf =
N

∑
i=1

Wi ·F
i
f , where∑

i
Wi = 1 (2.1)

As an example, we can look into the DataCarousel, a system handling the requests

for the tape system in the STAR experiment. The tape system works as a tertiary storage,

where the medium used to store files are magnetic tapes handled by a robotic arm. One of

the most costly aspects of dealing with robotic tertiary storage system is the time it takes

to switch a tape. Another latency problem is searching for a file on a tape depending on

the tape size and the search speed and also a size of the file consuming the tape. Working

toward avoiding or minimizing these delays results in a large performance gain. The

dispatching rule which was studied in STAR [30] led to the following parameters/factors

in an evaluation function:

Pf =Wswitch·F
switch
f +Wsize·F

size
f +Wusage·F

usage
f (2.2)

In this case, theWswitch is a constant factor (weight) characterizing the importance of

a tape switches,Wsize an importance of a file size, andWusagean importance of a usage

history. Similarly, the corresponding attributes are:

• Fswitch
f - number of files from the same tape

• Fsize
f - the size of a requested file

35

2.5. Cache policy 2. Problem analysis

• Fusage
f - usage history of a user who submitted the request

In our system, the dispatching rule is a modular component, independent of the plan-

ner itself. It operates independently with the data stored in a database. Therefore any

rule can be plugged into the system, supposing all required factors are provided by the

database.

2.5 Cache policy

Cache policy controls how much and which data are kept at cache space and when flush-

ing occurs. The idea for keeping data within a cache is that future request for that data

can be served faster. One can clearly see that if files otherwise available only at tape

system (with long response time) are duplicated at the cache, the data delivery can be

speed up.

Cache algorithms (also called replacement policies) choose which items to discard to

make rooms for new ones when cache is full. The “hit-rate” of acache describes how

often a searched-for item is actually found in the cache. Since it is generally impossible

to predict how far in the future information will be needed, the replacement policies are

based on experience of access patterns which have locality of reference [18]. We will

outline several most widely used replacement algorithms.

Least/Most Recently Used (LRU, MRU) LRU [31] is based on discarding the least re-

cently used items. The implementations required keeping “age-bits” (may be expensive),

keeping track of what was used when in order to find the least recently used items.

In contrast to LRU, MRU [16] discards the most recently used items. For random

access patterns and repeated scans over large datasets MRU cache algorithms have more

hits than LRU due to their tendency to retain older data.

Random Replacement (RR) and Least Frequently Used (LFU) Randomly selecting

a candidate file to discard if space is needed doesn’t requirekeeping any information

about the access history. In contrast to LRU and MRU where theinformation considered

for discarding was age of the file, LFU algorithm counts how often file is needed. The

ones which are used least often are deleted first.

There also exists theAdaptive Replacement Cache(ARC) [38] which constantly bal-

ances between LRU and LFU to improve combined results.

36

2. Problem analysis 2.5. Cache policy

Figure 2.10: Illustration of High-low water marking principle.

Multi Queue Caching Algorithm (MQ) It often turns out that considering only the

age of the item may not be often enough for effective replacement strategy. Zhou, Philbin

and Li in [74] introduce MQ algorithm which considers:

• different cost of files: keep files that are expensive to obtain, e.g. those that take a

long time to get (from slow sources like MSS).

• size of files (taking up more cache): if files have different sizes, the cache may

want to discard a large file to store several smaller ones.

• expiration time of files: keep information that expires and consequently delete files

that are expired.

2.5.1 Water marking

The second role of the cache policy is to decide when the cacheshould be flushed and

how many items should be deleted. In it’s simplest form the cache may be completely

flushed when there is no more space for a new element; however more sophisticated

strategies are usually used.Water mark algorithms are widely implemented in cache

management routines. There are two thresholds, low and highmark (see Fig.2.10), that

represent the percentage cache occupancy. The low mark states that cache should always

contain some amount of files and high mark states up to which level the cache may be

maximally filled. For example if a low mark is set to 40% and a high mark to 70%,

the algorithm tries to keep the cache level between these twopercentage levels. In other

words, discarding of files is activated and deactivated depending on these thresholds.

There exist also adaptive algorithms [39], where the thresholds are dynamically ad-

justed according to the varying I/O workload. Two thresholds are defined as the multi-

plication of changing rates of the cache occupancy level andthe time required to fill and

empty the cache.

37

2.5. Cache policy 2. Problem analysis

As we will see in Chapter 4 any cache replacement strategy canbe plugged into the

system. Since our intent was not to study cache management, we implemented only the

simple LRU rule within water marking policy.

38

Chapter 3

Planning problem formalization

In this chapter we will present a formal description of the problem using mathematical

constraints which present restrictions from reality.

The input of the problem, which can be constructed at any point in time, consists of

two parts. First one has a static character and represents the network and file origins. The

network, formally a directed weighted graph, consists of a set of nodesN and a set of

directed edgesE. Nodes represent computing sites while edges transfer links between

sites. The weight of an edge corresponds to the link bandwidth, i.e. throughput of units

of file size per unit of time. The information about file’s origins is a mapping of that file

to a set of sites where the file is available. In reality, this input part is not static since the

load of the links varies with time, hence their bandwidth fluctuates as well. Moreover

some links may break and become unavailable. However, for the purpose of defining a

planning and scheduling model we will consider these input parts static received at the

beginning and which do not change during the solving process.

The second part of the input is a user request, namely the set of files that are going to

be transferred and their destination site. The goal of the solver is to produce:

• a transfer path for each file, i.e. selection of one origin anda valid path starting

from the origin node and leading to the destination,

• for each file and its selected transfer path, allocation of particular link transfers in

time, such that

• the resulting plan has minimum makespan (the finish time of the last transfer).

The solving process is composed of two iterative stages and we will describe each of

them separately continuing with the explanation of their interaction and possible reduc-

tion of search space exploration.

39

3.1. Constraint programming approach 3. Planning problem formalization

3.1 Constraint programming approach

An alternative approach to programming which relies on a combination of techniques

that deal withreasoningandcomputing is calledconstraint programming [48, 17].

The central notion is that of a constraint - a relation over the domains of sequence of

variables. One can view it as a requirement that states whichcombinations of values

from the variable domains are admitted. In turn, aconstraint satisfaction problem

(CSP) consists of a finite set of constraints, each on a subsequence of variables.

To solve a given problem by means of constraint programming we first formulate it

as a constraint satisfaction problem. This part of the problem solving is calledmodeling.

In general, more than one representation of a problem as a CSPexists. Then to solve the

chosen representation we use mostly the general methods, which are concerned with the

ways of reducing the search space and with specificsearch methods. The algorithms that

deal with the search space reduction are usually calledconstraint propagation algorithms.

They maintain equivalence while simplifying the considered problem and achieve various

forms oflocal consistencythat attempt to approximate the notion of (global) consistency.

In practice we are interested in:

• determining whether the chosen representation has a solution (is consistent)

• finding a solution, respectively, all solutions

• finding an optimal solution, respectively, all optimal solutions w.r.t. some quality

measure (objective function)

The basic characteristics of constraint programming are:

• Two phases approach:The programming process consists of two phases: a gen-

eration of a problem representation by means of constraintsand a solution of it.

• Flexibility: The representation of a problem by means of constraints is very flexi-

ble because the constraints can be added, removed or modified. This flexibility is

inherited by constraint programming.

Problems that can be best solved by means of constraint programming are usually

those that can be naturally formulated in terms of requirements, general properties, and

for which domain specific methods lead to overly complex formalizations.

40

3. Planning problem formalization 3.1. Constraint programming approach

3.1.1 Planning stage

The aim of planning stage is to generate a valid transfer pathfor each requested file from

one of its origins to the destination node. The following formalism is used for defining a

model in a mathematical fashion.

The setOUT(n) consists of all edges leaving noden, the setIN(n) of all edges leading

to noden. Input received from a user is a set of file names needed at the destination site

dest. We will refer to this set of file names as to demands, represented byD. For every

demandd∈D we have a set of sourcesorig(d) - sites where the filed is already available.

We will present two approaches, namelylink-basedandpath-based, for modeling

planning constraints.

Shared links - constraints or nodes? At the beginning we thought about using cumu-

lative resources in CP model for modeling a shared link or router at some site. To fully

model the layout of the real network is impossible and the model is just an approxima-

tion. We decided to model the shared parts if necessary usingdummynodes and respected

bandwidth ondummylinks. This allows us to keep the model simple and if needed only

extend the input graph.

Modeling with binary variables An important and very common use of 0−1 variables

is to represent binary choice. Let’s consider an event that may or may not occur, and

suppose that it is part of the problem to decide between thesetwo possibilities. To model

such a dichotomy, we use a binary variablex and let

x=

0 if the event occurs

1 if the event doesn’t occur

The event itself may be almost anything, depending on the specific situation being con-

sidered.

Link-based approach.

The essential idea for this principle is to use one decision variable for each demand and

link of the network (edge in a graph). We will refer to this{0,1} variable asXde, denoting

whether demandd is routed (value 1) over the edgeeof the network or not (value 0).

Mathematical constraints, ensuring that if all decision variables have assigned values

the resulting configuration contains transfer paths, are introduced below.

41

3.1. Constraint programming approach 3. Planning problem formalization

∀d ∈ D :

∑
e∈∪OUT(n|n∈orig(d))

Xde= 1, ∑
e∈∪IN (n|n∈orig(d))

Xde= 0 (3.1)

∀d ∈ D : ∑
e∈OUT(dest(d))

Xde= 0, ∑
e∈IN(dest(d))

Xde= 1 (3.2)

∀d ∈D,∀n /∈ orig(d)∪{dest(d)} :

∑e∈OUT(n)Xde ≤ 1

∑e∈IN(n)Xde ≤ 1
∑

e∈OUT(n)

Xde= ∑
e∈IN(n)

Xde

(3.3)

Thepath constraints(Eq. (3.1), (3.2), (3.3)) state that there is a single path for each

demand. The demand must leave exactly one of its origins and cannot be transferred to a

site where it already is (Eq. (3.1)). It has to enter the destination site from exactly one of

its incoming links and once it is there it cannot leave it (Eq.(3.2)). Each demand must

enter some site by at most one link (the same holds for leaving) and if it enters some site

it must also leave it (Eq. (3.3)). These constraints alone allow isolated loops along with

the valid paths and thereforeprecedence constraintsare used to eliminate such loops.

Precedence constraints (Eq. (3.4)) use non-decision positive integer variablesPde

representing possible start times of transfer for demandd over edgee. Let durde be the
constant duration of transfer ofd over edgee. Then the precedence constraint

∀d ∈ D ∀n∈ N :

∑
e∈IN (n)

Xde· (Pde+durde)≤ ∑
e∈OUT(n)

Xde·Pde
(3.4)

ensures a correct order between transfers for every demand,thus restricting loops. Un-
fortunately, constraints (Eq. (3.4)) do not restrict the domains ofPde until the valuesXde

are known and therefore we suggest using a redundant constraint to estimate better the
lower bound for eachPde. Let start be the start vertex ofe not containing demandd
(start /∈ orig(d)):

min
f∈IN (start)

(Pd f +durd f)≤ Pde (3.5)

VariablesPde can be used not only to break cycles but also to estimate makespan of the

plan as shown in Section 3.1.5

42

3. Planning problem formalization 3.1. Constraint programming approach

Path-based approach.

Similarly to thelink-basedmodel, we useXde variable for every demand and link, but

in this case, theX variables are not decisional. Instead, we generate all possible paths

P from each node to the destinationdest. For every demandd and pathp ∈ P a {0,1}

decision variablePdp is introduced. Its assignment to 1 means the file will be transferred

over pathp, 0 means the opposite. If we denote the set of all possible paths from siten

to destinationdestasOP(n), then the following constraint ensures that each file leaves

exactly one of its origins using a single path:

∀d ∈ D :

∑
p∈∪n∈orig(d)OP(n)

Pdp= 1, ∑
p/∈∪n∈orig(d)OP(n)

Pdp = 0 (3.6)

The assignment ofX variables is provided automatically via constraint propagation

by a constraint defined as:

∀d ∈ D,∀e∈ E : Xde= ∑
p|e∈p

Pdp, (3.7)

stating that demandd is transferred via edgee if and only if it is transferred by one

of the paths incident toe.

3.1.2 Scheduling stage

The goal of the scheduling stage is to evaluate the path configuration in the sense of the

required makespan. Essentially, it works as an objective function because the realization

of the schedule will not depend on particular transfer timescalculated in this phase, as

we will show in Section 4.1.

We will use the notion oftasksandresourcesfrom the area of scheduling. For each

link e of the graph that will be used by at least one file demand, we introduce a unique

unary resource Re. Similarly, for each demand and its selected links (defininga transfer

path) we introduce a set of tasks in the following way (depicted in Figure 3.1):

• if demandd should be transferred via linke (i.e. Xde= 1) we will create taskTde,

encapsulating a positive integer variablestartde (with domain[0, . . . ,horizon]) and

constantdurde, representing starting time and a duration of the transfer respec-

tively. We will assignTde to resourceRe

43

3.1. Constraint programming approach 3. Planning problem formalization

Td1,e1

Td2,e2

Td1,e3

Td2,e3

Re1

Re2

Re3

Td2,e2

Td1,e3
Td2,e3

Td1,e1

Figure 3.1: Example of assigning tasks (file transfers over particular links) into unary
resources (links). In this case the transfer paths of demands d1 andd2 share linke3, and
consequently resourceRe3 as well.

• for any two demandsd1 andd2 assigned to resourceRe, the constraintstartd1e+

durd1e≤ startd2e∨startd2e+durd2e≤ startd1e must hold

• for each demandd we construct precedences among tasksTde in such a way that a

file transfer from a site (Td,out) can start only after the previous file transfer leading

to this site (Td,inc) has finished, i.e.startd,inc+durd,inc≤ startd,out

The idea behind using unary resources instead ofenergeticones, which seem more

appropriate, is their availability in current constraint solving frameworks. However, this

statement needs a proper elaboration and study of assurancethat using this approach will

not cause an inefficiency. We reserved the explanation and measurements to the next

sections.

An objective is to minimize the makespan of a schedule, i.e. the latest finish time of

the tasks.

3.1.3 Complexity of the problem

We will show that computational complexity of the problem, in particular of the schedul-

ing stage which is strongly NP-hard. Primarily, let’s explicitly state an instance for the

scheduling phase. The input consists of:

• the directed weighted graph (eventual loops are allowed), where the weight of an

edge determines itsthroughputand

• the set of paths without loops, all of them leading to the samevertex

Each path needs time defined by athroughputof a particular edge for crossing it (for

a given edge, this time is identical for all paths). Crossingan edge cannot be interrupted

and only one path can cross an edge in a given time. The path must cross its edges in

44

3. Planning problem formalization 3.1. Constraint programming approach

M1

M2

M3

J =< A3, A1, A2 >

e1

e2

e3

dest

JSSP instance Data Transfer instance

Path defined by job J

Figure 3.2: The jobJ =< A3,A1,A2 > defines a transfer path to thedestvertex using
links e3,e1,e2, with order given by precedences of actions. Connections between links
(and dest vertex) are achieved bydummyedges (dashed lines) which haveslowdown
equal to 0, thus not affecting allocation times onreal edges.

an order defined by the path itself. The goal is to allocateedge crossesfor every path in

such a way that time when the last path reaches destination vertex is minimized.

We will use the well-known three field classificationα|β|γ for scheduling problems

as described in [26]. We will demonstrate a possible polynomial-time reduction from

J3|pi j = 1|Cmax, a 3-machine unit-time Job-shops scheduling problem (JSSP). The trans-

formation of the JSSP instance is following:

• for everymachine M1,M2, andM3 a unique linke1,e2, ande3 is created

• a single destination sitedestis created

• every job with orderedactionsdefines a transfer path with alternatingdummy

edges, as depicted in Fig. 3.2.

• slowdownfor eachdummyedge is set to 0, e.g. edge is not causing delays to any

transfer. The role ofdummyedges is to provide correct paths for each job.

The transformation written above can be realized in a polynomial time, as the size of

a transformed instance increases linearly by the factor of 3caused bydummyedges. Due

to the fact that theJ3|pi j = 1|Cmax problem belongs to the strongly NP-hard class [61],

the direct consequence implies that computational complexity of our problem is at least

the same.

3.1.4 Unary resources

The real network links behave more like elastic resources, where the time needed for a file

to be transferred depends on the current situation and the load of a resource. Due to the

lack of elastic resources in available CP frameworks we decided to model it using unary

45

3.1. Constraint programming approach 3. Planning problem formalization

resources which brings also several simplifications (e.g. faster and more efficient filtering

algorithms). This approximation seems to be accurate enough to estimate the total trans-

fer time in a complex network environment. We verified this assumption by executing

several measurements on the network links, as explained in the following text. The real

transfers are realized in a “parallel” fashion to achieve a proper bandwidth saturation.

Multi-stream vs. parallel instances transfer study

The purpose of the following measurements is to demonstratethat saturation of the net-

work link can be achieved either by running several instances of a transfer tool in parallel,

or by running a single instance in a multi-stream mode. Whilein a first case, each instance

is transferring an independent portion of data (separate files), in a multi-stream mode an

instance is transferring a single data set in time, thus behaving as a unary resource.

The reason why one uses parallel methods for sending data lies in the operation of the

underlyingTCP (Transmission Control Protocol). It is a reliable stream delivery service

that guarantees delivery of a data sent from one host to another without duplication or

losing data. Since packet transfer over the network is not reliable, a technique known as

positive acknowledgment with retransmission1 is used to guarantee reliability of packet

transfers. This fundamental technique requires the receiver to respond with an acknowl-

edgment message as it receives the data. The sender keeps a record of each packet it

sends, and waits for acknowledgment before sending the nextpacket. The sender also

keeps a timer from when the packet was sent, and retransmits apacket if the timer ex-

pires. The timer is needed in case a packet gets lost or corrupted. One can easily see that

the time for transferring the real data is just a part of the overall time the sender needs for

communication with a receiver. This overall time depends (expands) on the characteristic

of the network, especiallyroundtrip time (RTT), distance and the packet loss.

The measurements were done using three different links, varying in a distance of end

points, routing andRTT. The transfer tool used for all the measurements wasiperf 2. We

used the defaultTCPwindow size set to 64 Kb. One can calculate the window size for

the best performance according to the formula RTT∗desired_bandwidth ([42]). However,

since we are interested in comparing multi-stream versus parallel-instance transfer, the

environment will be consistent for the comparison and thereis no need for adjusting it

now.

