Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering
DISSERTATION THESIS
Distribuovana sprava dat v experimentech

na
RHIC a LHC

Michal Zerola

Distributed Data Management in Experiments at
RHIC and LHC

DEPARTMENT OFMATHEMATICS

2012

Nazev:

Autor:
Obor:
Druh prace:

Vedouci prace:

Konzultant:

Abstrakt:

Klicova slova;:

Distribuovanda sprava dat v experimentech na RHIC a
LHC

Mgr. Michal Zerola

matematické inzenyrstvi

Diserta&ni prace

doc. Michal Sumbera, CSc., DSc.,

Ustav jaderné fyziky, Akademiezd CR

Dr. Jérdbme Lauret,

STAR experiment, Brookhaven National Laboratory, USA
Doc. RNDr. Roman Bartéak, Ph.D.,

Katedra teoretické informatiky a matematické logiky,
Matematicko-fyzikalni fakulta, Univerzita Karlova v Peaz
Tato dizert&na praca pojednava o skdtgch potrebach
prenosu dat jedného z nap&ich beziacich fyzikalnych ex-
perimentov na svete. Obsahuje teoretické Studie a prezen-
tuje vyvoj rieSiaceho modelu zalozeného na podmienkach.
Praktickacast sa sklada z navrhu architektlry, merani a
vyhodnotenia vykonnosti automatického planovacieho sys-
tému. Nad rieSiacimi technikami datovych prenosov boli
tiez vytvorené ich derivaty, ktoré boli aplikované i v olilas
robotiky a su prezentované v zavénej prilohe.

planovani, grid, penos dat, programovani s omezujicimi
podminkami, cel6iselné programovani

Title:

Author:
Advisor:

Consultant:

Abstract:

Keywords:

Distributed Data Management in Experiments at RHIC

and LHC

Mgr. Michal Zerola

doc. Michal Sumbera, CSc., DSc.,

Nuclear Physics Institute, ASCR

Dr. Jérdbme Lauret,

STAR experiment, Brookhaven National Laboratory, USA
Doc. RNDr. Roman Bartak, Ph.D.,

Dept. of Theoretical Computer Science and Math. Logic,
Faculty of Mathematics and Physics, Charles University in
Prague

This thesis discusses the real life data transfer and place-
ment needs of one of the largest physics experiments in the
world. It inheres the theoretical studies of the underlying
problem and presents the evolution of the constraint-based
solving model. Practical part consists of the architecture
design, measurements and performance evaluation of the
automated planning system. Derived techniques from data
transfers were applied also in the field of robotics and are
discussed in the appendix.

planning, Grid, data transfer, constraint programmingg-in
ger programming

Contents

|1 Introduction and problem statemen{ 9
hj_mgummmwmmdiew 10
|1 2 RHIC complex and STA[R 11

1.3 Comnuting_cha.ll.endes 14
h.&J_Elmmmuiala_aLaaagam.ennn_Sj'AR 15

|2.2..’L_51a1m._d¥namj£_sghedj.ﬂing 7 2

|3_ELa.m1i_n,g problem formalization 39
|3 1 Constraint Drog,La_m_mj_ng_a,p_p_Ldach 40
|3.J...’I_Ela.nﬂln,g_sla L 41
.12 Scheduling Stage oo 43

|3 1.3 Complexity of the proble]m 44

|3.:l A4 Unary [esQu[gles 45
|3.l.5_QQusltamLdeﬂI_and_sgmmg_sltaiegy...............49

|3 1.6 Comparative studles 54

8 Conclusions e 119

Bibliography/ 127

Acknowledgements

Because work included in this dissertation thesis is thd botcome of a synergy
with many STAR colleagues | would like to initially thank te@ple involved in this
work in a way or another. At the same time | would like to apatego those who were
important in completing this thesis and | could not mentioenh personally line by line.