1TCP protocol specification - RFC 793
2Iperf: http://sourceforge.net/projects/iperf/

46

http://sourceforge.net/projects/iperf/

3. Planning problem formalization 3.1. Constraint programming approach

Prague local link The link is betweenBulovkaandGolias, two local laboratories in

Prague. The link is dedicated with a static routing, with a maximum bandwidth 1Gbit/s

and≈ 0 RTT (optical fiber used over LAN). The endpoints used:

• dfpch.ujf.cas.cz (source)

• ui5.farm.particle.cz (destination)

BNL ⇒ LBNL link The link is betweenBNL andLBNL laboratories, STAR’s Tier-0

and Tier-1 site, respectively. The link is not dedicated andis routed over Esnet provider.

TheRTTfor the tested endpoints is 83.354ms. The endpoints used:

• stargrid03.rhic.bnl.gov (source)

• pdsfsrm.nersc.gov (destination)

BNL ⇒Prague link The link is betweenBNLandPrague, Bulovkalaboratory, STAR’s

Tier-0 and Tier-2 site, respectively. The link is dedicatedwith a static routing, with

a limited bandwidth 150 MBit/s. TheRTT for the tested endpoints is 93.428ms. The

endpoints used:

• stargrid03.rhic.bnl.gov (source)

• dfpch.ujf.cas.cz (destination)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

S
pe

ed
 (

M
bi

t/s
)

Threads

Bandwidth saturation Bulovka-Golias

Speed/Threads (Iperf)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

S
pe

ed
 (

M
bi

t/s
)

Instances

Bandwidth saturation (Bulovka - Golias)

Speed/Instances (Iperf)

Figure 3.3: DedicatedLAN. Left. Link saturation using multiple streams in a single
instance.Right. Link saturation using multiple instances.

In general, the outcome of the measurements is as expected. As we increase the

number of streams or instances, the transfer rate and performance increase as the net-

work bandwidth saturates. For theLAN transfer (Fig. 3.3), increasing the number of

47

3.1. Constraint programming approach 3. Planning problem formalization

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

di
ffe

re
nc

e

Instances (Threads)

Bandwidth saturation (Bulovka - Golias)

Percentage difference/Instances(Threads) (Iperf)

Figure 3.4: DedicatedLAN. Comparison of both transfer methods, Y axis showing the
percentage gain in multi-stream mode over multiple instances. The positive value means
the multi-stream mode outperformed multi-instance one.

streams/instances does not lead to significant speed increase since at one thread, a dedi-

cated transfer already takes the full link speed. This is dueto the negligibleRTTand thus

minimal overhead in packet acknowledgements. But moreover, it is clear from Fig. 3.3

that the thread handling does not decrease performance oversingle thread usage (overall

transfer performance remains constant as the number of thread increases), an observation

which gives confidence that we do not suffer from any other second order effects due to

thread handling.

Figures 3.4, 3.6 and 3.8 represent the confrontation of bothtransfer methods for the

three studied links. The horizontal axis displays the number of threads or running in-

stances and the plot captures whether multiple threads (streams) method outperformed

the multiple instance one. For instance value 15 means the multiple streams were in 15%

better than multiple instance method, while the negative value would mean the reverse

benefit. The error bars represent the standard deviation of the difference. When mul-

tiple instance transfer mode was running, we observed a lower performance comparing

to handling it with threads (Fig. 3.4) and infer this decrease of performance is due to

higher resource consumption and potentially, across process synchronization problems

(two instances ofIperf do not know about each other, each making aggressive requests

for resources - any operation needs to be coordinated by the OS). A several observation

from the measurements are:

• Dedicated WAN (Fig. 3.7, 3.8). A reasonable case and exhibits a pattern with

benefit of multi-threads up to 40.

48

3. Planning problem formalization 3.1. Constraint programming approach

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 10 20 30 40 50 60 70

S
pe

ed
 (

M
bi

t/s
)

Threads

Bandwidth saturation (BNL - PDSF)

Speed/Threads (Iperf)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

S
pe

ed
 (

M
bi

t/s
)

Instances

Bandwidth saturation (BNL - PDSF)

Speed/Instances (Iperf)

Figure 3.5: Non-dedicatedWAN. Left. Link saturation using multiple streams in a single
instance.Right. Link saturation using multiple instances.

• Not dedicated WAN (Fig. 3.5, 3.6). We can see clear benefit of multi-threads over

multi-instances at lower thread count (up to 30-40).

• Dedicated LAN (Fig. 3.3, 3.4). The best case for study - no RTT, error bars and

fluctuation are small over short distances allowing to best estimate the effect of the

two modes without interferences or convolution from other effects.

For debating unary resources, the LAN Prague measurement (Fig. 3.4) serves as the

key plot. On WAN, things are more complicated but the trend issimilar and we can

conclude the observations into the following:

(a) threads (streams) and sending file by file are more efficient in bandwidth saturation

and cause less resource overhead than trying to send multiple files in parallel

(b) having multiple senders may bring the advantage of redundancy but this can be

done from multiple sender nodes rather than multiple instances on one node (for

spreading the load)

(c) link can be saturated using threads or instances (no problem either ways as far as

resources are available)

3.1.5 Constraint model and solving strategy

In the previous section we have explained the main notions and the basic decomposition

idea of the solving mechanism with two iterative stages. Theselected solving approach is

based on Constraint Programming technique, used in artificial intelligence and operations

research, where we search for assignment of given variablesfrom their domains (ranges),

49

3.1. Constraint programming approach 3. Planning problem formalization

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

di
ffe

re
nc

e

Instances (Threads)

Bandwidth saturation (BNL - PDSF)

Percentage difference/Instances(Threads) (Iperf)

Figure 3.6: Non-dedicatedWAN. Comparison of both transfer methods, Y axis showing
the percentage gain in multi-stream mode over multiple instances. The positive value
means the multi-stream mode outperformed multi-instance one.

in such a way that all constraints are simultaneously satisfied and value of an objective

function is optimal.

Regarding the constraint model of the planning stage, described in the Section 3.1.1,

a link-basedmodel is realized directly by arithmetic constraints (Eq. (3.1) - (3.3)) and

a path-basedone by constraints in Eq. (3.6) - (3.7). Implementation of the scheduling

stage, namely disjunctive constraints, is modeled by unaryresource constraints with Edge

Finding, Not-First/Not-Last, and Detectable Precedencesfiltering rules based on Theta-

Lambda-tree structures [63]. The precedence constraints are implemented by inequality

constraints amongstartde variables.

The principle of the search procedure and iteration of described two stage model is

outlined in Alg. 1.

Algorithm 1 Pseudocode for a search procedure.
makespan← sup
plan← Planner.getFirstPlan()
while plan != nulldo

schedule← Scheduler.getSchedule(plan, makespan) {B-a-B on makespan}
if schedule.getMakespan()< makespanthen

makespan← schedule.getMakespan() {better schedule found}
end if
plan← Planner.getNextPlan(makespan) {next feasible plan with cut constraint}

end while

The actual best makespan is used as a bound for scheduling phase (Branch-and-bound

strategy). Moreover, the actual makespan can be effectively used also for pruning the

50

3. Planning problem formalization 3.1. Constraint programming approach

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

S
pe

ed
 (

M
bi

t/s
)

Threads

Bandwidth saturation (BNL - Prague)

Speed/Threads (Iperf)

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

S
pe

ed
 (

M
bi

t/s
)

Instances

Bandwidth saturation (BNL - Prague)

Speed/Instances (Iperf)

Figure 3.7: DedicatedWAN. Left. Link saturation using multiple streams in a single
instance.Right. Link saturation using multiple instances.

search space during the first (planning) stage. The idea is that according to the number

of currently assigned demands per some link and their possible starting times, we can

determine the lower bound of the makespan for schedule that will be computed later in

the scheduling stage. Hence if we have some upper bound for the makespan (typically

obtained as the best solution from the previous iteration ofplanning and scheduling) we

can restrict plans in next iterations by the following constraint:

∀e∈ E : min
d∈D

(Pde)+ ∑
d∈D

Xde·durde+SPe< makespan, (3.8)

whereSPe stands for the value of the shortest path from the ending siteof e to dest.

Therefore as soon as the lower bound of a makespan from a currently being generated

paths configuration exceeds the stored best one, the solver doesn’t need to explore more

branches under the current node of a search tree.

Symmetry breaking

One of the common techniques for reducing the search space isdetecting and breaking

variable symmetries [7]. This is frequently done by adding variable symmetry breaking

constraints that can be expressed easily and propagated efficiently using ordering. One

idea that can be applied in the planning stage is the following (see Fig.3.9):

• let two file demandsd1 andd2 have overlapping sets of originsO = orig(d1)∩

orig(d2), such that|O| ≥ 2

• the set of all outgoing edges from the common origins will be denoted byL (L =

∪n∈OOUT(n)) and will be paired with the total order≤

51

3.1. Constraint programming approach 3. Planning problem formalization

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

di
ffe

re
nc

e

Instances (Threads)

Bandwidth saturation (BNL - Prague)

Percentage difference/Instances(Threads) (Iperf)

Figure 3.8: DedicatedWAN. Comparison of both transfer methods, Y axis showing the
percentage gain in multi-stream mode over multiple instances. The positive value means
the multi-stream mode outperformed multi-instance one.

orig(d1)

orig(d2)
l1 l2 l3 l4

Xd1,l1 = 1 Xd2,l3 = 1
l1 ≤ l3

Figure 3.9: In the configuration shown, demandsd1 andd2 have an overlapping sets of
origins. The outgoing links from this intersection arel1, l2, l3, and l4. If demandd1 is
assigned to linkl1 and demandd2 to link l3, relationl1≤ l3 must hold.

• if both file demandsd1 andd2 are leaving their origins via links from the setL we

will require ordering between particular links (∀a,b∈ L : b<a =⇒ post constraintXd1,a=

0∨Xd2,b = 0)

In other words if we have checked the configuration where two files are leaving their

common origins by two links, it is not necessary to check alsotheswappedcase .

Similar idea can be applied in the scheduling stage as well. In this case, let’s suppose

that several file demands are going to be scheduled for a transfer to the destination by

exactly the same path. Since file demands have an identical size, we can fix the order in

which files are allocated to each link from their common path.More precisely, among

the corresponding tasks assigned to each unary resource representing the link from the

path, we introduce additional precedences fixing their order.

Both presented methods significantly contribute to search space reduction because a

real network topology and distribution of files tend to a vastamount of symmetries.

52

3. Planning problem formalization 3.1. Constraint programming approach

∑
= 1

∑
= 1

0/1 0/1 0/1 0/1 0/1 0/1 0 0

Figure 3.10: A configuration depicting a state of decision variables for some demand that
is going to be transferred to the bottom destination site. Ifthe origin of demand consists
of two sites, symbolized as upper leftmost vertices, solverwould still try an assignment
for two rightmost links. By the filtering procedure we can reduce their values as can be
seen on the right graph.

Implied constraints of X variables

The usual purpose of filtering techniques is to remove some local inconsistencies and

thus delete some regions of search space that do not contain any solution. By remov-

ing inconsistent values from variable domains the efficiency of the search algorithms is

improved.

A filtering principle we can apply for the decisionX variables in thelink-basedplan-

ning model is following:

• let S1 andS2 be two sets of the decisionX variables,

• let S2 be a subset ofS1, e.g.S2⊂ S1,

• if there exists a constraint stating∑X∈S1
X = 1 and similarly for the second set

∑X∈S2
X = 1, we can reduce domains of variables inS1\S2 to value 0 (depicted in

Fig. 3.10).

The filtering procedure is simple. During posting of constraints into the model, each

set of variables, summation of which must equal to 1, is stored. Then, search for pairsS1

andS2 is achieved by a quadratic nested loop over the sets stored.

Search heuristics

In constraint programming, the variable and value selection heuristics determine the

shape of the search tree, which is usually traversed in a depth-first order. A clever branch-

ing strategy is a key ingredient of any constraint satisfaction approach. We have tested

several combinations of variable selection and value iteration heuristics.

Initially, in the planning phase well knowndomstrategy [25] for labeling decisionX

variables was tested, which corresponds to selecting boolean variables in a fixed order

(filtering of a variable immediately implies an instantiation). In addition, we suggested

also aFastestLinkselection forlink-basedplanning approach and similarlyFastestPath

53

3.1. Constraint programming approach 3. Planning problem formalization

for path-basedone. The principle for theFastestLinkis that at the decision point from

unassigned variables of demandd, the selectedXdej corresponds to the fastest link (j =

argmini=1,...,mslowdown(ei)). If several such variables exist for demands, the first one is

picked up from a fixed order. The selection principle forFastestPathis analogous, just

the speed of a path is defined as a sum of slowdowns of its links.

According to the measurements shown in Section 3.1.6, the majority of time was

spent in the planning phase, hence we proposed an improved variable selection heuristic

that exploits better the actual transfer times by using information from variablesPde. In

particular, the heuristic, calledMinPath, suggests to instantiate first variableXde such that

the following value is minimal:

inf Pde+durde+SPe, (3.9)

where infPde means the smallest value in the current domain ofPde.

Concerning the value selection heuristics, both variants were tested, particularlyIn-

creasing(assign first 0, then 1) andDecreasing(assign first 1, then 0) value iteration

order.

In the scheduling phase two approaches were considered. First one, calledSetTimes,

is based on determining Pareto-optimal trade-offs betweenmakespan and resource peak

capacity. Detailed description and explanation can be found in [44]. The second one is a

texture-based heuristic calledSumHeight, using ordering tasks on unary resources. The

used implementation originates from [6] and supportsCentroidsequencing of the most

critical activities.

3.1.6 Comparative studies

We have implemented and compared performance of both alternatives of the model,

namely usinglink-basedandpath-basedapproach. Several combinations of heuristics

were tried and in addition comparison with simulated Peer-2-Peer method is shown.

For implementation of the solver we useChoco3, a Java based library for constraint

programming. The Java based platform allows us an easier integration with already ex-

isting tools in the STAR environment.

3Choco: http://choco.sourceforge.net

54

http://choco.sourceforge.net

3. Planning problem formalization 3.1. Constraint programming approach

Peer-2-Peer simulator

The Peer-2-Peer (P2P) model is well known and successfully used in areas such as file

sharing, telecommunications or media streaming. P2P modeldoesn’t allow file transfers

via paths, only by direct connections. We implemented a P2P simulator by creating

the following work-flow: a) put an observer for each link leading from an origin to the

destination;b) if an observer detects the link is free, it picks up the file at his site (link

starting node), initiates the transfer, and waits until thetransfer is done. We introduced a

heuristic for picking up a file as typically done for P2P. Linkobserver picks up a file that

is available at the smallest number of sites. If there are more files available with the same

cardinality oforig(n), it randomly picks any of them. After each transfer, the file record

is removed from the list of possibilities over all sites. This process is typically resolved

using distributed hash table (DHT) [40], however in our simulator only simple structures

were used. Finally an algorithm terminates when all files reach the destination, thus no

observer has any more work to do.

Data sets

Regarding the data input part, the realistic-like network graph consists of 5 sites, denoted

as BNL, LBNL, MIT, KISTI, and Prague and all requested files are supposed to be trans-

ferred to Prague. The distribution of files origins at one particular site, is following: the

central repository is at BNL where 100% of files are available, LBNL holds 60%, MIT

1%, and KISTI 20% of all files. All presented experiment were performed on Intel Core2

Duo CPU@1.6GHz with 2GB of RAM, running a Debian GNU Linux.

Experiments

CPU time limit was used for both phases and more precisely, ifthe top-level search

loop detects that time cumulatively spent in planning and scheduling phase exceeded 30

seconds, the search is terminated. Table 3.1 shows comparison of six combinations of

search heuristics forlink-basedandpath-basedmodel with a Peer-2-Peer one, with an

emphasis on a makespan, as quality of the result. We can see that link-basedmodel gives

generally better results thanpath-based, and the most efficient combination of heuristics

is FastestLinkvariable selection inDecreasingvalue order with theSumHeightheuristic

used in a scheduling phase. In this case the solver produced schedules that were better

than P2P for all input instances, while the most significant benefits (≈ 50% gain) are for

instances up to 50 files. For instances of 40 and more files, allcombinations of heuristics

reached the time limit of 30 seconds. For P2P all makespans were obtained in less than 1

55

3.1. Constraint programming approach 3. Planning problem formalization

Link based Path based

Files P2P
domր fastց fastց domր fastց fastց

ST ST SH ST ST SH

1 1 1 1 1 1 1 1
20 24 12 12 12 77 15 15
40 40 22 22 22 149 33 33
60 56 42 42 42 237 48 48
80 72 57 57 57 ? 64 64
100 88 73 73 73 ? 81 81
120 104 89 89 89 ? 104 103
140 120 103 103 103 ? 128 127
160 144 117 117 117 ? 150 149
180 152 137 134 132 ? 172 172
200 168 165 165 146 ? 193 192

Table 3.1: Comparison of makespans.ր, ց - Increasing, Decreasing value selection,
ST -SetTimes, SH -SumHeightheuristic.

Files number of requested files to transfer
RunTime time in seconds taken by solver to generate result
% in 1st percentage of overall time spent in the planning phase
% in 2nd percentage of overall time spent in the scheduling phase
of 2nd number of scheduling calls
P2P-M time in general units to execute plan from P2P simulator
Makespan time in general units to execute plan from CSP solver

Files RunTime % in 1st % in 2nd #of 2nd P2P-M Makespan

1 0.353 70% 30% 1 8 1
20 3.548 77% 23% 18 24 12
40 30 91% 9% 169 32 22
60 30 98% 2% 42 56 43
80 30 98% 2% 23 72 58
100 30 98% 2% 28 88 73
120 30 80% 20% 119 104 89
140 30 95% 5% 40 120 103
160 30 94% 6% 45 144 117
180 31 92% 8% 47 152 134
200 32 89% 11% 57 168 146

Table 3.2: Results forlink-basedapproach withFastestLinkselection inց order for
planning phase andSH heuristic for scheduling phase.

second. Makespans are in general time units, where 1 unit in reality depends on real link

speeds, and we can roughly estimate this 1 unit to the couple of seconds. Hence, the time

taken to compute a schedule is paid-off by savings resultingfrom a better makespan.

In reality the network characteristic is dynamic and fluctuates in time. Hence, trying

to create a plan for 1000 or more files that will take several hours to execute is need-

less, as after the time elapsed the computed plan may no longer be valid. Our intended

approach is to work with batches, giving us another benefit ofimplementing fair-share

mechanism in a multi user environment. Particularly, the requests coming from users

are queued and differ in size and priorities of users. The possibility to pick demands

from waiting request into batch within reasonably short intervals is very convenient for

achieving fair-shareness. The experiments give us an estimate on the number of files per

batch.