First and foremost | offer my sincerest gratitude to eachy§apervisors, Dr. Michal
Sumbera, Dr. Jérdme Lauret, and Dr. Roman Bartak. They aWeti me their shared
enthusiasm and passion on the research, while each of thenpneaiding me with a
specific guidance, expertise and inspiration. As a resedtearch life became smooth
and rewarding for me. Having such professionals coveringrde, but still overlapping
fields of science, is often a dream for a student, moreovkeif balanced attitude passes
beyond the engagements and turns into care. One simply notilgish for better super-
visors; and it has been a honor and pleasure for me to worktingtim.

| was lucky to meet several great colleagues from STAR Colation, discuss with
them not only work-related topics and spend a lot of free tiimeng my stays at Brook-
haven National Laboratory. My co-workers and great friemdm the Prague’s heavy-
ions group have been definitely a fundamental element angbsuin physics and com-
puting related discussions along a lot of fun we have gornautjir together. My great
thank goes especially to Jana & Jaroslav 8iel Peter Chaloupka, Jan Kapitan, Michal
Bystersky, and Pavel Jakl. My friend and colleague fromitiatet of Computer Science
Stanislav Slusny deserves another big thank for the helgarfdct time we had during
the work on our common papers in robotics.

Last but definitely not least, there is my family | want to than, without which
none of this work would be possible. My parents, grand pareartd sister provided me
constant support, encouragement and help all the time agddby me especially when
it was most needed.

Declaration of Originality

This doctoral thesis contains results of my research choig at the Nuclear Physics
Institute between years 2007 and 2011. Most of this work vaasex! out within STAR
Collaboration. Excluding introductory parts, the resbatescribed in this thesis is orig-
inal unless where an explicit reference is made to work oérsth | further state that
no part of this thesis or any substantially the same has hdanitted for any qualifica-
tion other than the degree of Doctor of Philosophy at the @Z@chnical University in

Prague.

Glossary

cache policy heuristic used to select the entry to eject with the regacdtie spacé. B6

cluster group of closely linked computers, working together thioémst local area net-
works; in opposite to Grid, resources are not geograplyisalitead[27

Data Carousel system developed in STAR in order to coordinate requestd R8S[211

fair-share strategy to achieve equal resource usage among systenangegsoups with
the respect of their prioritieg._B4

graph combinatorial structure that holds collection of verticesnodes’ and a collec-
tion of edges or 'links’ that connect pairs of verticesl 41

Grid distributed and dynamic computer environment consistingadous loosely cou-
pled resources acting together to perform large tasKs. 26

heuristic experience-based technique used to speed up the processliofjfa good
enough solution, where an exhaustive search is impraddgal

HPSS Hgh PerformanceStorageSystem. software that manages petabytes of data on
disk and robotic tape librariels, 115

job-shop optimization problem in which jobs are assigned to resaiateparticular
times.[45

linear programming mathematical method for optimizing some objective overdis
requirements represented as linear relationships. 57

load balancing methodology to distribute workload across multiple reseaito achieve
optimal utilization[19

Glossary Glossary

makespan total length of the schedule (that is, when all the tasks fiaighed process-
ing).[66

NERSC/PDSF NationalEnergy Researcltcientific Computing Center Parallel Dis-
tributedSystemsFacility at Lawrence Berkeley National Laboratory, USAl 18

NP-hard non-deterministigpolynomial-time hard. Class of problems from computa-
tional complexity theory that are, informally, “at leastleerd as the hardest prob-
lems in NP"[33

planning selection and organisation of actions in order to reach t& gr change of
the system 41

pruning eliminating branches of a search tree that do not contaittefeolution[5D

QOS Quality of Service. ability to guarantee a certain level of performaffée

gueue structure which stores tasks waiting for execution; taskssalecting according
to the applied dispatching rulds.]28

race condition execution ordering of concurrent flows that results in uirddsehavior.
32

RCF/BNL RHIC ComputingFacility at BrookhavenNational Laboratory, NY, USA.
[15

resource entity which executes, processes or supports the task (§&Btage, link, etc.).
24,43

scheduling allocation of resources to planned tasks over given timegeif43

simulated annealing probabilistic metaheuristic for the optimization problewhere
making a 'move’ uses inspiration from annealing in metafjui28

stream sequence of data packets used to transmit or receive infemasually over the
network.[46

symmetry breaking process of identifying and breaking symmetries (set of tewhs
which can be obtained by simple transformations from existines) in the search
space[51