For a better decomposition and estimate of times spent in thephases we studied

heuristics combinations such asFastestLink+ SumHeight(see Table 3.2). On the ba-

56

3. Planning problem formalization 3.2. Mixed Integer Programming approach

 32
 34
 36
 38
 40
 42
 44
 46
 48
 50

 0 5 10 15 20 25 30

M
ak

es
pa

n
(u

ni
ts

)

Time (sec)

Heuristics performance for 50 files

FastestLink
MinPath

Peer-2-Peer

 110

 115

 120

 125

 130

 135

 140

 145

 150

 0 5 10 15 20 25 30

M
ak

es
pa

n
(u

ni
ts

)

Time (sec)

Heuristics performance for 150 files

FastestLink
MinPath

Peer-2-Peer

Figure 3.11: Convergence of makespan during the search process forFastestLinkand
MinPath.

Solution time Makespan
Files FastestLink MinPath FastestLink MinPath P2P

25 3.862 1.431 14 14 24
50 26.508 27.556 36 32 40
100 8.627 3.176 73 73 80
150 16.52 14.618 111 110 120
200 26.167 14.031 146 146 160

Table 3.3: Comparison of heuristics with emphasis on time when the best solution was
found and the makespan.

sis of detailed measurements, we can see that the majority oftime spent in a solving

process happens in the planning stage. According to this fact and an average number of

scheduling calls (5-th column in Table 3.2) the implementation of the scheduling stage

seems to be fairly efficient. Therefore, we have focused on the improvements for the

heuristicMinPath in the planning stage as proposed in Section 3.1.5 and compared the

performance with theFastestLink. Figure 3.11 shows that convergence of the newMin-

Pathheuristic is faster than theFastestLinkand both heuristics achieve better makespan

than the P2P approach.

Table 3.3 shows similar comparison of heuristics and the P2Pmodel including the

time when the best solution was found for several input instances.

3.2 Mixed Integer Programming approach

Linear programming is a method of minimizing a given linear function (mincTx) with

respect to the system of linear inequalities (Ax≤ c) [37]. Vectorx represents the variables

57

3.2. Mixed Integer Programming approach 3. Planning problem formalization

to be determined. If all can be rational, the problem can be solved in polynomial time.

However when some or all of the variables must be integer, corresponding to pure integer

or Mixed Integer Programming (MIP) respectively, the problem becomes NP-complete

(formally intractable).

Because of robustness of the general model, a remarkably rich variety of Mixed inte-

ger models can be used to formulate just about any discrete optimization problem [41].

They are heavily used in practice for solving problems in transportation and manufactur-

ing: airline crew scheduling, vehicle routing, productionplanning, etc. The applications

also include operational problems such as the distributionof goods, production schedul-

ing, and machine sequencing.

Several algorithms from operation research are widely usedfor solving integer pro-

gramming instances in reasonable time. Reformulation of the problem into the set of

linear inequalities often involves relaxation of several constraints. In the following text

we introduce the extension of the data transfer problem to the MIP problem with involved

approximations.

Branch and bound This is the most widely used method for solving integer programs.

The idea is to ignore the integer restriction and solve the model as though all variables

were real-valued. ThisLP-relaxationprovidesbound on the best objective function value

obtained, and sometimes (coincidentally) results in a feasible solution. The second aspect

is branching. As a node is expanded, two child nodes are created in which new variable

(one which didn’t get integer value) bounds are added to the problem. More generally,

let’s consider candidate variablex j that has a non-integer value between the next smaller

integerk and the next larger integerk+1. The branching then creates two child nodes:

• the parent nodeLP with the new boundx j ≤ k

• the parent nodeLP with the new boundx j ≥ k+1

These new nodes (bounds) forcex j away from its current non-integer value. If theLP-

relaxationat a node assigns integer values to all integer variables, then the solution is

feasible, and is the best that can be obtained by further expansion of that node. The

solution value is then compared to the incumbent and replaces it if it is better. If the

LP-relaxationis infeasible, then the node and all of its descendents are infeasible, and it

can be pruned. The search proceeds until all nodes have been solved or pruned, or until

some specified threshold is meet between the best solution found and the lower bounds

on all unsolved subproblems.

58

3. Planning problem formalization 3.2. Mixed Integer Programming approach

Branch and cut For branch and cut, the lowerbound is again provided by the LP-

relaxation of the integer program. The optimal solution to this linear program is at a

corner of the polytope which represents the feasible region(the set of all variable set-

tings which satisfy the constraints). If the optimal solution to the LP is not integral, this

algorithm searches for a constraint which is violated by this solution, but is not violated

by any optimal integer solutions. This constraint is calleda cutting plane. When this

constraint is added to the LP, the old optimal solution is no longer valid, and so the new

optimal will be different, potentially providing a better lower bound. Cutting planes are

iteratively added until either an integral solution is found or it becomes impossible or too

expensive to find another cutting plane. In the latter case, atraditional branch operation

is performed and the search for cutting planes continues on the subproblems.

3.2.1 Extension of the model

Since required datasets usually overlap together, we wouldlike to minimize also the data

movement of the common parts. In other words, if the same file is required by different

users and the transfer paths share a link, we transfer the fileon common link only once.

For this extension we have to slightly modify the constraintmodel, since the transfer

path for a file can form aforest- using the terminology from the graph theory.

We denote the weight of an edge corresponding to the link bandwidth asbw(e) -

bandwidth between two sites or average latency time for the storage elements (e.g. the

time to stage the file from the tape system). The information about file’s origins is a

mapping of that file to a set of nodes where the file is available.

The input received from the users is a set of file namesF, where for every filef ∈ F

we have a set of sourcesorig(f) - sites where the filef is already available and a set of

destinationsdest(f) - sites where the filef is supposed to be transferred.

The essential idea is to use one decision variable for each file, its destination and

edge in a graph. We will refer to this{0,1} variable asXf ed, denoting whether filef

is routed (value 1) over the edgee of the network or not (value 0) to its destinationd.

Mathematical constraints (Eq. (3.10)-(3.12)), ensuring that if all decision variables have

assigned values the resulting configuration contains the independent transfer paths, are

analogous to the Kirchhoff’s circuit laws.

∀ f ∈ F, ∀d ∈ dest(f) :

∑
e∈∪OUT(n|n∈orig(f))

Xf ed= 1, ∑
e∈∪IN (n|n∈orig(f))

Xf ed= 0 (3.10)

59

3.2. Mixed Integer Programming approach 3. Planning problem formalization

dest1

dest1

dest2

dest2

orig

orig

orig

dest1

dest2

Xf,e,dest1

Xf,e,dest2

Xf,e

Figure 3.12: Two independent paths aregluedtogether, so the file using their common
links will be transferred only once (e.g. the file is staged only once, then transferred to
two different destinations).

∀ f ∈ F, ∀d ∈ dest(f) : ∑
e∈OUT(d)

Xf ed = 0, ∑
e∈IN(d)

Xf ed= 1 (3.11)

∀ f ∈ F, ∀d ∈ dest(f), ∀n /∈ orig(f)∪{d} :

∑e∈OUT(n)Xf ed ≤ 1

∑e∈IN (n)Xf ed ≤ 1
∑

e∈OUT(n)

Xf ed = ∑
e∈IN(n)

Xf ed

(3.12)

Having generated all independent paths for a file to each of its destination, we need

to gluethem together. One can look at it as creating aforestusing the terminology from

the graph theory (Figure 3.12). We achieve it by defining new binary two-indexvariable

Xf e stating whether filef uses linke (apart from reasoning about destinations).

∀ f ∈ F, ∀e∈ E, ∀d ∈ dest(f) : Xf ed≤ Xf e (3.13)

∀ f ∈ F, ∀e∈ E : ∑
d∈dest(f)

Xf ed≥ Xf e (3.14)

∀ f ∈ F, ∀n /∈ orig(f)∪{d} : ∑
e∈IN (n)

Xf e≤ 1 (3.15)

Finally, since we are minimizing themakespan, the time to transfer all files to the

requested destinations, we define the constraints (Eq. (3.16)) for estimation of the com-

pletion timeT variable and appropriate objective function:minimize T.

∀e∈ E : ∑
f∈F

size(f) ·Xf e

bw(e)
≤ T (3.16)

Files sizes (identical or not)? In the former CP model we were assuming the identical

file sizes, what allowed us to use particular symmetry breaking techniques to achieve

60

3. Planning problem formalization 3.2. Mixed Integer Programming approach

more reasonable running time. The formulation of the objective function in the MIP

model does not limit us in this way while the running time of the planner is still faster

than the previous one. Hence, we gained the flexibility to plan in a single batch files from

different datasets differing in sizes.

Planning without scheduling?

The model does not reason about the exact scheduling (timing) of file transfers in contrast

to the former one explained in Chapter 3. The estimation of the total makespan is based

on the idea, that this value cannot be smaller than the maximum time needed to transfer

planned files over the link (in a serialized fashion - one after another, considering the full

bandwidth is available for each transfer). This can be simply modeled using the formula:

∀e∈ E : ∑
f∈F

size(f) ·Xf e

bw(e)
≤ T (3.17)

It is much faster to include this estimation already in the planning phase than reasoning

about the exact schedule as we saw most of the time is spent in the later phase.

According to the simulation of the network behavior (for which we developed a stan-

dalone package) if the real transfers are realized in a greedy manner comparing to fol-

lowing the exact schedule we loose≤ 3% of time, which is negligible. By greedy manner

we mean that as soon as the file is available at the source of anylink and the plan says it

has to be transferred over the link, the transfer is executed.

Benefit of this greedy approach is that it is much easier to handle inaccuracies of any

kinds caused in real life scenario rather than relying on thefact that exact schedule would

be always possible to fulfil. For instance, if some file would be delayed it would cause

disorganizing of the next part of the schedule.

3.2.2 Implementation

The model consists of all linear constraints usingbinary (X) andreal (T) variables. As

explained in the previous section for realization of file transfers we do not need an exact

schedule, only the plan (the transfer paths) that will be followed by the distributedlink

managers. Therefore, after the comparison of solving techniques we chose Mixed Integer

Programming (MIP) approach which provides the most efficient results. As the backend

MIP solver we useGNU L inearProgrammingK it (GLPK [23]) from Java programming

language via SWIG interface ([24]).

61

3.3. Coupling with CPUs 3. Planning problem formalization

Figure 3.13: Computing centers in STAR experiment.

Files 10 25 50 75 100 200
Time (s) 0.024 0.258 0.786 1.324 2.518 9.574

Table 3.4: Average time in seconds to find optimal transfer paths.

The real-life network structure amongTier-{0,1,2} sites in the STAR experiment is

depicted in Figure 3.13. The distribution of files is taken from empirical data, where

100% of the files are kept at MSS, 60% at LBNL, 20% at KISTI and 5%are spread

amongTier-2 sites.

According to the results (Table 3.4) planning in batches of files (to achieve adaptive-

ness to the network and fair-shareness to the users) seems tobe realizable and payed-off

by the gained optimality.

3.3 Coupling with CPUs

In the previous chapters we addressed and focused on the datatransfer problem, where

the task was to bring data sets to user specified locations. The role of the planner was to

decide how to achieve it considering all constraints and having minimal makespan as an

objective. However, very often the task is not finished by thetime data are moved, but

when data are analyzed. In other terms, the data movement itself only precedes the data

processing.

This section discusses the extension of the model and generalizes the approach for

reasoning about CPUs. We will start with reformulating the problem and introducing a

few notations in an effort to cover additional computing resources and their restrictions.

Before we turn our attention into the mathematical constraints, let us underline the

benefit of CPU coupling by explaining the real case with production processing in STAR

(see Fig. 3.14). Part of the production is being done at Argonne computing cloud

(Chicago) together with PDSF/NERSC computing center (Berkeley). The workflow is

62

3. Planning problem formalization 3.3. Coupling with CPUs

Figure 3.14: Representation of production processing using Argonne cloud with no cache
space and PDSF farm with 20TB cache. Because of limited cacheat BNL it turns out
practical to feed Argonne cloud with data streaming from both coasts (PDSF and BNL).

following: files are continuously staged from BNL’s HPSS system to the local 2TB cache.

Since Argonne cloud is not equipped with any cache, the file can be transferred from

BNL to Argonne only if there is a free CPU slot. To the contrary, PDSF site has suffi-

cient 20TB cache and can hold data even if all the CPU slots areoccupied. Therefore, and

this is being solved by hand, it turns out that it is advantageous to feed Argonne’s CPUs

(when free) simultaneously from BNL and PDSF cache. If we hada system capable of

dynamically solve this in automatic fashion the benefits could be clearly seen.

While in the pure file transfer problem the task was to locate and bring files to re-

quested destinations, with CPU coupling the problem has to be reformulated. A user

doesn’t specify a single destination anymore, but a list of available processing sites along

the full set of files. Each requestRi is therefore composed of set of files which need to

be processed (FRi) together with a set of destinations - processing sites (DRi) where user

is allowed to run jobs (Eq. (3.18)). By saying allowed we meanthat user has access and

can run jobs on any of these sites.

Ri = {{ f1, . . . , fNi}
︸ ︷︷ ︸

FRi

,{d1, . . . ,dMi}
︸ ︷︷ ︸

DRi

} (3.18)

The task of the planner is to find transfer paths for all files (every file has to appear in one

of the destinations for each request it belongs to) considering the processing phase of the

file at the computing site. The system may distribute files from a request among available

destinations and execute job on the portion of data set at computing siteA while on the

other fraction of data set at computing siteB.

63

3.3. Coupling with CPUs 3. Planning problem formalization

orig(f_l)

orig(f_m)

D_{R_i}
Dummy

Figure 3.15: Let there be 2 filesfl and fm belonging toFRi of some requestRi . Blue
vertices represent the origins offl , while red ones the origins offm. The possible desti-
nationsDRi (processing farms) are depicted with grey vertices on the right side. First, we
need to establish if there exists a transfer and processing (usingDummyedges) path for
each file.

The graph representing the network is extended for theDummyedges joining com-

puting sites with thedummyvertex (Fig. 3.15). A file put on somedummyedge means

the particular site will provide the CPU power for running user’s job dependent on that

file.

A computing site is represented with an average time it needsto process a unit size

file. The functionavg(f ,e) takes a filef and edgee∈ Dummyand returns the average

time it takes to process filef at site assigned to the edgee. The number of currently

available (free) slots (CPUs) at the site is denoted byfree(e). Since we will use this

function later in the denominator of the relation, the return value has to be always positive.

In case the site is fully occupied and there are no free slots,the function returns small

ε > 0.

Similarly to the MIP approach for solving pure file transfer problem, the 3-index

binaryX variables (indexed by edge, request, and file) will form simple paths for every

file respecting available origins and processing sites. Figure 3.15 visualizes this on a

simple example.

We will use again mathematical constraints Eq.(3.19)-Eq.(3.22), ensuring that if all

binary decision variables have assigned values the resulting configuration contains the

independent transfer paths. There is a slight modification to the transfer MIP model

with destination constraints, because with CPU coupling a file path has to lead todummy

vertex and through exactly one processing site (Eq. (3.20),(3.22)).

orig(f)

= 0 = 1

∀i = 1, . . . , |R|, ∀ f ∈ FRi :

∑
e∈∪OUT(n|n∈orig(f))

Xf Rie= 1, ∑
e∈∪IN(n|n∈orig(f))

Xf Rie = 0 (3.19)

64

3. Planning problem formalization 3.3. Coupling with CPUs

Figure 3.16: Let there are two filesfl and fm which need to be processed by 3 independent
jobs. File fl (blue color) is sent for processing to two separate farms. File fm (red color)
is sharing the part of transfer path and processing farm withthe first copy of the file
fl . Numbers over the edges indicate whether the edge participates in the file transfer (or
processing) or not. First number refers to the filefl and the second to the filefm.

D_{R_i}

= 1

= 0

∀i = 1, . . . , |R|, ∀ f ∈ FRi :

∑
e∈∪IN(d|d∈DRi)

Xf Rie = 1, ∑
e∈∪OUT(d|d∈DRi)

e/∈Dummy

Xf Rie = 0 (3.20)

=

∀i = 1, . . . , |R|, ∀ f ∈ FRi , ∀n /∈ orig(f)∪DRi :

∑e∈OUT(n)Xf Rie ≤ 1

∑e∈IN(n)Xf Rie ≤ 1
∑

e∈OUT(n)

Xf Rie = ∑
e∈IN(n)

Xf Rie
(3.21)

D_{R_i}

=

Dummy

∀i = 1, . . . , |R|, ∀ f ∈ FRi , ∀d ∈ DRi :

∑
e∈IN(d)

Xf Rie= ∑
e∈OUT(d)
e∈Dummy

Xf Rie (3.22)

Thegluingmechanism applied to individual transfer and processing paths (marked by

3-indexX variables) is similar as described in Section 3.2. However,since the processing

of a file which belongs to different requests has to be considered separately (two different

users’ jobs are assigned to separate CPUs, even if both depend on the same file), we need

to handle this in the model.

Let us first look at Fig. 3.16 depicting the sample processingcase. We will first ex-

plain how variables will refer to the configuration so one canbetter understand what we

need to achieve. There are two filesfl and fm which need to be processed by 3 inde-

pendent jobs (requests). Filefl , represented by blue color, is transferred from the origin

over two links and then sent for processing to two separate farms. File fm, represented

by red color, is transferred from the origin over the first link and afterwards sharing the

65

3.3. Coupling with CPUs 3. Planning problem formalization

transfer path and processing farm with the first copy of the file fl . Numbers over the

edges indicate whether the edge participates in the file transfer (or processing) or not. In

our example, the first number refers to the filefl and the second to the filefm. The first

farm will be then processing once filefl and once filefm, while the second one will be

processing once only the copy offl .

To form thegluedtransfer paths (using edgese /∈ Dummy) into a forest(Eq. (3.23) -

(3.25)) we introduce 2-index binaryX variables stating whether the edge participates in

the file transfer path (from one of its origin to the processing site). The file processing

at the site is modelled usingDummyedges and since a single file may be processed by

different jobs the 2-indexX variables have to be non-negative (and not strictly binary)

when dealing with edgese∈ Dummy.

∀i = 1, . . . , |R|, ∀ f ∈ FRi , ∀e∈ E : Xf Rie≤ Xf e (3.23)

∀ f ∈ ∪ j=1,...,|R|FRj :

|R|

∑
i=1

Xf Rie≥ Xf e∀e /∈ Dummy,

|R|

∑
i=1

Xf Rie= Xf e∀e∈ Dummy

(3.24)

∀ f ∈ ∪ j=1,...,|R|FRj , ∀n /∈ orig(f)∪DRi : ∑
e∈IN(n)

Xf e≤ 1 (3.25)

Xf Rie∈ {0,1} Xf e=

{

0/1 e /∈ Dummy

0, . . . , | ∪ f∈FRi
Ri | e∈ Dummy

(3.26)

Finally, since we are minimizing themakespan, the time to transfer and process all

files at available sites, we define two sets of constraints (Eq. (3.27)) for estimation of

the completion timeT variable and appropriate objective function:minimize T. First set

of constraints Eq. (3.27) estimates the transfer time and the second one Eq. (3.28) the

processing time.

∀e∈ E e /∈ Dummy: ∑
f∈∪FRi

size(f) ·Xf e

bw(e)
≤ T (3.27)

∀e∈ E e∈ Dummy: ∑
f∈∪FRi

avg(f ,e) ·Xf e

min(free(e),∑ f∈∪FRi
)
≤ T (3.28)

66

3. Planning problem formalization 3.3. Coupling with CPUs

Figure 3.17: Representation of production processing using Argonne cloud as the graph
input for the model. The storage cache nodes are also connected to thedummydestination
in order to allow the model to bring files closer to the CPUs while they are taken by other
jobs.

The constraint Eq. (3.27) creates a lower bound of the makespan based on necessary

transfers. It simply counts the aggregated size of files assigned to transfers over each

link and estimates the time it takes to move them knowing the link’s bandwidth. The

constraint Eq. (3.28) is a bit more complicated since the jobs processing happens con-

currently on parallel CPUs. The estimate is therefore done by number of free slots and

number of files to be processed on the site. Recall that function free(e) returns always

positive value.

With the above extensions to the model we are able to address the reasoning not only

about file transfers but also about file processing at different sites. However, there is one

remaining issue that needs to be solved. If we look back into our initial motivation from

Fig. 3.14, displaying the production processing schema in STAR, we can see that there

is a substantial benefit of bringing files to the storage cache- closer to the processing

sites, even if all the slots are used. The model, as it is defined above, reasons about

bringing files to the processing sites since they are assigned as the only destinations. If

the processing sites are occupied we would still like the solver to reason about bringing

files to the storage space closer to the CPUs. In order to modify the reasoning we can

create additionaldummylinks from the storages to thedummydestination vertex in the

graph as represented in Fig. 3.17. The weights for these additional dummyedges need

to be properly set so the solver will prioritize bringing files to the cache space in case

67

3.3. Coupling with CPUs 3. Planning problem formalization

the processing slots are taken. By setting the appropriate weight we can also control the

preference between storage spaces.

68

Chapter 4

Technical implementation

Having described the methodology of solving approach and simulations of various alter-

nations of the model, now we turn to technical implementation of proposed techniques.

Regardless of how optimistic, universal and versatile the proposed approach may seem,

even if simulations confirm the assumptions (which is the necessary step), only the func-

tional implementation of them delivers the benefits and usefulness in the production en-

vironment. This thesis tries to provide a proper balance between the theory and practice;

and this chapter presents the building blocks of the practical side.

The software design yielding the specifications, we alreadyoutlined in the previous

chapters, has to address and consider many aspects. Especially in Data Grid environment,

which implicitly brings distribution and loosely coupled components, it has to keep in

mind modularity , maintainability andreliability . The software has to consist of well

defined independent components which should be tested in isolation before further in-

tegration. On the other hand, grandiose and extensive design should not overwhelm its

compactness as one can often see in the family of Grid tools. At the same time, the

software should perform the required functions and deliverwhat was expected and well

defined in specification.

Let us start with the software architecture with the aim to present the conceptual

integrity for a system.

4.1 Architecture

It is important to pay close attention to the architecture ofthe system - the conceptual

glue that holds every phase of a project together [14]. In this section, we will describe

the elements of the system, properties and relations between them. We introduce briefly

each component following the work-flow (see Fig. 4.1 for illustration).

69

4.1. Architecture 4. Technical implementation

Let us start with explaining how requests are put into the system. End users (or stand-

alone services) generate requests using the web interface,written in PHP following the

MVC design pattern. There are two possible ways how a request canbe specified.a)

either as an encapsulation of the meta-data query (as understood by STAR’s File and

Replica Catalogue), orb) providing the list of files using afilelist. An example of the

catalogue query is:

• production=P10ik,

• filetype=daq_reco_MuDst,

• trgsetupname=AuAu39_production

where we specified type of the production (data set), what type of files we are interested

in and some trigger setup. This meta-data query covers about220,000 files with a total

size of 48TB. The population of the database with files belonging to the request is done

asynchronously by separate component as we will see soon.

The second approach of entering the request is using a filelist, which has the following

syntax:

SITE;STORAGE;PFN

Each line then describes exact location of the file given by its physical file name, the

storage that holds it and finally the site where the storage islocated.

The part of a request is also a desired destination for a data set (in the form of site and

storage) which user selects using the web interface.

Afterwards, the request is stored in aSQL database (system supportsMySQLand

PostgreSQL) in a Catalog agnostic manner (any Catalog should work as faras they have

a LFN/PFN concept our approach relies on) with the additional information like user

name, group or date of the request.

Later, the component calledFile Feedercontacts theFile and Replica Catalogueand

makes the query for the requested meta-data. The output information is stored back to

the database, including all possible locations for every file in a request. This is when

population of the internal database with file repositories happens. Because of usually

large volume of records that needs to be stored in a database,theFile FeederusesLOAD

DATA INFILE syntax that provides high performance.

The main logic and reasoning about the plan happens in the brain of the system, a

component called thePlanner. It is the place where realization of the model is done and

where the plan in iterations is computed.Plannertakes a subset of all requests for files to

70

4. Technical implementation 4.1. Architecture

Figure 4.1: Architecture of the system.

be transferred according to the preferred fair-share function. It creates the plan (transfer

paths, as we explained in the previous chapter) for the selected requests and stores the

plan back to the database.

The individual file transfers are handled by the separate distributed component called

Data Mover. As we specified at the beginning, we want to use existing point-to-point data

transfer tools and use them as the back-end instruments. TheData Movershould serve as

an intelligent wrapper on top of such tools handling the work. The role of these workers

is to perform a point-to-point data transfer on a particularlink following the computed

plan. The results and intermediate status is continuously recorded in the database and

user can check the progress at any time.

Because of the asynchronous nature of the communication between components, the

system has to have well defined states and transitions from one state to another given

by state diagrams. We will explain the flow in the following section. TheWatcher,

independent component running at each site, is responsiblefor changing states of the

objects and cache management.

We can see that the whole mechanism is a combination ofdeliberative (assuring

optimality) andreactive planning (assuring adaptability to the changing environment).

Since this is crucial to the argument, we will continue with explanation of the workflow

and inter component communication with the direction to the(PlannerandData Mover)

serving up as a “reasoner” and a “worker”.

71

4.1. Architecture 4. Technical implementation

4.1.1 Web interface

The user interface, the space where interaction between users and system occurs, serves

for providing operations, control and getting feedback from the components in a simple

and compact way. It allows users to enter their requests either in the file catalogue query

form or by uploading a file list, as we mentioned in the previous section. A set of screen-

shots from the user’s web interface is shown in Fig. 4.2. System feedbacks the initial

information like total size of the requested dataset, sample file paths for control and ex-

pects the confirmation from the user. If user checks and finds all information correct,

the request can be confirmed. Afterwards, (whenFile Feederpopulates the database,

Plannercreates first transfer paths andData Moverstarts executing transfers), the web

interface continuously provides information about each request in the system. Among

others, it includes:

• number of succeeded files (already at the destination),

• number of failed files,

• estimated time to the finish, etc.

When the processing of the request is finished, the user can list the failed files and even-

tually resubmit only this portion again.

The interface also provides updated information for administrator/operator, where it

displays the current load, speed and quality of the service per each link/service. Each

resource also provides detailed graphs showing the performance and usage for past 6

hours, 24 hours and 1 week. The graphs include the history related to Quality of Service

(QOS), number of files assigned to the resource in a particular state (Placed, Queued,

Processed) and speed of the resource.

Keeping all distributed services up and working is often a hassle for administrators.

Therefore, the web interface provides simple service monitoring, where one can check if

the component is running or what was its last alive state.

The core of the web interface is written in PHP 5.2 1 language, under theModel-

View-Controller (MVC) architectural pattern (see Fig.4.3). The pattern isolates the

application logic from the user interface (input and presentation). The purpose of the

separation is that changes to the view can be implemented, oreven additional views cre-

ated, without having to re-factor the model. TheView generatesXHTML input/output

and this is the only place where it can be generated. TheController dispatches requests

and controls flow, while theModelholds data representation and business logic.

1PHP: www.php.net

72

http://www.php.net

4. Technical implementation 4.1. Architecture

Figure 4.2: Several screen-shots of the Web interface.

Figure 4.3: The basic MVC concept.

Couple of dynamic parts is written inJavascript2, especially the module for display-

ing plots. For this purpose we usejqPlot 3, thejQueryplugin to generate pure client-side

dynamic charts.

For accessing the SQL database we useOpenDatabaseConnectivity (ODBC)4 in-

terface which provides the translation between application and the DBMS. Because of

the independence of underlying database server, the potential porting to another SQL

database should be smooth.

4.1.2 Database design

This section introduces the design of an overall database system. A correct design is

essential to achieving goals of the project and provides access to up-to-date, accurate

2Javascript: http://www.javascript.com
3jqPlot: http://www.jqplot.com
4PHP and ODBC: http://phpodbc.com

73

http://www.javascript.com
http://www.jqplot.com
http://phpodbc.com

4.1. Architecture 4. Technical implementation

information. We will concentrate on and determine the relationship between the different

data elements and the logical structure on the basis of theserelationships.

When designing a database system one should try to create a proper balance between

a logical design and technical optimization. On one hand, the aim of logical design is to

apply Codd’s rules to every table. These rules are defining what is required from DBMS

in order to be consideredrelational. It is guided by rules. On the other hand, it doesn’t

guarantee the optimal performance of the database system, because some queries can be

very complex. The technical optimization makes sure that the most important functions

perform good. It is often case dependent which steps lead to higher performance of the

database. Usually it is a combination of

• denormalisation - to avoid an expensive join in a high frequency function,

• combining tables- to remove a redundant table,

• storing derived data - to avoid repetitive time intensive computations,

• adding indexes- to speed up joins and look-ups for large tables,

• partitioning - to increase manageability, performance or availability.

The primary idea was to keep database design compact and easily manageable while

having all information and functions provided. Due to the fact that STAR is exclusively

usingMySQL 5 DBMS and has experts for the performance tuning and maintenance of

the servers, the decision which system to use was pre-defined. However, we aimed to

build it as portable as possible and tested it also withPostgreSQL6. We useInnoDB

transaction-safe storage engine withFOREIGN KEY referential-integrity constraints. Due

to portability we use minimum server side triggers, only several constraints to ensure the

data integrity.

The overall database schema is shown in Fig. 4.4. The tables are grouped into several

categories, differentiated by colors, depending on their purpose. Some information in

a database are ratherstatic (although they also change in time, but due to the very low

frequency of changes, we will consider them as permanent). Tablesusers, groups, and

membershipkeep such information about users recognized by the system.A single user

can be a member of several groups with different priorities (relationship of table users

and groups via membership).

Next static tablestatuseskeeps possible states in which a main user request or single

transfers can be. There are five possible states:

5MySQL: http://www.mysql.com
6PostgreSQL: http://www.postgresql.org

74

http://www.mysql.com
http://www.postgresql.org

4. Technical implementation 4.1. Architecture

Figure 4.4: Database schema of the system outlined in entityrelationship diagram.

75

4.1. Architecture 4. Technical implementation

Figure 4.5: Example of a part of logical network structure.

• Placed - Used for user’s meta data request, the initial state when the request is

placed in a system.

• Queued- Used for user’s meta data request, logical file names associated to some

request, and also particular link transfers. The information states the request/file is

queued in a system and waiting for processing.

• Being processed- Used for logical file names associated to some request, and

particular link transfers. The information states the file is in a transfer.

• Done - Used for user’s meta data request, logical file names associated to some

request, and also particular link transfers. The information states the request or file

transfer is successfully completed.

• Failed - Used for user’s meta data request, logical file names associated to some

request, and also particular link transfers. The information states the request or file

transfer is completed, but there were errors or failures during the operation.

As we can see, statuses are used for logical requests as well as for individual file

transfers. The detailed separation and the way how we store them is explained in the

following sections.

The logical network structure used by the Planner and later by the Data Movers is

stored in tablesNodesand Links . The first one maintains information about logical

nodes, while the second one characteristics of links between them. We deliberately use

term logical network, because as can be seen from Fig. 4.5, the network doesn’t always

correspond to the physical decomposition of the services/nodes.

We will explain the remaining parts of the database schema using flow diagrams

representing the interaction of the user with the system andwe will follow the flow of

data throughout the system.

76

4. Technical implementation 4.1. Architecture

Incoming request

As we previously mentioned, users interact with the system using the web interface. The

request including metadata catalogue query is processed asynchronously. After user sub-

mitted the request, a new record is added into the tablerequests. Thestatusof the record

is “Placed” and contains the requested destination for the data set, user’s id, and group’s

id together with the time when the request was placed. Fieldsrepresenting the number

of total, success and failed files are initiated to 0. This process happens immediately

while query with the catalogue and populating the database with files is an asynchronous

process.

Query with the catalogue

The next step in a data flow is querying the catalogue. For thispurpose, there exists a

separate daemon which monitors the records in therequeststable. If there is a placed

request, the file metadata catalogue is queried with the corresponding data. Afterwards,

the status of the record is changed to “Queued”. The number oftotal files as returned

by the catalogue is updated as well. Thefiles table is populated with the new logical file

names and file sizes (ones not yet in a system). As stated before, several logical files from

different metadata queries may overlap (Fig. 4.6). The assignment of logical file names

to the metadata request is stored in therequested_filestable, where the status of each

file is initiated to state “Queued”. Finally, the tablecatalogueis populated with possible

physical locations of each new file.

Planning the subset of files

As soon as the information about possible locations of files is populated in a database

the Plannercomponent can start its job. According to the fair-share policy (explained

in Section 2.4) a subset of files (logical file names from therequested_filestable) is

selected and processed by thePlanner. Their status is changed to “Being processed”

and corresponding transfer paths are stored inscheduled_transferstable. A single path

is stored as several records depending on the number of linksthe path consists of. The

initial state of the individual transfer is set to either “Placed” or “Queued” depending on

the position of the link. The transfer on the link outgoing from the repository holding the

file (first edge in the graph) is set to “Placed” while transfers on the remaining links are

set to “Queued”.

77

4.1. Architecture 4. Technical implementation

Figure 4.6: Hierarchy representing 1:N:M relationship between metadata query, logical
files, and physical files. Logical files from different queries may overlap.

Transferring files

Transferring files is the core of the whole mechanism and the most complicated part

from logic flow point of view. One can easily imagine that system must be able to adapt

to several case scenarios, such as temporal (permanent) link failure, not responding ser-

vice, etc. Each physical site is hosting a Data Mover instance, which is responsible for

data transfers either in or out of the site. The Data Mover provides for each service a sep-

arate configuration. In an optimistic scenario a service executes a file transfer on its link

(following the plan) and updates the status in a database so other service can work with

the file, until the file is transferred to the destination. Since passing and flipping the status

information is a critical part, we will first look at the flow-chart (Fig. 4.7) representing

the mechanism how transfer system works withscheduled_transferstable.

As one can see, the system stores information from the user request in three separate

levels, that creates 1:N:M relationship (Fig.4.6). At the top, there is a user’s meta data

request (1) which contains (N) logical files and system needsto track individual transfers

for each of such file (M). Therefore, the information of success or failure of any operation

from one level has to be properly propagated to the other ones.

The flow-chart from Fig. 4.7 represents information flow within the lowest level -

individual transfers. The propagation from this level to the intermediate one (logical

files in requested_filestable) is handled asynchronously by the separate service called

Watcher.

The flow-chart from Fig. 4.8 depicts the status flow within therequested_filestable.

Finally, the flow-chart in Fig. 4.9 represents information passing regarding to the top-

level structure handled by therequeststable. Similarly to the previous layer, the infor-

78

4. Technical implementation 4.1. Architecture

Figure 4.7: Flowchart representing the status flow related to the individual files in sched-
uled_transfers table.

79

4.1. Architecture 4. Technical implementation

Figure 4.8: Flowchart representing the status flow related to the logical files in re-
quested_files table.

mation propagation from therequested_filesto meta-data queries (requests) is handled

by theWatcher.

4.1.3 Watcher

As we have seen, propagating some parts of information is handled inside the Data Mover

component. Nonetheless, it would be inefficient to propagate everything “in-time” due

to the frequent and intensive database querying. Therefore, we have a component called

Watcherthat periodically monitors the database and performs the updates. It is written

with the use ofhooks. If there is an operation which needs to be periodically executed, it

is hooked into the Watcher and information such as the frequency and additional details

are put into the configuration file. There is a central Watcherrunning at BNL site with

these following hooks:

• accountingandmonitoring tables update

• accountingandmonitoring tables delete

• links table update

• requested_filestable update

• cache management

We will briefly describe what each of this hook is doing.

80

4. Technical implementation 4.1. Architecture

Figure 4.9: Flowchart representing the status flow related to the top-level metadata
queries in requests table.

Updating and deleting accounting and monitoring tables

Accounting table holds statistical information for calculation of links speed. During the

update, we store the actual speed and QOS for each link together with the time point when

the measurement was done. Since some transfer tools work with batches, estimating the

speed is a bit tricky. The updating hook loops through a set ofintervals and queries the

scheduled_transferstable for files which were newly transferred (since the last update)

and the transfer took less time than the current interval. The speed is then calculated as

an average of all measurements through the intervals and inserted into theaccounting

table.

The monitoring tables keep information for statistics, which allows the web inter-

face to create plots displaying speed and data profiles. The purpose is to see what was

the amount of records in time assigned to each link by state (Placed, Queued, Being

processed, Done, Failed).

Deleting accounting table is performed in order to keep the table small - as we will

explain in the following paragraph, for updating thelinks table we need only several most

recent values. Deleting records from the monitoring tablesdepends only on decision how

long historical records we want to keep. All of this is definedin a configuration file.

Updating links table

Updating the links table is important to have accurate and recent speed and QOS data for

each link, so the Planner can produce realistic plans. The table is updated by usingN

81

4.1. Architecture 4. Technical implementation

most recent records and by computing the weighted average ofthem. The weight of each

record represents the importance of that particular speed or QOS value and it usually

decreases with the age of the record. The weights and number of them is configurable.

The calculation using the Python lambda mechanism is then following:

speed = reduce(lambda x, y: x + y, [speeds[i] * self.accWeights[i]

for i in range(len(speeds))])

wherespeeds is an array of most recentN speed values andaccWeights array of par-

ticular weights. The computation of QOS is similar.

Updating requested_files table

When individual file transfers are done, the propagation to the upperrequested_files

table is not immediate. Watcher periodically checks which files are already at the des-

tinations, which transfers have failed; and updates the higher level tables. The update

involves refreshing the total number of succeeded and failed files in a request, handling

the retries (if maximum not reached) and switching statusesas we described in Section

4.1.2.