Glossary Glossary

thread smallest unit of processing that can be scheduled by an tipgsystem[_48

unary resource resource with ability to execute only one task at any timenetimes
called alscserial. [43

weighted graph graph with an associated label (weight) with every edgesroitsed in
networking where weight represents speed/bandwidth ofka[89

Chapter 1

Introduction and problem statement

A primary purpose of information technology and infrasture is to enable people to
perform their daily tasks more efficiently or flawlessly. @ilsuted computing offers
large harvesting potential for computing power and brintigobenefits as far as it is
properly exploited [32]. On the other hand it introducesesabpitfalls including concur-
rent access, synchronization, communications scahkalaiitwell as specific challenges
such as answering key questions like “how to parallelizskzaknowing where my data
and CPU power are located. Unlike the resources addressaddiyentional operating
system, these are distributed, heterogeneous and loaaghjed.

In data intensive experiments, like the one from High Eneaggl Nuclear Physics
(HENP) community to which e.g. the STA@?[Z] experiment belongs, the problem is
even more significant since the task usually involves pingsand/or manipulation of
large datasets. The STAR experiment is primarily discussetlused for experiments
and software deployment in this thesis.

For the colossal volumes of data being produced every ydas teeatable, the tech-
nology and system must be manageable. In global collaloorathe needs for coor-
dinated resource sharing and efficient plans solving thbleno in a dynamic way are
fundamental.

The massive data processing in a multi-collaboration envirent often exploits ge-
ographically spread diverse facilities. Apparently, itlvise hardly “fair” to users and
hardly using network bandwidth efficiently unless we adsleesd deal with planning and
reasoning related to data movement and placement. Thiss thedresses the paradigm
of distributing the data focusing on one of the largest ragrphysics experiment in the
present. It exploits and applies the solving techniquedésigning and building the

1Solenoidal Tracker at Relativistic Heavy lon Collider is experiment located at the Brookhaven
National Laboratory (USA). See http://www.star.bnl.govfmore information.

9

http://www.star.bnl.gov

1.1. Document structure and work overview 1. Introductiod problem statement

automated planning and transferring system; enablingigsie to reach fruits of their
research leveraging the potential of their resources.

1.1 Document structure and work overview

We will first outline some primary ideas of the content, teedructure and underline the
most important results that have been presented and peblisiWe will arrange them
along the timeline and point out also few other projects west@een involved in.

The first chapter introduces the environment of the physipgement, background
motivation and outlines the general scope of the projecin@ding challenges and flow
of data processing are highlighted while currently use@ datvices are summarized.
The Tier model leveraging regional resources is briefly describad;the experience of
setting up a local computing site for offline analysis waslishied in [12].

The next chapter dives into the more detailed problem arsatgtated to data place-
ment. We propose the concept of automated planning, intedoain use cases and
requirements, including the goal proposal of the work andrmediate steps and mile-
stones. Related work is described in sectioh 2.2 and colerdifference and benefit of
our planning approach with respect to the current attitu@ibe problematic of fair-share
and cache policy is covered in this part as well.

The principles of the constraint based modeling approaehcavered in the third
chapter and this chapter includes the underlying constteieed models. The initial
ideas and simulated measurements were published in [69}e Elaborated planning
heuristics were shown in [71] and in [[72] we covered the fudhStraint Programming
model with computational complexity. In the sequel, furteection 3.2 introduces the
extension of the model and presents the Mixed Integer Pnugiag approach. The mu-
tual comparison and performance is immediately revealedinsequent text. The MIP
approach was published in [[70]. The last section of this tdrais devoted to “Holy
Grail” in Data Grids - coupling computing elements with datavement inside the auto-
mated planner. We present the ultimate extension and maiiiificto the model in order
to cover full reasoning.

Chaptef 4 offers the insider view into the technical implatagon and software en-
gineering part of our work, concentrating on the framewodckaflow, database design
and implementation details of the fundamental componemtse main principles and
real evaluation were published in [73]. The chapter inctupiactical proof of the prin-
ciples, real-case experience and closes the loop of igipabposed requirements. The
last chapter summarizes the overall status and outlines/trgual future direction.