Cache management

The cache space is also handled by the Watcher and this hook isavailable for every site

participating in the system. This hook is a placeholder for cache management algorithm,

as we described in Section 2.5.

4.1.4 Planner

The Planner (Fig. 4.10-left), the brain of the system, is built on the constraint-based

mathematical model. The theoretical background and our continuous progress were de-

scribed in previous sections. The solver uses methods from Constraint Programming and

Mixed Integer Programming and the logic tries to minimize the makespan considering all

possible combinations. The tree of possibilities may very well contain solutions where

transferring data once on a given link lead to a minimum or balancing between services

lead to the fastest transfers. In all cases, the optimal solution will only be determined

by the input parameters. Our planning is also incremental - we have previously demon-

strated ([69]) that a full plan comparing to incremental planning would not make a large

difference on the makespan overall - the gain of an incremental approach is the ability to

self-adapt based on theMover’s feedback.

82

4. Technical implementation 4.1. Architecture

Figure 4.10:Left: Planner as a black box.Right: Data Mover component.

The Planner is written inJava SE 67 programming language. The database-independent

connectivity between the Java programming language and theSQL database is handled

using Java Database Connectivity (JDBC). The Planner is invoked from the wrapper

script centrally from BNL site. As we remarked in theoretical sections 3.1 and 3.2, for

mathematical computations Planner relies upon two libraries.GNU L inearProgramming

K it (GLPK [23]), an ANSI C library intended for solving large-scale linear programming,

mixed integer programming, and other related problems is called via SWIG interface

([24]). For implementation of the CP model we useChoco 8, a Java based library for

constraint programming. The main logic consists of gathering required data from the

database and transforming them into the format understood by the implemented model

in a particular library. The solution, the plan, is then transformed again back from the

MIP/CSP language into the database. Such a plan then serves as the work instructions

for Data Mover component.

4.1.5 Data Mover

TheData Moveris the distributed component responsible for performing data transfers

in a reactive way. Each instance is controlling data services within a given computing site

and also the wide-area network connections from/to the site. It relies on the underlying

data transfer tools and uses them for data movement. In our implementation, we did not

address interoperability of Wide Area Network (WAN) data transfer tools (which is not

the object of this work) but settled in using by theFastDataTransfer tool (FDT [19]).

The way data movers operate is reactive which means that, as soon as a file appears at

the source node (either at a data service or in a cache space before WAN transfer) it is

7Java: http://www.java.com
8Choco: http://choco.sourceforge.net

83

http://www.java.com
http://choco.sourceforge.net

4.1. Architecture 4. Technical implementation

Figure 4.11: Illustration of data flow from Xrootd service @ BNL to NFS service @
Prague via intermediate cache @ LBL.

marked as “ready for transfer” and moved by the proper underlying tool. As soon as

the transfer is finished another instance realizes the file isavailable and initiates the next

move (along the computed path from the solver).

We will describe this process in more detail using an exampledepicted in Fig.4.11.

In this example, let us suppose the transfer path for some filewas advised by the Plan-

ner starting from Xrootd service (BNL site), using an intermediate cache space at LBL

site and finally ending at NFS service at Prague site. There are three independent Data

Movers running at each site. First, the Data Mover at BNL realizes there is a work for its

thread which is responsible for Xrootd service. The transfer from Xrootd to local cache

is initiated. As soon as the file is prepared and checked, the status is updated and Data

Mover running at LBL side can start. In this case, the WAN transfer is started in a pull

mode, and file is brought from BNL’s cache to the intermediateLBL’s one. The status is

updated again and following the same principle, WAN transfer initiated by the Prague’s

Data Mover may start. Finally, another thread responsible for NFS service moves the file

to the requested NFS destination.

Our approach is also adaptive: from the initial transfer andconsequent monitoring,

the real speed can be inferred and re-injected as a parameterfor the next incremental

plan, helping the system to converge toward realistic transfer rates rather than relying on

theoretical optimum alone.

TheData Moveris written inPythonlanguage; communication with the SQL database

is handled by pyodbc9 library (module that allows to use ODBC to connect to almost

any database) and concurrent link/service control is achieved by separate threads (Fig.

4.10-right). Every module has own configuration prescribing how the underlying tool

should be used, what is the number of retries in case of failures, time limit defined for

single execution, etc. We will outline the major underlyingtools Data Carousel relies

on, namely FDT for WAN transfers, DataCarousel for HPSS read-access, Xrootd for

9pyodbc: http://pyodbc.sourceforge.net/

84

http://pyodbc.sourceforge.net/

4. Technical implementation 4.1. Architecture

read-access from Scalla system and traditional NFS.

Fast Data Transfer (FDT)

The system is using FDT tool for WAN transfers. FDT is a client/server application ca-

pable of reading and writing at disk speed over wide area networks (with standard TCP).

It is written in Java SE 6, runs an all major platforms. It is based on an asynchronous,

flexible multi-threaded system and is using the capabilities of the Java NIO libraries (in-

put/output API for working with channel and buffers). Its main features are:

• Streams a dataset (list of files) continuously, using a managed pool of buffers

through one or more TCP sockets.

• Uses independent threads to read and write on each physical device.

• Transfers data in parallel on multiple TCP streams, when necessary.

• Uses appropriate-sized buffers for disk I/O and for the network.

• Restores the files from buffers asynchronously.

• Resumes a file transfer session without loss, when needed

The FDT has been tested and used in the STAR collaboration forseveral years. The Data

Mover invokes FDT client in a pull mode with a file list containing the files which needs

to be transferred (pulled) from the opposite FDT server. Thenumber of files composing

a filelist is configurable. Setting this number adjusts the atomicity of the single WAN

transfer.

DataCarousel

The interaction (reading) with the Mass Storage System (HPSS) is handled by the fault

tolerant policy driven framework called DataCarousel [35](already outlined in Section

1.3.2). The tool has been developed in STAR and is in use since2001. It is based

on client/server mechanism and allows requests for archived files to be managed and

coordinated the same way as “full-fledge” batch system would. It is entirely written in

Perl 10 and uses SQL based database storage as the back end. The client is a thin script

which sole purpose it to add requests to a central database. The server is the heart of the

system - it sorts the records, creates a job of files to retrieve and submits that job to HPSS

(software at another layer) according to policies.

10Perl: http://www.perl.org/

85

http://www.perl.org/

4.1. Architecture 4. Technical implementation

The integration into the Data Mover is similar to the FDT. Theclient is invoked with

a list of files that are requested (planned) to stage from HPSS. The transfer mode is asyn-

chronous - the client just enters the request into the DataCarousel’s database and returns.

Data Mover itself waits and checks for the presence of requested files (considering time

limit). The number of files that are submitted to DataCarousel in a batch is configurable.

It is important to remark that this number influences the performance of the full system.

If the number is too large, once the HPSS slows down or other service increases its per-

formance, the system has to wait longer for the files to be staged - instead of using some

other service if available. On the other hand if the number offiles is too small, the perfor-

mance of the HPSS is not optimal as was shown in [30]. One can see there are multiple

factors biasing the overall motion of the system.

Scalla/Xrootd and NFS

We have presented the overview of the Scalla/Xrootd system already in Section 1.3.2. It

aggregates data spread over hundreds of disks and provides them to the clients running

mostly as jobs written with the use of ROOT11 analysis framework. Along with this

Scalla/Xrootd provides the command-line client calledxrdcpfor retrieving files from the

cluster to the local disk. Data Mover usesxrdcp in a synchronous mode for getting files

from the Scalla system.

The communication with the traditional NFS system is handled similarly in a syn-

chronous mode using standard tools provided by the operating systems.

4.1.6 Show case

To prove the validity and soundness of our planning strategyin practice, one has to design

and implement several cases. The system has to be tested and observed under different

and changing condition to see if it reacts and works as expected. We will start with the

simple short-time test to affirm the software components work and communicate in the

expected way and the quality of the computed plan is confident. We can look at the

environment for this case as “ideal”, where all data services and network were working

smoothly without any breakdowns. The environment was for simplicity formed by two

computing sites, the centralBNL and remotePrague. The available data services atBNL

were: Xrootd, NFSandHPSS, while in Pragueonly NFSwas available. The wide area

network (WAN) transfer was controlled by FDT. The configuration is shown in Fig. 4.12-

left. The purpose was hence to challenge the planner in making proper decisions when

11ROOT: http://root.cern.ch

86

http://root.cern.ch

4. Technical implementation 4.1. Architecture

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

17:02 18:02 19:02 20:02 21:02 22:02 23:02 00:02 01:02

T
ra

ns
fe

rr
ed

 fi
le

s
(%

)

Time

Performance

Xrootd+NFS+HPSS
HPSS
Xrootd

NFS

Figure 4.12:Left: The network and service configuration for the tests.Right: The
performance of the system using 4 different configurations.On the X axis, we represent
the time of transfers while Y is the percentage completion. The x-range of each curve is
hence representative of the makespan.

multiple sources were available at the same site. We were interested to see how fast the

requested files can be brought to the destination if we restrict the system to reason only

about particular sources.

The request consisted of files available at all data servicesat BNL at the same time

and the task was to bring them to thePragueNFS service. The test was composed of

four different configurations. The planner consecutively considered:

• only Xrootd repository

• only NFS repository

• only HPSS repository

• a combination of Xrootd, NFS and HPSS repository concurrently

The results of each configuration are shown in Fig. 4.12-right. As expected, while

all files are located on mass storage in STAR, transfers fromHPSS(in green) are the

longest to accomplish and hence, lead to the longest delays in delivery. In our setup, the

green and blue curves are near equivalent (NFSdirect transfers are slightly faster) but it

is to be noted that not all files are held onNFS (central storage) in STAR and pulling

all files from Xrootdmay cause significant load on a system in use primarily for batch

based user analysis (hence, an additional load is not desirable). When we combined all

storage sources, the makespan was equivalent to the one fromXrootdwhile the relative

ratio of files transfers from the diverse sources was 19%, 38%and 43% forHPSS, NFS

and Xrootd respectively with no load caused on any of the services. At the end, the

overall bottleneck was only the WAN transfer speed - we inferour test proved the planner

87

4.1. Architecture 4. Technical implementation

Figure 4.13: Direct data flow.

works as expected, since the full reasoning considering allpossible repositories led to the

optimum makespan. Additionally, the utilization of all services brings the advantage in

the form of load-balancing and automatic use of replicas.

The test above was facing ideal conditions where none of the services was fluctuat-

ing in a performance and the test was short termed. To validate the workflow between

the software components (explained in Section 4.1.2) and tosee the proper file status

propagation we present another real-case.

The task was to bring dataset from BNL’s HPSS to LBNL’s NFS storage. In this

case, there is a straight flow of data, since files were not yet replicated (see Fig. 4.13).

This allows us to concentrate on data and information passing mechanism between Data

Movers and inspect the monitoring interface.

The dataset containing more than 3100 files was defined by the following catalogue

request:

• trgsetupname=production_dAu2008

• filetype=online_daq,filename≈st_zerobias

• tpc=1,tpx=1,emc=1,runnumber []8341061-9027091,events>20

In this setup, there were two Data Movers. One running at BNL’s site responsible for

acquiring files from HPSS to local cache, and another one running at LBNL’s site and

performing WAN transfers and consequent NFS placements. Wewill first inspect how

the system cooperates with underlying HPSS service using DataCarousel tool. Graphs

in Figures 4.14 and 4.15 represent the amount of files with status “Queued” or “Being

processed” assigned to the particular service as a functionof time. Let us look first at

central BNL site.

The system schedules all files to be acquired from HPSS, sinceit was the only repos-

itory holding the dataset. The BNL’s Data Mover was submitting files to DataCarousel in

batches of 500. As soon as the batch arrived (the status of submitted files changed from

“Being processed” to “Done” or to “Failed”) the system took another burst of queued files

88

4. Technical implementation 4.1. Architecture

HPSS performance

Queued files

Processing files

Figure 4.14:Top. Graph displaying the number of files with status “queued” assigned to
the HPSS Data Mover as a function of time.Bottom. Identical plot inspecting files with
status “Being processed”.

89

4.1. Architecture 4. Technical implementation

FDT performance

Queued files

Processing files

Figure 4.15:Top. Graph displaying the number of files with status “queued” assigned to
the FDT WAN Data Mover as a function of time.Bottom. Identical plot inspecting files
with status “Being processed”.

and submitted them too. This can be seen in Fig.4.14-bottom as spikes in a graph, where

each spike is defined by the speed how fast the files in a currentbatch were staged. Simi-

larly, the amount of queued files was decreasing, what is plotted as steps in Fig.4.14-top.

Let us move up now to the destination LBNL site.

As soon as first batches of files were staged from HPSS and prepared for WAN trans-

fer, the number of queued files for FDT service (initiated in pull mode from LBNL)

started to increase (Fig.4.15). We can see that for the wholetime of movement the WAN

was saturated - the number of processing files was constant. This implies that the DataC-

arousel was able to prepare files from HPSS tapes faster than WAN allowed to transfer.

Hence, we see the increasing number of queued files, waiting for FDT service.

This data movement took approximately 1 day and at the end system reported 108

files that failed to be staged, even upon retries.

90

4. Technical implementation 4.1. Architecture

Figure 4.16: Data transfer scheme for P10ik dataset.

Adaptation to service failure

It is important to verify whether the system reacts in case ofservice failures the way it

is expected to act. We will present our experience from the following task. The system

has been used actively for replicating the production dataset P10ik from STAR’sTier-0

center BNL to LBNL (Tier-1 center). The size of the dataset was about 48TB and at the

time of writing the text more than 10TBhas been already transferred. The corresponding

catalogue request was:

• trgsetupname=AuAu39_production

• production=P10ik

• filetype=daq_reco_MuDst,filename≈st_zerobias

The system was leveraging all data sources from BNL site, as can be seen at Fig.

4.16. We will focus now on the situation how the system handles underlying service

failures. As we can see, last part of the data transfer chain is using NFS service for

storing data at the final destination. In the case of high access loads or problems of

servers exporting the mounts, there may appear temporary hang-ups. During this time,

theData Moverinstance responsible for NFS service is waiting and number of queued

files at NFS service is increasing. This happened also duringthe move ofP10ik dataset

as we can see in Fig. 4.17. The graph is showing the increase trend of files theData

Mover received but was not able to store due to the stalled NFS service. What we want

to illustrate now is that the system realized the problem andthe appearing bottleneck at

the end of the transfer chain. The system realized that due tothe failed NFS service there

was an increasing number of queued files at the last part of transfer chain and adapted

to this situation in further planning (see Fig.4.18). Sincethere was no reason to increase

even more the number of stucked files, the system reacted accordingly and postponed the

transfer of further files. This can be seen in Fig. 4.18 as a part of graph with decreasing

tendency of queued files at FDTData Mover. As soon as the problem was resolved the

91

4.1. Architecture 4. Technical implementation

Figure 4.17: Graph displaying the number of files with status“queued” assigned to the
NFS Data Mover as a function of time. Because of not responding NFS server, the
number of queued files started to increase until the server got back to the normal mode.

Figure 4.18: Graph displaying the number of files with status“queued” assigned to the
FDT Data Mover as a function of time. The system realized the increasing bottleneck
due to failed NFS service and adapted the further plans.

system started to plan files again in regular mode and number of queued files retained

back to the normal level.

4.1.7 Performance comparison

In this section we will elaborate on the performance of the automated system under differ-

ent environment configurations. The principal benefits of the solver depend on leveraging

available data services and network links between sites. Let us focus first on performance

comparison experienced by relying on data sources with diverse characteristic. All the

following measurements were taken in real production environment while monitoring

other exterior activities and requests for shared system resources. The monitoring in-

cluded the control ofHPSSusage over submitting large-size requests, extensiveWAN

third-party transfers between laboratories, etc. Therefore, the measurements spanning

over several hours (and often repeated multiple times) are statistically stable and sound.

The performance of the system can be nicely described by comparing the makespan

- the time it takes to bring requested files to the destination. It is important to see also

the convergence, how fast were files appearing at the destination. Hence, we will display

92

4. Technical implementation 4.1. Architecture

this tendency as a function of time in the following graphs. Figure 4.19 is displaying

the comparison when the system alternates reasoning about data sources. The transfer

was required between STARTier-0 BNL laboratory andTier-1 center at LBNL, without

involving any third site. We could concentrate thereby entirely on data sources and elimi-

nate the influence of diverse network paths. We were comparing two data services which

served as a source of the data. The services are in contrast bydifferent characteristic:

• HPSS- holds all the files, works asynchronously. Usually involves waiting time at

the beginning upon submission, then high throughput.

• Xrootd - holds only the portion of data, works synchronously. Usually provides

low latency and high throughput.

The comparison consists of three several hours long transfers when solver was acting

always in different mode. The blue line represents the mode when solver was using ex-

clusively onlyXrootdas the source service. We can see that files started to appear almost

immediately at the destination and the slope of the line shows the fastest throughput. For

better resolution the small plot in the same figure is displaying the zoomed region in the

first 40 minutes. However, sinceXrootd repository holds only a portion of all data, full

data set could not be transferred. What portion of data the service holds usually depend

on the age of files. Files from recent datasets are more likelyto be available atXrootd

service. The red line represents the mode when system was relying only on HPSS. We

can see that there was an initial small waiting time until files started to appear. More

important is to realize also the “step-like” trend of the line. This is caused by the HPSS

utilization. HPSS prioritizes requests from different users depending on tape locations,

history, and other factors; and when there is our requests inturn, it serves the files usually

fast. During several hours our request can be postponed and others are prioritized and we

have to wait. Unfortunatelly, this “step” can often take several hours, depending on the

current circumstances and load. The third black line is representing the last mode, when

the system relied on both services concurrently. We can clearly see that the combination

of both sources outperforms counting on the stable but not the fastest one (HPSS) even if

Xrootdcannot provide all the files. Realizing which files where reside and coordinating

the access to providing services is not something what userscan efficiently do by them-

selves and hence, they often rely on the single one - stable but slow one. This is when

automated solver can bring a significant benefit and increasethe effectivity of their work.

Let us bring our attention now to the system’s reasoning and utilizing diverse network

paths. For the purpose of keeping the environment transparent and eliminating the effect

93

4.1. Architecture 4. Technical implementation

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

F
ile

s
co

un
t a

t d
es

tin
at

io
n

Time (min)

Makespan comparison based on
 source selection

source HPSS
source HPSS+Xrootd

source Xrootd

 0

 200

 400

 600

 0 10 20 30 40

Figure 4.19: Graph displaying the trend how fast is the plan fulfilled concentrating on 3
different modes of source access. First one uses solelyXrootdservice, second only the
HPSSsystem, and finally third one uses combination of both.

of multiple data services, in this case we will concentrate on the soleXrootdservice as

the source of all files. The slow latency and constant modest bandwidth of this data

service allow us to concentrate on the influence of reasoningabout network paths. The

data transfer scheme is illustrated in Fig.4.20, where dataare being moved from BNL

laboratory (Tier-0 center) to Prague site (Tier-2 center).The system is allowed to reason

also about intermediate site (LBNL laboratory, Tier-1 center) in order to increase the

throughput. It is important to state that the connection between the BNL and Prague site

is using static routing over dedicated link and is diverse from the path between BNL and

Figure 4.20: Transfer scheme for diverse network paths. Data movement relies on the
Xrootdservice as the sole source of files while leveraging also intermediate LBNL site.