10

1. Introduction and problem statement 1.2. RHIC complex@haR

The planning techniques we were researching in the netwuatldata movement en-
vironment are applicable also in other fields. We inveséidaiso the area of autonomous
robots and related vehicle routing issues under constt@imeumstances. The appendix
is discussing this work which was publishedlin/[57] and récesults of the model based
on finite state automaton can be found alsa In [5].

Along the international conferences the work has been wcoatisly presented at
STAR Collaboration Meetings and Regional Meetings as weélveral Czech&Slovak
proceedings of local conferences were published too. Tisedefinitely a lot of open
topics for enhancement of the work and several issues neleel &oldressed in order to
flawlessly deploy the system into an everyday productionrenment. The outlook is
discussed in the final chapter of the thesis.

1.2 RHIC complex and STAR

The Relativistic Heavy lon Collider [36] (RHIC) allows phygssts from all around the

world to study what the universe may have looked like in the few moments after its
creation. This may lead to better understanding why theipalys/orld works the way

it does, from the smallest subatomic patrticles, to the Ergtars. The RHIC machine
is located at Brookhaven National Laboratory (New York, J3#here many important
discoveries were achieved (5 of them have been awarded d Robe).

It is a very versatile collider, capable of acceleratingvygans (atoms having their
outer cloud of electrons removed), primarily ions of goldcause its nucleus is densely
packed with particles. RHIC collides two beams of ions headvhen they're traveling
at nearly the speed of light. It provides access to the mostsmental building blocks of
nature known so far - quarks and gluons. By colliding the aiuaf gold atoms together
at nearly the speed of light, RHIC heats the matter in coltigio more than a billion
times the temperature of the sun. In so doing, scientistalaesto study the fundamental
properties of the basic building blocks of matter and leayw lthey behaved 15 to 20
billion years ago, when the universe was barely a splitisgé@dd. In parallel with this
program, with increasing importance, there is also a unjgeéon-proton program to
study proton spin structurg [63].

The RHIC complex (Fig.[[1]11) is composed of a “chain” of pdetiaccelerators.
Heavy ions begin their travels in tAi@ndem Van de Graa#fccelerator, travel through a
circular Boosterwhere, with each pass, they are accelerated to higher enfergy the
Booster, ions travel to thilternating Gradient Synchrotromvhich then injects the beams
via another beam line into the two rings (identified as yelkwd blue in Fig.[1]1) of

11

1.2. RHIC complex and STAR 1. Introduction and problem stegiet

12:00 o’clock

PHOBOS BRAHMS
10:00 o’clock 2:00 o’clock
PHENIX
8:00 o’clock STAR 4:00 o’clock
6:00 o’clock
Design Parameters:
Beam Energy = 100 GeV/u
U-line vV, No. Bunches = 57
High Int. Proton Source BAF (NASA) |, g2 g(ie”/; No. lons /Bunch = 1x 109
LINAC [oosten Tore = 10 hours
Pol. Proton Source La"e =2x 102 cm?sec!
AGS HEP/NP
1 MeV/u
Q=+32 TANDEMS

Figure 1.1: Layout of the RHIC complex at BNL - schematic drayv

RHIC. Counter-rotating particle beams can cross at sixsetions around the2mile
RHIC ring. A different detector is located at each of the fouersection points currently
in use. The RHIC was designed [27] to accelerate nuclei tetapgy of 100GeV/A for
A > 200 (nucleon’s density), and at the same time being able wmgtinuously as low
as 5GeV/A with species from almost the full periodic table.

Just after the collision, thousands more particles fornhasatea cools off. Each of
these particles provides a clue as to what occurred inseledhision zone. Physicists
sift through those clues for interesting information.

Currently, there are four active experiments at the RHIC:

e STAR The Solenoidal Tracker at RHIC is used to search for sigeataf the form
of matter that RHIC was designed to create: the quark-gliasnpa.

e PHENIX The Pioneering High Energy Nuclear Interaction eXperimisrd detec-
tor designed to investigate high energy collision of heansiand protons.

e PHOBOS & BHRAMS The PHOBOS detector was designed to examine and an-
alyze a very large number of unselected gold ion collisiohise BHRAMS was
designed to measure charged hadrons over a wide range dityaamd transverse
momentum to study the reaction mechanisms of the relat\istvy ion reactions
at RHIC and the properties of the highly excited nuclear endtirmed in these
reactions.