94

4. Technical implementation 4.1. Architecture

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250

F
ile

s
co

un
t a

t d
es

tin
at

io
n

Time (min)

Makespan comparison

31% faster

leveraging LBNL
direct transfer

Figure 4.21: Graph displaying the trend how fast is the plan fulfilled comparing 2 dif-
ferent modes in network paths. Green line represents the mode when only direct transfer
to Prague was allowed and red one the mode when part of the traffic was allowed to be
routed via LBNL site.

LBNL as well as LBNL and Prague (using ESnet, Geant, and CESNET routing). We will

again compare the speed how files appear at the destination service while looking at the

impact of using intermediate site in parallel.

The graph in Fig.4.21 is exposing this comparison. The greenline represents the

mode where only direct BNL to Prague network path was used; while the red line the

mode where also additional path through LBNL site was allowed. We can see the clear

and very visible benefit in leveraging additional network path and routing part of the

traffic via intermediate site. The overall gain in makespan (how less user waited for files)

was almost one third of total time comparing to the direct andusual approach.

95

Chapter 5

Conclusions and future work

This work deals and attacks the complex problem of efficient data movements on the

network within a distributed environment. Although the work has included theoretical

research it was shaped from the beginning in order to deliverpractically useful tools.

Therefore it is willing to provide balanced combination of theoretical and practical re-

sults.

The problem itself arises from the real-life needs of the running nuclear physics ex-

periments, while all the studies were obtained on the running experiments with more than

a decade long history - experiment STAR, and its peta-scale requirements for data stor-

age and computational power. Unlike projects which rely purely on simulations we have

been working with real STAR data, infrastructure and services during regular operation

of the experiment.

This has been the first time in nuclear physics large scale experiments when auto-

mated planning approach was used for reasoning about data transfers and cpu allocations.

We showed that computational complexity of the transfer problem is strongly NP-hard

using polynomial-time reduction fromJ3|pi j = 1|Cmax, a 3-machine unit-time job-shop

scheduling problem (JSSP).

We proposed and presented the two stage constraint model, coupling path planning

and transfer scheduling phase for data transfers to the single destination. Several tech-

niques for pruning the search space, like symmetry breaking, domain filtering, or implied

constraints, are shown. We proposed and implemented several search heuristics for both

stages and performed experiments for evaluating their applicability.

Further, we presented the extension of the solver which was based on pure Constraint

Programming techniques for multi-site data movement within the multi-user environ-

ment. We introduced the Mixed Integer Programming methods into the model and sev-

eral simplifications in scheduling phase. The comparison proved that the simplification

96

5. Conclusions and future work

of the scheduling phase and linearization of the constraints lead to the faster solving times

while loosing only neglecting fraction of the quality of themakespan.

We have implemented the model and designed the architecture, components and per-

formed implementation of the framework with other STAR services. Simplistic yet ro-

bust architecture allows users to express their requests conveniently via a Web interface

while the back-end planner and the set of data movers take care of the work on the user’s

behalf. We have presented observations and results on how the system behaves from

multiple long term measurements that were taken in STAR. We focused on service fail-

ure recovery, comparison of overall makespan improvement against classic techniques

and benefits of automated leveraging multiple data sources and diverse network paths.

With upcoming requirements for more frequent Cloud computing where data storage

is constrained and the needs for prompt feeding CPUs by data is important, the automated

data transfers and job allocation can greatly simplify the user’s task. We have addressed

this and proposed the extension of the model for reasoning about computational power

as well.

It is always positive when solving approach and technique isuniversal enough so it is

possible to apply it in other related areas. We have researched also the field of robotics

and automated planning used in autonomous robots. Derived techniques from planning

the data transfers in large scale physics experiments were successfully applied in vehicle

routing variants.

The journey to the fully automated and intelligent system scheduling user’s tasks

considering all relevant constraints is certainly long andthere are still numerous aspects

that need to be addressed. The intelligent cache managementreflecting the prediction

of the future needs or advanced bandwidth reservation mightbe the ideas for the next

improvements of the system. We believe that the presented work contributed to this

collaborated effort with several sound ideas, techniques and concepts.

97

List of Figures

1.1 Layout of the RHIC complex at BNL. 12

1.2 Perspective view of the STAR detector. 13

1.3 Projection of data for the STAR experiment. 14

1.4 Schematic drawing of data flow in STAR. 16

1.5 Data mover statistics from STAR online to HPSS. 16

1.6 File size and count statistics in STAR. 17

1.7 Centralized vs. distributed storage in STAR. 20

1.8 B-64 tree structure (Scalla/Xrootd). 21

1.9 The Scalla/Xrootd overview. .. 22

2.1 General view of the automated planning system. 25

2.2 Planner - considering network structure and link bandwidth. 25

2.3 Planner - considering different data service performance/latency. 26

2.4 Flowchart of the transfer mechanism. 30

2.5 Planner - illustration of links usage. 31

2.6 Drawing of possible race condition. 32

2.7 Failure handling of a transfer over the link. 33

2.8 Working with chunks - makespan comparison. 34

2.9 Illustration of a dispatching process. 34

2.10 High-low water marking principle. 37

3.1 Unary resources - tasks assignment. 44

3.2 Complexity - polynomial-time reduction fromJ3|pi j = 1|Cmax. 45

3.3 Saturation of dedicated LAN. .. 47

3.4 Saturation of dedicated LAN - comp. 48

3.5 Saturation of non-dedicated WAN. 49

3.6 Saturation of non-dedicated WAN - comp. 50

3.7 Saturation of dedicated WAN. .51

98

LIST OF FIGURES LIST OF FIGURES

3.8 Saturation of dedicated WAN - comp. 52

3.9 Symmetry breaking. 52

3.10 FilteringX variables. 53

3.11 Makespan conv. - comparison of heuristics. 57

3.12 Gluing transfer paths. .. 60

3.13 Computing centers in STAR experiment. 62

3.14 Argonne cloud computing. .63

3.15 CPU model extension - graph structure. 64

3.16 CPU model extension - example with 2 files. 65

3.17 Argonne cloud computing. .67

4.1 Architecture of the system. .. 71

4.2 Several screen-shots of the Web interface. 73

4.3 The basic MVC concept. 73

4.4 Database schema - ER diagram. 75

4.5 Example of a part of logical network structure. 76

4.6 Hierarchy representing 1:N:M relationship. 78

4.7 Flowchart - status flow in scheduled_transfers table. 79

4.8 Flowchart - status flow in requested_files table. 80

4.9 Flowchart - status flow in requests table. 81

4.10 Planner and Data Mover component. 83

4.11 Illustration of data flow. .. . 84

4.12 Test of the components and planning mechanism. 87

4.13 Direct transfer experience - flow. 88

4.14 Direct transfer experience - HPSS. 89

4.15 Direct transfer experience - FDT. 90

4.16 Data transfer scheme for P10ik dataset. 91

4.17 Queued files at NFS Data Mover. .92

4.18 Queued files at FDT Data Mover. .92

4.19 Makespan comparison over data services. 94

4.20 Transfer scheme for diverse network paths. 94

4.21 Makespan comparison over diverse network paths. 95

A.1 Example of 6+3 robot planning task. 102

A.2 Graph describing the robot’s environment. 103

A.3 An ineligible loop satistying routing constraints. 105

A.4 Network flow model - runtime. 113

99

LIST OF FIGURES LIST OF FIGURES

A.5 Network flow model - convergence. .114

A.6 Comparison pure CP with CP and LS. 115

A.7 Automata model - runtime. 115

A.8 CP models comparison. 116

A.9 Physically realistic robot simulator. 117

A.10 System architecture. .. 118

A.11 Comparison of optimal and real distance. 118

100

Appendix A

Towards Routing for Autonomous

Robots

Path planning is one of the critical tasks for autonomous robots. We will study the prob-

lem of finding the shortest path for a robot collecting waste spread over the area such that

the robot has a limited capacity and hence during the route itmust periodically visit de-

pots/collectors to empty the collected waste. This is a variant of often overlooked vehicle

routing problem with satellite facilities. We present two approaches for this optimisation

problem both based on Constraint Programming techniques. The former one is inspired

by the operations research model, namely by the network flows, while the second one is

driven by the concept of finite state automaton. The experimental comparison and en-

hancements of both models are discussed with emphasis on thefurther adaptation to the

real world environment.

A.1 Introduction

Recent advances in robotics have allowed robots to operate in cluttered and complex

spaces. However, to efficiently handle the full complexity of the real-world tasks, new

deliberative planning strategies are required. We deal with the robot performing a routine

task of collecting waste for example in large department stores where the remote control

is boring for humans and hence error prone. In particular, wesolve the problem of plan-

ning a route for a single robot such that all waste is collected, robot’s capacity is never

exceeded, and the route is as short as possible. We assume theenvironment to be known

and not changing, in particular, the location of waste and depots is known and the robot

knows how to move between these locations. To handle changesin the environment we

101

A.1. Introduction A. Routing for Autonomous Robots

Figure A.1: Example of 6+3 robot planning task. The robot (the big circle) collects waste
(six small circles) and uses collectors (three squares) to empty the bin when it is full.

focus on anytime planning algorithms that can be re-run whenthe initial task changes,

for example, the distances between the navigation points change due to cluttered areas.

We propose to use Constraint Programming (CP) to solve the problem because of the

flexibility of CP. This allows us to use a base model describing the core task and to add

new constraints later when necessary. Such a new constraintcould be the restriction on

allowed combinations of entrance and exit routes when collecting the waste or visiting

the depot for robots with limited manoeuvring capabilities. Figure A.1 gives an example

of the initial environment (left) and the found path for the robot (right). The task we are

dealing with is to develop a robot solving a specific routing problem - an often overlooked

variant of the standard Vehicle Routing Problem (VRP). In our setting, the robot has to

clean out a collection of waste spread in a building, but under the condition of not exceed-

ing its internal storage capacity at any time. The storage tank can be emptied in one of

available collectors. The goal is to come up with the routingplan minimising the travelled

trajectory. This is a similar setting to a Vehicle Routing Problem with Satellite Facilities

(VRPSF) studied in (Bard et al. [4]), where the task is to deliver goods rather than to

collect waste. Our primary goal is to develop an algorithm that returns good solutions

in a short time (almost anytime algorithm) and that can be easily extended by additional

constraints. Hence ad-hoc exact techniques are not appropriate due to long runtime and

limited extendibility and we decided to use Constraint Programming to solve the prob-

lem. Neither of existing CP-oriented works solves the aboveproblem, but we can use

them as the initial motivation for the design of our constraint model. Most of the routing

models are based on the formulation of the problem using network flows (Simonis [56])

so we also proposed a constraint model based on this standardtechnique. Nevertheless,

the performance of this model was not satisfactory in our experiments so we proposed a

radically new approach to model the problem using a finite state automaton. In our pre-

liminary experiments, this model outperforms the traditional model and can solve larger

instances of the problem. The text is organised as follows. We will first formally de-

102

A. Routing for Autonomous Robots A.2. Problem formulation

Figure A.2: A schema of the graph describing the robot’s environment with the naviga-
tion points.

scribe the problem to be solved. Then we will formulate the traditional model based on

network flows that we customised to solve our problem. After that we will describe the

novel model based on finite state automata. Finally, we will conclude the preliminary

experimental results.

A.2 Problem formulation

Recall that we are solving a single robot path planning problem with the capacity con-

straint. The robot’s environment consists of the navigation points defined by the locations

of waste and collectors. We use a mixed weighted graph(V,E) with both directed and

undirected edges to represent this environment. The reasonfor using undirected edges

is minimising the size of the representation. The set of verticesV = {I}∪W∪C∪{D}

consists of the initial positionI , the setW of waste vertices, the setC of collectors and

the destination vertexD. From the initial position the robot has to visit some waste so

we have directed arcs fromI to all vertices inW. The robot can travel between the waste

vertices so we assume a complete undirected graph between vertices inW. From any

waste vertex the robot can go to a collector so we use a directed edge there and from any

collector we can go to any waste which is again modelled usinga directed edge. We need

directed edges here as we need to count the number of incomingand ongoing edges for

the collectors. There are no edges between the collector vertices. As mentioned, we use

a dummy destination vertex that is connected to all collector vertices by a directed edge.

The weight of each edge describes the distance between the navigation points. The edges

going to the dummy destination vertexD has zero weight so the robot can actually finish

at any collector. The task to find a minimal-cost path starting at I , finishing atD and

visiting each vertex inW exactly once such that the number of any consecutive vertices

fromW does not exceed the given capacity of the robot. Figure A.2 shows the schema of

the graph with the navigation points.

103

A.3. Model on network flows A. Routing for Autonomous Robots

A.3 CP model based on network flows

The first model that we propose resembles the traditional operations research models of

vehicle routing problems based on network flows and Kirchhoff’s laws. Basically, we are

describing whether or not the robot traverses a given edge. For every edgeewe introduce

a binary decision variableXe stating whether the edge is used in the path (value 1) or

not (value 0). LetIN(v) andOUT(v) denote the set of incoming and outgoing directed

edges for the vertexv. For example, forv∈W the setIN(v) contains the arc from the

vertex I and the arcs from the vertices inC. Let ICD(v) be a set of undirected edges

incident to vertexv. This set is empty for the collector vertices; for waste vertices it

contains undirected edges connecting the vertex with otherwaste vertices. The following

constraints describe that the robot leaves the initial position I , reaches the destination

positionD, and enters each collectorc the same number of times as it leaves it:

∑
e∈OUT(I)

Xe= 1, ∑
e∈IN(D)

Xe= 1, (A.1)

∀c∈ C : ∑
e∈OUT(c)

Xe= ∑
e∈IN(c)

Xe (A.2)

Let us now describe the constraint that each waste vertexw is visited exactly once. It

means that exactly two edges incident to a waste vertexw are active (used in the solution

path) and there can be at most one active incoming and outgoing directed edge connecting

the waste with the collectors or with the initial node.

∀w∈W : ∑
e∈OUT(w)∪IN(w)∪ICD(w)

Xe= 2, (A.3)

∀w∈W : ∑
e∈OUT(w)

Xe≤ 1, (A.4)

∀w∈W : ∑
e∈IN(w)

Xe≤ 1 (A.5)

The above constraints describe any path leading fromI to D, but they also allow isolated

loops as Figure A.3 shows. This is a known issue of this type ofmodel that is usually

resolved by additional sub-tour elimination constraints forcing any two subsets of vertices

to be connected. In our particular setting, we need to carefully select these pairs of

subsets of vertices because there could be collector vertices that are not visited. Hence,

we consider any pair of disjoint subsetsS1,S2 ⊆ (W∪C), such that neitherS1 nor S2

consists of collector vertices only. More precisely, we assume the pairs of subsetsS1,S2

104

A. Routing for Autonomous Robots A.3. Model on network flows

Figure A.3: An ineligible loop (left) satisfying the routing (Kirchhoff ’s) constraints.

such that:

S2 = (W∪C)\S1, S1∩W 6= /0, S2∩W 6= /0 (A.6)

The sub-tour elimination constraint can then be expressed using the following formula

ensuring that there is at least one active edge betweenS1 andS2.

∑
e∈E:e∩S1 6= /0 ∧ e∩S2 6= /0

Xe≥ 1 (A.7)

Clearly, there is an exponential number of such pairsS1 andS2, which makes it imprac-

tical to introduce all such sub-tour elimination constraints. Some authors (Pop [15]) pro-

pose using single or multi-commodity flow principles to reduce the number of constraints

by introducing auxiliary variables. However, our combination of directed and undirected

edges makes it complicated to use this approach so we rather applied another approach

based on lazy (on-demand) insertion of sub-tour elimination constraints. Briefly speak-

ing, we start with the model without the sub-tour elimination constraints and we find a

solution. If the solution forms a valid path then we are done.Otherwise we identify the

isolated loops, add the sub-tour elimination constraints for them and start the solver with

the updated model. This process is repeated until a valid path is found. Obviously, it is

a complete procedure because in the worst case, all sub-tourelimination constraints are

added.

It remains to define the constraints describing the limited capacity of the robot. For

this purpose we introduce auxiliary non-decision capacityvariablesCv for every waste

vertexv ∈W. These variables indicate the amount of waste in the robot after visiting

the particular vertex. The non-decision character of the variables means that they are not

instantiated by the search procedure, but they are instantiated by the inference procedure

only. In particular, if their domain becomes empty during inference then it indicates

inconsistency. The following constraints are used during the inference (w∈W). First, if

the waste vertexw is visited directly after the collector then there is exactly one waste in

the robot:

∑
e∈IN(w)

Xe= 1 =⇒ Cw = 1 (A.8)

105

A.3. Model on network flows A. Routing for Autonomous Robots

Second, if the waste verticesu andv are visited directly before respectively afterw (or

vice versa) then the following constraints must hold between the capacity variables:

∀e, f ∈ ICD(w),e= {u,w}, f = {w,v} : Xe+Xf = 2 =⇒ |Cu−Cv|= 2 (A.9)

∀e= {u,w} ∈ ICD(w) : |Cu−Cw|= 1 (A.10)

Finally, to restrict the capacity of the robot by constantcap we use the following con-

straints for the capacity variables:

∀w∈W : 1≤Cw≤ cap (A.11)

The objective function to be minimised is the total cost of edges used in the solution path:

Ob j= ∑
e∈E

Xe ·weight(e) (A.12)

where weight(e) is the weight of edgee.

A.3.1 Search procedure

The constraint model describes how the inference is performed so the model needs to be

accompanied by the search procedure that explores the possible instantiations of variables

Xe. Our search strategy resembles the greedy approach for solving Travelling Salesman

Problems (TSP) (Ausiello et al. [3]). The variableXe for instantiation is selected in the

following way. If the path is empty, we start at the initial position I and instantiate the

variableX{I ,w} such that weight({I ,w}) is the smallest among the weights of arcs going

from I . By instantiating the variable we mean setting it to 1; the alternative branch is

setting the variable to 0. If the path is non-empty then we tryto extend it to the nearest

waste. Formally, ifu is the last node in the path then we select the variableX{u,w} with

the smallest weight({u,w}), wherew is a waste vertex. If this is not possible (due to

the capacity constraint), we go to the closest collector. The optimisation is realised by

the branch-and-bound approach: after finding a solution with the total costBound, the

constraint Ob j < Bound is posted and search continues until any solution is found. The

last found solution is the optimum.

106

A. Routing for Autonomous Robots A.4. Model on finite state automata

A.4 CP model based on finite state automata

The second model that we propose brings a radically new approach not seen so far when

modelling VRPs or TSPs. Recall that we are looking for a path in the graph that satis-

fies some additional constraints. We can see this path as the word in a certain regular

language. Hence, we can base the model on the existing regular constraint (Pesant [45]).

This constraint allows a more global view of the problem so the hope is that it can infer

more information than the previous model and hence decreases the search space to be

explored.

First, it is important to realise that the exact path length is unknown in advance. Each

waste vertex is visited exactly once, but the collector vertices can be visited more times

and it is not clear in advance how many times. Nevertheless, it is possible to compute

the upper bound on the path’s length. Let us assume that the path length is measured

as the number of visited vertices, the robot starts at the initial position and finishes at

some collector vertex (we will use the dummy destination in aslightly different meaning

here), and the weight/cost of arcs is non-negative. LetK = |W| be the number of waste

vertices and cap≥ 1 be the robot’s capacity. Then the maximal path length is 2K +1.

This corresponds to visiting a collector vertex immediately after visiting a waste vertex.

Recall that each waste vertex must be visited exactly once and there is no arc between

the collector vertices.

Our model is based on four types of constraints. First, thereis a restriction on the

existence of a connection between two vertices - arouting constraint. This constraint

describes the routing network (see Figure A.2). It roughly corresponds to the constraints

A.1-A.5 from the previous model. Note that the sub-tour elimination constraints A.6-A.7

are not necessary here. Second, there is a restriction on therobot’s capacity stating that

there in no continuous subsequence of waste vertices whose length exceeds the given

capacity - acapacity constraint. This constraint corresponds to the constraints A.8-A.11

from the previous model. Third, each waste must be visited exactly once, while the

collectors can be visited more times (even zero times) - anoccurrence constraint. This

restriction was included in the constraints A.1-A.5 of the previous model, while we model

it as a separate constraint. Finally, each arc is annotated by a weight and there is a

constraint that the sum of the weights of used arcs does not exceed some limit - acost

constraint. This constraint is used to define the total cost of the solution as in A.12.

In the constraint model we use three types of variables. LetN = 2K +1 be the max-

imal path length. Then we haveN variablesNodei , N variables Capi , andN variables

Costi(i = 1, . . . ,N) so we assume the path of maximal length. Clearly, the real path may

107

A.4. Model on finite state automata A. Routing for AutonomousRobots

be shorter so we introduce a dummy destination vertex that fills the rest of the path till

the lengthN. In other words, when we reach the dummy vertex, it is not possible to leave

it. This way, we can always look for the path of lengthN and the model gives flexibility

to explore the shorter paths too.

The semantic of the variables is as follows. The variables Nodei describe the path

hence their domain is the set of numerical identifications ofthe vertices. We use pos-

itive integers 1, . . . ,K(K = |W|) to identify the waste vertices,K +1, . . . ,K +L for the

collector vertices(L = |C|), and 0 for the dummy destination vertex. In summary, the

initial domain of each variable Nodei consists of values 0, . . . ,K +L. Capi is the used

capacity of the robot after leaving vertex Nodei(Cap1 = 0 as the robot starts empty),

the initial domain is{0, . . . ,cap}. Costi is the cost of the arc used to leave the vertex

Nodei(CostN = 0), the initial domain consists of non-negative numbers. Formally:

∀i = 1, . . . ,N(N = 2K+1) :

0 ≤ Nodei ≤ K+L

0 ≤ Capi ≤ cap,Cap1 = 0

0 ≤ Costi ,CostN = 0

(A.13)

We will start the description of the constraints with theoccurrence constraintsaying

that each waste vertex is visited exactly once. This can be modelled using the global

cardinality constraint (Regin [50]) over the set{Node1, . . . ,NodeN}. The constraint is

set such that the each value from the set{1, . . . ,K} is assigned to exactly one variable

from {Node1, . . . ,NodeN} - each waste node is visited exactly once. The values{0,K+

1, . . . ,K +L} can be used any number of times. Formally:

gcc({Node1, . . . ,NodeN},

{v : [1,1]∀v= 1, . . . ,K,

0 : [0,∞],

v : [0,∞]∀v= K +1, . . . ,K+L})

(A.14)

wherev : [min,max] means that valuev is assigned to at least min and at most max

variables from{Node1, . . . ,NodeN}. Thegccconstraint allows specifying the number of

appearances of the value using another variable rather thanusing a fixed interval as in

A.14. LetD be the variable describing the number of appearances of value 0 (identifica-

tion of the dummy vertex) in the set{Node1, . . . ,NodeN}, then we can use the following

constraints instead of A.14:

108

A. Routing for Autonomous Robots A.4. Model on finite state automata

gcc({Node1, . . . ,NodeN},

{v : [1,1]∀v= 1, . . . ,K,

0 : D,

v : [0,∞]∀v= K +1, . . . ,K+L})

(A.15)

NodeN−D > 0 (A.16)

The constraint A.16 says that NodeN−D is not a dummy vertex; actually it is the last

real vertex in the path. We can also set the upper bound forD by using the information

about the minimal path length (MinPathLengthis a constant computed in advance):

D≤ N−MinPathLength (A.17)

These additional constraints A.16 and A.17 are not necessary for the problem specifica-

tion but they improve inference (we use them in experiments).

Thecost constraintcan be easily described as

Ob j = ∑
1,...,N

Costi (A.18)

so we can use the constraints Ob j < Bound in the branch-and-bound procedure exactly

the same way as in the previous model.

For the cost constraint to work properly we need to set the value of Costi variables.

Recall that Costi is the cost/weight of the arc going from vertex Nodei to vertex Nodei+1.

Hence, we can connect theCost variables with the Node variables when specifying

the routing constraint. In particular, we use the ternary constraints over the variables

Nodei ,Costi,Nodei+1 i = 1, . . . ,N−1. This set of constraints corresponds to the idea of

slide constraint (Bessiere et al. [8]). We implement the constraint between the variables

Nodei ,Costi,Nodei+1 as a ternary tabular (extensionally defined) constraint; let us call it

link, where the triple(p,q, r) satisfies the constraint if there is an arc from the vertexp

to the vertexr with the costq. In other words, this table describes the original routing

network with the costs extended by the dummy vertex. Formally:

link(p,q, r)≡ ∃e∈ E : e= (p, r),q= weight(e)

∨(q= r = 0∧ (p= 0∨ p> K)
(A.19)

∀i = 1, . . . ,2K : link(Nodei ,Costi ,Nodei+1) (A.20)

109

A.4. Model on finite state automata A. Routing for AutonomousRobots

It remains to show how thecapacity constraintis realised. Briefly speaking, we use a

similar approach as for the routing constraint. The capacity constraint is realised using a

set of ternary constraints over the variables Capi ,Nodei+1,Capi+1 i = 1, . . . ,N−1, again

exploiting the idea of slide constraint. The constraint is implemented using a tabular

constraint, let us call it capa, with the following semantics. Triple(p,q, r) satisfies this

constraint if and only if:

• q is an identification of a collector vertex(q> K) or a dummy vertex(q= 0) and

r = 0

• q is an identification of a waste node(0< q≤ K) andr = p+1.

Recall that the domain of capacity variables is{0, . . . ,cap} so we never exceed the ca-

pacity of the robot. Formally:

capa(p,q, r)≡ (q= r = 0)

∨(q> K∧ r = 0)

∨(0< q≤ K∧ r = p+1)

(A.21)

∀i = 1, . . . ,2K : capa(Capi ,Nodei+1,Capi+1) (A.22)

Any solution to the above described constraint satisfaction problem defines a valid solu-

tion of our single robot path planning problem with the capacity constraint. Vice versa,

any solution to the path planning problem is also a feasible solution of the specified con-

straint satisfaction problem. We omit the formal proof due to limited space.

A.4.1 Search procedure

Similarly to the previous model, it is important to specify the search strategy. In this

second model, only the variables Nodei are the decision variables - they define the search

space. It is easy to realise that the inference through the routing constraints A.20 decides

the values of the Costi variables and the inference through the capacity constraints A.22

decides the values of the Capi variables provided that the values of all variables Nodei
are known.

When searching for the solution we first use a greedy approachto find the initial solu-

tion (the initial cost). This greedy algorithm instantiates the variables Nodei in the order

of increasingi in such a way that the arc with the smallest cost is preferred.We select the

node to which the least expensive arc from the previously decided node leads. Naturally,

the capacity constraint is taken into account so only the nodes such that the capacity is not

110

A. Routing for Autonomous Robots A.5. Embedding CP models into LS

exceeded are assumed. This search procedure corresponds tothe search strategy of the

previous model. The difference in models allows us to use a fixed variable ordering in the

model based on finite automata which simplifies implementation of the search procedure.

This second model also has fewer decision variables but a larger branching factor.

To find the optimal solution we use a standard branch-and-bound approach with

restarts. To instantiate the Node variables we use themin-domheuristic for the vari-

able selection, that is, the variable with the smallest current domain is instantiated first.

We select the values in the order defined in the problem (the waste nodes are tried be-

fore the collector nodes). Exactly like in the first model after finding a solution with

the total costBound, the constraint Ob j < Bound is posted and search continues until

any solution is found. The last found solution is the optimum. Note that using the well

known and widely applied min-dom heuristic for the variableselection is meaningful in

this model because we have larger domains, while the same heuristic is useless for the

previous model which uses binary domains.

A.5 Embedding CP models into local search

The current state of the art techniques for solving VRPs are frequently based on hybrid

approaches. For example the paper (Rousseau et al. [52]) suggests using CP techniques

to explore the neighbourhood within Large Neighbourhood Search. We decided to apply

a similar approach with our CP models to check, if the solution quality can be improved

in comparison with the pure branch-and-bound approaches presented above.

The basic elements in the neighbourhood local search are theconcept of the neigh-

bourhood of a solution and the mechanism for generating neighbourhoods. It is eminent

that the performance and “success” of the local search algorithm strongly depends on the

neighbourhood operator and its state space. In our case, thestate corresponds to the plan

- a valid path for the robot. The local search algorithm is repeatedly choosing another

solution in the neighbourhood of the current solution with the goal to improve the value

of the objective function. This move is realised by a so called neighbourhood operator.

We have implemented an operator that is successfully used for solving the Travelling

Salesman Problems. The operator relaxes the solution by removing an induced path of

a given length and then it calls the CP solver to complete the solution. It means that we

add to a given constraint model additional constraints thatfix some edges (for the model

based on network flows) or forbid using some edges (for the model based on finite state

automata). These fixed edges correspond to the edges in the original solution that were

not removed by the neighbourhood operator. The role of the CPsolver is to optimally

111

A.6. Experimental results A. Routing for Autonomous Robots

complete this partial solution by adding the missing edges.The new solution is the state

to which the local search procedure moves.

As the local search repeatedly chooses a move that improves the value of the objective

function (we are minimizing the value), it can get “trapped”in the first local minimum

it encounters. In order to escape the local minimum, a controlled method of accepting

an ascending move is required. In this paper, we examined thesimplified simulated

annealing.

Note finally, that as the initial solution for local search weused the first solution

obtained from the pure CP model (see the description of the search procedures above).

A.6 Experimental results

In this section we will present the preliminary experimental evaluation of the presented

solving techniques. As there is no standard benchmark set for the studied problem, we

generated own problem instances. We used a square-sized robot arena where the posi-

tions of the waste and the initial location of the robot were uniformly distributed. The

collectors were uniformly distributed along the boundaries of the arena and the weights

set up as a point-to-point distance using the Euclidean metric. All the following mea-

surements were performed onIntel Xeon CPU@2.5GHz with 4GB of RAM, running a

Debian GNU Linux operating system.

A.6.1 Performance of the network flow model

As stated earlier, the model based on network flows corresponds to the traditional oper-

ations research approach, but we modified the model to describe specifics of our robot

routing problem. The model was implemented inJava SE 6using Choco, an open-

source constraint programming library. The optimisation search strategy uses the built-in

branch-and-bound method, while all constraints correspond to the mathematic formula-

tions described earlier.

Figure A.4 shows the runtime (a logarithmic scale) to obtainthe optimal solution as

a function of the instance size measured by the number of waste and by the number of

collectors. We generated 15 instances for each problem sizeand the graph shows the

average time the solver needs for finding and proving the optimality of the solution. The

capacity of robot was 3.

As already mentioned in (Bard et al. [4]), the satellite facilities in VRP (or collectors

in robotics case) heavily increase the complexity of the problem. The initial experiment

112

A. Routing for Autonomous Robots A.6. Experimental results

Figure A.4: Runtime (seconds) for the network flow model.

shows that the runtime increases exponentially with the number of waste but the runtime

is not significantly affected by the increased number of collectors. In fact it seems that

for different quantities of waste there are different numbers of collectors where the best

runtime is achieved. This is an interesting observation claiming that for a given number

of waste there is some number of collectors that gives the best result. Nevertheless, this

observation requires additional experiments to confirm it.

While the graph in Figure A.4 represents the total time the solver needs for finding

and proving the optimality of the solution, we are also interested in how fast a “good

enough” solution can be found. This characteristic can be seen in Figure A.5, where the

graph displays the convergence of the solution during search. We can see that even a

simple greedy heuristic performs very well and the difference from the optimal solution

was less than 5% within first 6 seconds for the instance 7+3.

A.6.2 Performance of the network flow model within local search

As mentioned above, the CP model can be used within the Large Neighbourhood Search

procedure to solve larger instances but obviously without any guarantee of optimality. We

generated 50 independent problem instances with 20 wastes and 3 collectors (referred to

as 20+ 3). The capacity of the robot was set to 7 units. The neighbourhood operator

was allowed to remove 5 randomly selected consecutive edgesduring the search and the

embedded CP solver was allowed to search for 1 second. The graph in Figure A.6 shows

an average one-to-one performance of the pure CP method and the LS method (with the

embedded CP model) applied to the produced instances. The graph shows the difference

113

A.6. Experimental results A. Routing for Autonomous Robots

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

Lo
ss

 o
n

op
tim

um
 (

%
)

Time (sec)

Convergence of CP search

7 Wastes, 3 Collectors

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

Figure A.5: Quality convergence for the network flow model.

in the quality of a solution found in the corresponding time from the LS viewpoint.

The local search procedure performed better in the long run,when compared to the

pure CP method relaying only on its inner heuristic. However, CP beat LS in the first

seconds where the convergence drop was steeper. As a consequence, CP seems to be

a more appropriate method under very short time constraints, while reasonably good

solutions can be found with a combination of LS for larger instances.

A.6.3 Performance of the finite state automaton model

The network flow model represents a standard approach to solving the Vehicle Routing

Problems so we compared our novel constraint model based on the finite state automaton

directly to this approach. The second model was implementedin SICStus Prolog 1.

Figure A.7 shows the runtime (a logarithmic scale) to obtainthe optimal solution using

the constraint model based on finite state automata using thesame problems as for the

model based on network flows (Figure A.4). The result also shows the exponential grow

with the increased number of waste and weaker dependence on the number of collectors.

To directly compare both models, we generated a graph showing the difference of

runtimes for the network model and for the automata model - the values above zero

mean faster automata model, while the times below zero mean faster network model.

Figure A.8 shows these difference times. The conclusion drawn from this graph is as

follows. The automata-based model is visibly better for a smaller number of collectors

where the problem is more constrained and the capacity constraints can prune more of

1SICStus Prolog: http://www.sics.se/sicstus

114

http://www.sics.se/sicstus

A. Routing for Autonomous Robots A.6. Experimental results

-5

 0

 5

 10

 15

5 10 15 20 25 30 35 40 45 50

G
ai

n
on

 C
P

 (
%

)

Time (sec)

Convergence of CP vs LS - path operator

20 Wastes, 3 Bins

Figure A.6: Comparison of the quality convergence of the network flow model in the
pure CP approach and the CP model embedded into local search.

Figure A.7: Runtime (seconds) for the model based on finite state automata.

115

A.7. From high-level planning to real world A. Routing for Autonomous Robots

Figure A.8: Time difference (seconds) between the CP models. Positive values means
that the model based on finite state automata is faster.

the search space. A bit surprisingly, it seems that the network-based model is better when

the number of collectors becomes larger. This feature will require a further investigation.

Since in robotic, finding a good plan fast is more important than having the optimal

one late, we started to investigate again the quality of the plans found by the CP solver in a

limited time. In particular, we embedded the new CP model in the Large Neighbourhood

Search procedure as described above and we tried to compare the pure CP model with

this LS approach on much bigger instances with 40 wastes and 3collectors. To our

surprise, the LS method was not able to improve the solution found by the CP model in

the 2 minutes runtime. As we need to produce a good solution inseconds, the pure CP

model based on finite state automaton seems more appropriatefor our purpose.

A.7 From high-level planning to real world

To evaluate the overall performance of the system, we used a professional commercial

development environment Webots2. Webots is used to test robots in a physically realistic

world. Our mobile robotic platform is based on the simulatedPioneer-2robot equipped

with a laser sensor. The extreme precision of the distance measurement sensor enables

reliable localization and motion planning algorithms. Thepart responsible for handling

localization and motion planning is based on the well established open-sourceCARMEN

software (Thrun et al. [60]).

2Webots: http://www.cyberbotics.com/

116

http://www.cyberbotics.com/

A. Routing for Autonomous Robots A.7. From high-level planning to real world

Figure A.9: Physically realistic robot simulator.Upper left: Map built by the robot
corresponding to the testing environment with output of themotion planner module.

The very first step is to create maps (Figure A.9, upper-left)- both the input graph for

the high-level path planner and the occupation grid for the collision avoidance algorithms.

The individual components of the whole process are depictedin Figure A.10. The layer

with the highest priority - the collision avoidance module -is activated when any obstacle

is found to be too close. In that case, the robot executes an avoiding manoeuvre. The

motion planner component provides the distances to the CSP planner. This is a form of

integrating the traditional motion (path) planning from robotics with the more complex

path planning with limited capacity to collect all waste. The found plan is delivered back

to the motion planner, which produces the motion commands. The map building layer

updates the map and monitors the plan execution.

In reality, the failures of individual components can causebad performance of the

overall system. For example, the failures of the localization algorithm caused by incor-

rect sensor measurements can lead the robot in a wrong direction. The performance of the

localization algorithm depends heavily on accuracy of the sensor system. The more pre-

cise the sensor measurements are carried out, the better position estimates are obtained.

The graph in Figure A.11 compares the optimal distance (computed by the CSP planner)

and the real covered trajectory as the function of laser range sensors. The average of ten

simulation runs is taken.