This work was supported and primarily intended for the STAReziment, within
which the research was carried out.

12

1. Introduction and problem statement 1.2. RHIC complex@héiR

Solenoidal Tracker At RHIC : -1< nN<1,0<¢<2n

Masiist [\Barrel ElectroMagnetic Calorimeter J
gl
PR\, (7 Tine OrFign)
[Time Projection Chamber / 5 /] Time Ot Fiight
- 4 >

)

Figure 1.2: Perspective view of the STAR detector, with aawaty for viewing inner
detector systems.

1.2.1 The STAR experiment

STAR is a general-purpose high energy physics detectorRgpdl.2) with a variety
of subsystems optimized for the detection of diverse typgmdicles emitted from the
collisions of heavy ions or polarized protons. It is featgrdetector systems for high
precision tracking, momentum analysis, and particle ifieation at the center of mass
rapidity. The large acceptance of STAR makes it particulestll suited for event-by-
event characterizations of heavy ion collisions and fordbtection of jets. With rel-
atively short run periods, high statistics data can be takeh will allow analysis of
unprecedented detail over the energy range planned.

STAR is situated in the six o’clock position in the RHIC rinhe experiment is a
large collaboration of more than 500 scientists and engsespresenting= 60 institu-
tions in dozen countries. The geographical distributiothef institutions in the STAR
Collaboration is given in Table1.1.

STAR collects several gigabytes of raw data every secondgldata taking. These
raw data are promptly compressed and translated into a fatma can be analyzed
by physicists, but even the produced dataset containsomsllof interesting “events”

13

1.3. Computing challenges 1. Introduction and problenestent

Country Institutions | Percentage
USA / North America| 24 46%
Europe 12 23%

Asia (China/ Korea) | 8 15%

India 6 12%

South America 2 4%

Table 1.1: Geographical distribution of institutions ie tBTAR Collaboration as of 2008.

Integrated Storage needs
(mass storage)
12000

10000

8000
6000
4000
2000 l
7 5

a
2009 2010 2011 2012 2013 2014 2015

RHIC Year

Tape Storage (TB)

Figure 1.3: Projection of data for the STAR experiment.

and measures in the hundreds of terabytes up to several ytefor a given year of
experimental running.

1.3 Computing challenges

Very often, the physics topics of HENP experiments are stesilly driven. In order
to get a significant statistical data sample, the experimleate to generate and acquire
enormous data for further analysis. During the normal dpmranode, the STAR detec-
tor produces raw data with the speeckob500— 600 MB/s (an average size of an “event”
is 0.62 MB and the frequency of acquisition system is 1000 Hz). Higere 1.8 is outlin-
ing the continuous growth in STAR’s stored data at tape driveaching the magnitude
of several Peta bytes.

The data volumes will even more likely grow in the future gatiens of such ex-

14

1. Introduction and problem statement 1.3. Computing ehglts

periments. Running an analysis means, firstly, to develogpgtfication (usually using
a data analysis framework), then obtain input data the egidn depends on, and, fi-
nally, execute these tasks on computer elements and prodece&lerived results. From
the yearly data sets, the experiment may produce many pEhiesacly derived data sets
which differ in accuracy as the problem is better understmitime passes. In addition to
a typical Peta-scale challenge and large computationashasech running experiments
acquiring a new set of valuable real data every year needowde data for physicists
from previous years and consequently at any pointin time.

With such demands from hundreds of collaborators in pdratguesting time and
computing wise intensive processing of large-scale ddta gee can easily see the emi-
nent needs for efficient storage and computing solution.

1.3.1 Flow and data management in STAR

We will outline the basic procedure the STAR experiment hagetbped for handling
and managing acquired data (Fig.11.4). The raw detectorislatanediately transferred
to the set of low level tuned Linux boxes callBdffer box Using the water marking, if
the use of local disk of any buffer box machine exceeds sows, leaw files are moved
(usingpftp protocol) to the tape storage at local computing facilitBiL, called RHIC
Computing Facility (RCF).[22], using the optical fibers. THMass Storage System (MSS)
at[RCF/BNL is called High Performance Storage Syﬁe(IHPSS) and is based on the
robotic tape system. The graph from Hig.]1.5 shows the dateenstatistics from STAR
online to Mass Storage. This system works as a tertiary georapository for STAR
where all raw data sets reside.

The raw data needs to be processed by the reconstructiaveseftvith appropriate
calibration information to be usable for later physics ga@l. This raw reconstruction
process (main operation is tracking the particles) happartae computing farm nodes.
Reconstruction jobs are submitted to the machines usirej Resource Management
System (on top of the Condor dispatcher) and jobs pull data PSS to local disks for
full chain processing.

In addition, to relieve the RCF resources, part of the rava 45%) are planned
to be processed in Korea Institute of Science and Techndidigymation (KISTI) in
Asia. Recent promising transfer studies and tests showeethtér-continental link full
bandwidth saturation is possible in a sustainable mode.

The processed files are called Data Summary Tapes (DSTex), reffered to as DAQ

JHPSS3: http://www.hpss-collaboration.org/

15

http://www.hpss-collaboration.org/

1.3. Computing challenges 1. Introduction and problenestent

Buffer box NFS servers
=
b Work nodes v
STAR /= P
Detector — HPSS (MSS)
] - raw
> raw 4 -d >
=1 gl B
\ 1 ’ - -
N — . reconstructed
DAQY
=0 registration to
Scalla/Xrootd

Figure 1.4: Schematic drawing of data flow in STAR. The data 8tarts from the single
point - the detector.

Star -> HPSS (MBytes/sec) (4 Disk Movers)

MEytes per second

Week 11 Week 12 Week 13 ‘week 14 Week 15 ‘Week 16 Week 17 ‘Week 138
From 2011/03/14 22:34:19 To 2011/05/05 17:40:00

Yearly (1 Day Average)

Figure 1.5: Data mover statistics from STAR online to Mass&je. Over the run period,
the averages sustained at the level of 250 MB/sec.

16

1. Introduction and problem statement 1.3. Computing ehglts

DAQ raw DAQ reco DAQ uDST
| Runyear || avgsize | count avg size | count avg size | count

2010 1.143GB | 774808| 1.340GB | 25782 | 208.720 MB| 240 320
2009 925.836 MB| 250 102| 2.447 GB | 62 111 | 333.256 MB| 255 065
2008 436.765 MB| 353 947| 795.685 MB| 66 255 | 136.375 MB| 489 013
2007 470.104 MB| 317 167| 564.371 MB| 325 511| 165.575 MB| 331 062
2006 433.809 MB| 115 472| 583.802 MB| 135339| 84.915 MB | 135 365
2005 441.356 MB| 326 809| 323.758 MB| 528 850| 71.419 MB | 545 502
2004 461.349 MB| 406 091| 364.974 MB| 399 003| 153.526 MB| 453 405
2003 479.092 MB| 124 956| 95.428 MB | 209 552| 26.339 MB | 206 428

Table 1.2: Average file size of different file types during ylears 2003 - 2010.

Average file size in 2003 - 2010 File count in 2003 - 2010
3000 T i T 800 T i ;

— DAQ raw —— DAQ raw ——
g 2500 DAQ reco 1 = 700 DAQ reco i
= DAQ pDST i S 600 DAQ UDST |
& 2000] S)
D < o /
o 1500 2 400 p
® 3 300t 7 N N/
g o 200 f \ /
5: e (S L 100

o L e M 0 i

2003 2004 2005 2006 2007 2008 2009 2010 2003 2004 2005 2006 2007 2008 2009 2010

Year Year

Figure 1.6:Left. Average size of different file typesRight. Counts of different file
types. The raw data sets from 2010 have not been fully predessthe time of writing
this text.

reco, and contain all the information the physicists canlate. Mostly, physicists do
not need all the saved information in DST files and since tke @n be fairly big, for the
space and later computing efficiency, the files are transdnmto the smaller files, with
only the essential information left. These files are caliex$T. All copies of the raw,
DST, anduDST files are copied and kept back on the HPSS. One has to atsadeo
the fact, that STAR has several productiongldST files from the single set of raw files,
passed with different reconstruction criteria and sofensettings.