As can be seen from the graph, with precise sensors, the average loss on optimum

solution was about 5%. In this particular case, the localization component worked flaw-

lessly and no plan recreation by the CSP planner was needed atall.

117

A.7. From high-level planning to real world A. Routing for Autonomous Robots

Figure A.10: Overall system architecture from bird’s eye view.

Figure A.11: Comparison of the optimal distance (computed by CSP planning algorithm)
and real covered distance as a function of the sensor range.

118

A. Routing for Autonomous Robots A.8. Conclusions

A.8 Conclusions

We developed the robotic architecture incorporating both purely reactive execution and

deliberative planning that works in complex and dynamic environment. The goal of the

robot is to pick up all wastes in a given environment and put them to collectors while

assuming a limited capacity of the robot. We used a constraint model based on network

flows that is traditionally applied to this type of routing problems and we developed

a completely new model based on finite automata. Using the constraint programming

techniques allowed us to naturally define the underlying model for which the solver was

able to find the first solution in hundreds of microseconds on problems of reasonable

size. We further studied local search techniques that are traditionally used to improve

the runtime performance of CP models for vehicle routing problems and we have found

that our novel model based on finite automata performs betterwithout local search. The

preliminary experiments showed some interesting behaviour of the model in relation to

the number of collectors that we are going to further investigate.

An important aspect of the presented work is the integrationinto a simulation en-

vironment describing real robots in realistic worlds. Thisintegration showed that it is

viable to use sophisticated planning methods together withreactive techniques.

In summary, there are three novel contributions. First, we reformulated the traditional

network flow model to solve the waste collecting problem withlimited capacity of the

robot. Second, we proposed a novel constraint model based onfinite automata (state

transitions) and we experimentally showed that it outperforms the traditional approach,

if the number of waste collecting places is small. Finally, we integrated the proposed

models with a reactive planner to show that deliberative planning based on CP can be

used in real robots and environments.

119

Bibliography

[1] Ajith Abraham, Rajkumar Buyya, and Baikunth Nath. Nature’s Heuristics for

Scheduling Jobs on Computational Grids. InIEEE International Conference on

Advanced Computing and Communications, pages 45–52, 2000.

[2] STAR Collaboration: J. Adams. Experimental and theoretical challenges in the

search for the quark gluon plasma: The STAR collaboration’scritical assessment of

the evidence from RHIC collisions.Nuclear Physics A, 757:102, 2005.

[3] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Ga mbosi, P. Crescenzi,

and V. Kann. Complexity and Approximation: Combinatorial Optimization Pro

blems and Their Approximability Properties. Springer-Verlag New York, Inc., Se-

caucus, NJ, USA, 1999.

[4] Jonathan F. Bard, Liu Huang, Moshe Dror, and Patrick Jaillet. A branch and cut

algorithm for the VRP with satellite facilitie s.IIE Transactions, 30(9):821–834,

1998.

[5] Roman Barták, Michal Zerola, and Stanislav Slusny. Towards Routing for Au-

tonomous Robots - Using Constraint Programming in an Anytime Path Planner. In

Joaquim Filipe and Ana L. N. Fred, editors,ICAART, pages 313–320. SciTePress,

2011.

[6] J. Christopher Beck, Andrew J. Davenport, Edward M. Sitarski, and Mark S. Fox.

Texture-based heuristics for scheduling revisited. InProceedings of the Fourteenth

National Conference on Artificial Intelligence (AAAI-97), pages 241–248. AAAI

Press, 1997.

[7] Belaid Benhamou. Study of symmetry in constraint satisfaction problems. InPro-

ceedings of Principles and Practice of Constraint Programming, pages 246–254,

1994.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, Claude-

Guy Quimper, and Toby Walsh. Reformulating global constraints: the slide and

regular constraints. InProceedings of the 7th International conference on Abstrac-

tion, reformulation, and approximation, SARA’07, pages 80–92, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[9] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,and K. Kennedy. Task

scheduling strategies for workflow-based applications in grids. InCluster Comput-

ing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, volume 2,

pages 759–767, 2005.

[10] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Boloni, Muthucumaru

Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao,

Debra Hensgen, and Richard F. Freund. A Comparison of ElevenStatic Heuristics

for Mapping a Class of Independent Tasks onto HeterogeneousDistributed Com-

puting Systems.Journal of Parallel and Distributed Computing, 61(6):810 – 837,

2001.

[11] Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Graham R. Nudd. Gridflow:

Workflow management for grid computing. InProceedings of the 3st International

Symposium on Cluster Computing and the Grid, CCGRID ’03, pages 198–, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[12] Petr Chaloupka, Pavel Jakl, Jan Kapitán, Michal Zerola, Jérôme Lauret, and the

Star collaboration. Setting up a STAR Tier 2 Site at Golias/Prague Farm.Journal

of Physics: Conference Series, 219(7):072031, 2010.

[13] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke.

The data grid: Towards an architecture for the distributed management and analysis

of large scientific datasets.Journal of Network and Computer Applications, 23:187–

200, 1999.

[14] Paul Clements, Felix Bachmann, Len Bass, David Garlan,James Ivers, Reed Little,

Robert Nord, and Judith Stafford.Documenting Software Architectures: Views and

Beyond. Addison-Wesley, Boston, MA, 2003.

[15] Petrica C.Pop. New Integer Programming Formulations of the Generalized T ravel-

ling Salesman Problem.American Journal of Applied Sciences, 11:932–937, 2007.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Shaul Dar, Michael J. Franklin, Björn T. Jónsson, Divesh Srivastava, and Michael

Tan. Semantic data caching and replacement. InProceedings of the 22th Inter-

national Conference on Very Large Data Bases, VLDB ’96, pages 330–341, San

Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[17] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, San Fran-

cisco, CA, USA, May 2003.

[18] Peter J. Denning. The locality principle.Communications of the ACM - Designing

for the mobile device, 48:19–24, July 2005.

[19] FDT. http://monalisa.cern.ch/FDT.

[20] Hanhua Feng, Vishal Misra, and Dan Rubenstein. PBS: a unified priority-based

scheduler. InProceedings of the 2007 ACM SIGMETRICS international confer-

ence on Measurement and modeling of computer systems, SIGMETRICS ’07, pages

203–214, New York, NY, USA, 2007. ACM.

[21] Marshall L. Fisher. The Lagrangian Relaxation Method for Solving Integer Pro-

gramming Problems.Management Science, 27(1):1–18, January 1981.

[22] B. G. Gibbard and T. G. Throwe. The RHIC computing facility. Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 499(2-3):814 – 818, 2003. The Relativistic

Heavy Ion Collider Project: RHIC and its Detectors.

[23] GLPK. http://www.gnu.org/software/glpk/.

[24] GLPK-java. http://glpk-java.sourceforge.net/.

[25] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming.J. ACM,

12(4):516–524, 1965.

[26] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approxi-

mation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math.,

5:169–231, 1979.

[27] H. Hahn, E. Forsyth, H. Foelsche, M. Harrison, J. Kewisch, G. Parzen, S. Peggs,

E. Raka, A. Ruggiero, A. Stevens, S. Tepikian, P. Thieberger, D. Trbojevic, J. Wei,

E. Willen, S. Ozaki, and S. Y. Lee. The RHIC design overview.Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers,

122

BIBLIOGRAPHY BIBLIOGRAPHY

Detectors and Associated Equipment, 499(2-3):245 – 263, 2003. The Relativistic

Heavy Ion Collider Project: RHIC and its Detectors.

[28] A. Hanushevsky, A. Dorigo, and F. Furano. The Next Generation Root File Server.

In Proceedings of the Computing in High Energy and Nuclear Physics (CHEP)

conference, pages 680–683, 2005.

[29] Holger H. Hoos and Thomas Stutzle.Stochastic Local Search : Foundations & Ap-

plications (The Morgan Kaufmann Series in Artificial Intelligence). Morgan Kauf-

mann, 1 edition, September 2004.

[30] Pavel Jakl. Efficient access to distributed data: ’a many’ storage element paradigm.

Master’s thesis, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech-

nical University in Prague, 2008.

[31] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Performance

Buffer Management Replacement Algorithm. InProceedings of Very Large Data

Bases, pages 439–450, 1994.

[32] Carl Kesselman and Ian Foster.The Grid: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann Publishers, November 1998.

[33] Dalibor Klusacek, Ludek Matyska, and Hana Rudova. Local Search for Deadline

Driven Grid Scheduling. InIn Third Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS 2007), pages 74–81, 2007.

[34] R.L. Kruse. Data structures and program design. Prentice-Hall software series.

Prentice-Hall, 1987.

[35] Jérôme Lauret and David Yu. ERADAT and DataCarousel systems at BNL: A tool

and UI for efficient access to data on tape with fair-share policies capabilities. In

Advanced Computing and Analysis Techniques in Physics Research, 2010.

[36] T. Ludlam. RHIC and Quark Matter: A Proposed Heavy Ion Collider at Brookhaven

National Laboratory. In K. Kajantie, editor,Quark Matter ’84, volume 221 of

Lecture Notes in Physics, Berlin Springer Verlag, pages 221–240, 1985.

[37] Jiri Matousek and Bernd Gärtner.Understanding and Using Linear Programming

(Universitext). Springer, 1 edition, November 2006.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low Overhead

Replacement Cache. InProceedings of the 2nd USENIX Conference on File and

Storage Technologies, pages 115–130, Berkeley, CA, USA, 2003. USENIX Asso-

ciation.

[39] Young Jin Nam and Chanik Park. An adaptive high-low water mark destage algo-

rithm for cached raid5. InPRDC’02, pages 177–184, 2002.

[40] Moni Naor and Udi Wieder. A simple fault tolerant distributed hash table. In

M. Frans Kaashoek and Ion Stoica, editors,IPTPS, volume 2735 ofLecture Notes

in Computer Science, pages 88–97. Springer, 2003.

[41] George L. Nemhauser and Laurence A. Wolsey.Integer and combinatorial opti-

mization. Wiley-Interscience, New York, NY, USA, 1988.

[42] J. Packard, D. Katramatos, J. Lauret, K. Shroff, J. DeStephano, M. Ernst, J. Hover,

T. Ichihara, D. Kim, S. McKee, M. L. Purschke, Y. Watanabe, J.Woo, I. Yoo, and

D. Yu. High performance data transfer and monitoring for RHIC and USATLAS.

Journal of Physics: Conference Series, 219(6):062062, 2010.

[43] Andrew J. Page and Thomas J. Naughton. Framework for Task Scheduling in Het-

erogeneous Distributed Computing Using Genetic Algorithms. Artificial Intelli-

gence Review, 24:137–146, 2004.

[44] Claude Le Pape, Philippe Couronne, Didier Vergamini, and Vincent Gosselin.

Time-versus-capacity compromises in project scheduling.In Proceedings of the

Thirteenth Workshop of the U.K. Planning Special Interest Group, 1994.

[45] Gilles Pesant. A Regular Language Membership Constraint for Finite Sequences of

Variables. InPrinciples and Practice of Constraint Programming, pages 482–495,

2004.

[46] Rashedur M. Rahman, Ken Barker, and Reda Alhajj. Study of Different Replica

Placement and Maintenance Strategies in Data Grid. InCCGRID, pages 171–178.

IEEE Computer Society, 2007.

[47] Kavitha Ranganathan and Ian Foster. Decoupling Computation and Data Schedul-

ing in Distributed Data-Intensive Applications. In11th IEEE Symposium on High-

Performance Distributed Computing, volume 0, pages 352–358, Los Alamitos, CA,

USA, 2002. IEEE Computer Society.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[48] Krzysztof R.Apt. Principles of Constraint Programming. Cambridge University

Press, 2003.

[49] A. Rasooli, M. Mirza-Aghatabar, and S. Khorsandi. Introduction of novel dispatch-

ing rules for grid scheduling algorithms. InInternational Conference on Computer

and Communication Engineering, ICCCE 2008, pages 1072 –1078, may 2008.

[50] Jean-Charles Régin. Generalized arc consistency for global cardinality constraint.

In Proceedings of the thirteenth national conference on Artificial intelligence - Vol-

ume 1, AAAI’96, pages 209–215. AAAI Press, 1996.

[51] Graham Ritchie and John Levine. A fast, effective localsearch for scheduling inde-

pendent jobs in heterogeneous computing environments. InProceedings of the 22nd

Workshop of the UK Planning and Scheduling Special InterestGroup, PLANSIG

’03, pages 178–183, 2003.

[52] Louis-Martin Rousseau, Michel Gendreau, and Gilles Pesant. Using Constraint-

Based Operators to Solve the Vehicle Routing Problem with Time Windows.Jour-

nal of Heuristics, 8:43–58, January 2002.

[53] N. Saito. Spin physics program at RHIC: the first polarized-proton collider.Nuclear

Physics B - Proceedings Supplements, 105(1-3):47 – 51, 2002.

[54] Hitoshi Sato, Satoshi Matsuoka, Toshio Endo, and NaoyaMaruyama. Access-

Pattern and Bandwidth Aware File Replication Algorithm in aGrid Environment.

In GRID, pages 250–257. IEEE, 2008.

[55] Srinath Shankar and David J. DeWitt. Data Driven Workflow Planning in Cluster

Management Systems. InHPDC ’07: Proceedings of the 16th international sympo-

sium on High performance distributed computing, pages 127–136, New York, NY,

USA, 2007. ACM.

[56] Helmut Simonis. Constraint applications in networks.In F. Rossi, P. van Beek,

and T. Walsh, editors,Handbook of Constraint Programming, chapter 25, pages

875–903. Elsevier, 2006.

[57] Stanislav Slusny, Michal Zerola, and Roman Neruda. Real time robot path planning

and cleaning. In De-Shuang Huang, Xiang Zhang, Carlos A. Reyes García, and Lei

Zhang, editors,ICIC (2), volume 6216 ofLecture Notes in Computer Science, pages

442–449. Springer, 2010.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[58] Danny Teaff, Dick Watson, and Bob Coyne. The Architecture of the High Per-

formance Storage System (HPSS). InProceedings of the Goddard Conference on

Mass Storage and Technologies, pages 28–30, 1995.

[59] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed Computing in

Practice: The Condor Experience.Concurrency and Computation: Practice and

Experience, 17:2–4, 2005.

[60] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for

mobile robots.Artificial Intelligence, 128(1-2):99–141, 2000.

[61] Vadim G. Timkovsky. Is a unit-time job shop not easier than identical parallel

machines?Discrete Applied Mathematics, 85(2):149–162, 1998.

[62] Stephen H. Unger. Hazards, Critical Races, and Metastability. IEEE Transactions

on Computers, 44:754–768, 1995.

[63] Petr Vilím, Roman Barták, and Ondřej Čepek. Extension ofO(n log n) filtering

algorithms for the unary resource constraint to optional activities. Constraints,

10(4):403–425, 2005.

[64] Fatos Xhafa and Ajith Abraham. Computational models and heuristic methods for

grid scheduling problems.Future Generation Computer Systems, 26(4):608 – 621,

2010.

[65] Fatos Xhafa, Javier Carretero, Bernabe Dorronsoro, and Enrique Alba. A Tabu

Search Algorithm for Scheduling Independent Jobs in Computational Grids.Com-

puting and Informatics, pages 237–250, 2009.

[66] M.Q. Xu. Effective metacomputing using LSF Multicluster. InFirst IEEE/ACM In-

ternational Symposium on Cluster Computing and the Grid, pages 100 –105, 2001.

[67] Asim Yarkhan and Jack J. Dongarra. Experiments with Scheduling Using Simulated

Annealing in a Grid Environment. InGRID 2002, pages 232–242, 2002.

[68] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Systems for

Grid Computing.Journal of Grid Computing, 3(3):171–200, September 2005.

[69] Michal Zerola, Roman Barták, Jérôme Lauret, and MichalŠumbera. Using con-

straint programing to resolve the multi-source / multi-site data movement paradigm

on the grid. InAdvanced Computing and Analysis Techniques in Physics Research.

PoS(ACAT08)039, 2008.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[70] Michal Zerola, Roman Barták, Jérôme Lauret, and MichalŠumbera. Efficient

Multi-site Data Movement in Distributed Environment. InProceedings of the10th

IEEE/ACM International Conference on Grid Computing (GRID), pages 171–172.

IEEE, 2009.

[71] Michal Zerola, Roman Barták, Jérôme Lauret, and MichalŠumbera. Planning

Heuristics for Efficient Data Movement on the Grid. InProceedings of the4th Mul-

tidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA), pages 768–771, 2009.

[72] Michal Zerola, Roman Barták, Jérôme Lauret, and MichalŠumbera. Using Con-

straint Programming to Plan Efficient Data Movement on the Grid. In Proceed-

ings of the21st IEEE International Conference on Tools with Artificial Intelligence,

pages 729–733. IEEE Computer Society, 2009.

[73] Michal Zerola, Roman Barták, Jérôme Lauret, and MichalŠumbera. Building Ef-

ficient Data Planner for Peta-scale Science. InAdvanced Computing and Analysis

Techniques in Physics Research. PoS(ACAT10)025, 2010.

[74] Yuanyuan Zhou, James Philbin, and Kai Li. The Multi-Queue Replacement Algo-

rithm for Second Level Buffer Caches. InProceedings of the General Track: 2002

USENIX Annual Technical Conference, pages 91–104, Berkeley, CA, USA, 2001.

USENIX Association.

[75] Albert Y. Zomaya and Yee-Hwei Teh. Observations on Using Genetic Algorithms

for Dynamic Load-Balancing.IEEE Trans. Parallel Distrib. Syst., 12:899–911,

September 2001.

127

	Introduction and problem statement
	Document structure and work overview
	RHIC complex and STAR
	The STAR experiment

	Computing challenges
	Flow and data management in STAR
	Scalla system

	Problem analysis
	Use case and requirements
	Related works
	Static vs. dynamic scheduling

	Workflow analysis
	Working with chunks

	Fair-share
	Cache policy
	Water marking

	Planning problem formalization
	Constraint programming approach
	Planning stage
	Scheduling stage
	Complexity of the problem
	Unary resources
	Constraint model and solving strategy
	Comparative studies

	Mixed Integer Programming approach
	Extension of the model
	Implementation

	Coupling with CPUs

	Technical implementation
	Architecture
	Web interface
	Database design
	Watcher
	Planner
	Data Mover
	Show case
	Performance comparison

	Conclusions and future work
	Routing for Autonomous Robots
	Introduction
	Problem formulation
	Model on network flows
	Search procedure

	Model on finite state automata
	Search procedure

	Embedding CP models into LS
	Experimental results
	Performance of the network flow model
	Performance of the network flow model within local search
	Performance of the finite state automaton model

	From high-level planning to real world
	Conclusions

	Bibliography