The Tabld_1.R2 and the graphs from Figlre 1.6 represent thrageaize of different
file types together with their appropriate count as a fumotioyears. With the installation
of the DAQ1000 upgrade in 2009, the size of the raw datasetesdldoubled. We can
see that accumulated size of reconstructed files (over aflggd usually oversteps the
size of raw data sets.

17

1.3. Computing challenges 1. Introduction and problenestent

2010| 2011 | 2012| 2013| 2014 | 2015| 2016
Typical number of Tier-2 4 3 4 5 4 4 3

Bandwidth @ Tier-2 084 | 1.06 |1.08 | 124 | 167 | 147 | 1.47
Bandwidth from BNL 224 | 211 | 287 | 414 | 444 | 393 | 294
Bandwidth from LBNL | 1.12 | 1.06 | 1.43 | 207 | 2.22 | 1.96 | 1.47

Table 1.3: Data transfer rates for sustaining redistrdoubf uDST to othefTier-2 centers.

Tier model

Given the international composition of the collaboratithre STAR Software and Com-
puting (S&C) model has naturally evolved toward a Tier dinoe, similar to that utilized

by other major international S&C efforts. THeers (Tier 0, 1, 9 are defined by the
services and capabilities available at the institutiortbiwia given classification.

Since BNL is hosting the STAR detector, it is the uniquer-0 center by definition.
A Tier-1 center in STAR is defined as a site providing persistent ggrilass Storage
System (MSS), as a local service and also a site providinguress (storage or pro-
cessing power) to level of 15% or more to perform any spediskt Since 2000, the
Parallel DistributedSystemsFacility at theNational Energy ResearclSupercomputing
Center [NERSC/PDSF) at Lawrence Berkeley National Laboyalbas been the only
Tier-1 center in STAR. A STARTier-2 site is an institution having several tens of TB
of storage which can be utilized for local or regional neeatsuser analysis. Wayne
State University, MIT, and NPI/ASCR in Prague are exampfeSTAR Tier-2 centers.
The distribution of “physics ready” data allows for an entesh productivity where they
become available. Table 1.3 presents typical numbdief2 sites for upcoming years
(line 1) and expected network estimate. From the STAR olbsiens typicalTier-2 site
replaces the local data on the order of 4 times a year. Thegsa numbers for total
bandwidth required (lines 3 and 4) assume a target goal wh@&ef institutions would
acquire data from BNL and/B from LBNL.

Magellan Cloud STAR has recently made also massive use of Magellan Cloudyac
where two government-funded testbeds NERSC/PDSF and theekship Computing
Facility (ACLF) at Argonne National Laboratory (ANL) joinirtual clusters made up of
IBM iDataplex solution in order to provide a cost-effectaved energy-efficient paradigm
for science. This collaboration resulted in a real-timeididvased data processing system
running a coherent cluster of over 100 Virtual Machines fiihimee Magellan resource

18

1. Introduction and problem statement 1.3. Computing ehglts

pools -Eucalyptu@ at NERSC,NimbusB at ANL and OpenStacE at ANL. The total
number of cores has exceeded 800. While set at nationaldedvas, Magellan cloud
has predictable network path (in opposite to true commiectoad).

Data services The RCF facility at BNL has three major components, namelys8P
the Linux Farm and the centralized disk system. Variousag®@systems mutually differ;
and usually huge and cheap amount of storage is payed offgbyli&iency time or data
access inconvenience. It is clear that application benefiie require the data to be
“close enough”. By this we mean the data access from theagtan viewpoint must
be smooth, prompt and reliable. Therefore, the data movefrean MSS to “closer”
storage elements, data placement strategy, and the datsaaiutions are the key blocks
in STAR S&C program.

The RCF has provided central storage (based on BlueArc olasisolution) made
available to the computational nodes via Network File SyddFS). As it was explained
above in the text about data flow, the reconstrugtB&T files are moved back to the
permanent HPSS storage, however the system populatesfillessalso to other data
services. Daemons call&pidersconstantly monitor the presence of reconstructed files
on NFS and also on distributed storage system (explaindaifotlowing sectiofn 1.3]2).
This infrastructure, keeping a catalogue of files up to dalsg allows for further data
management tasks such as dataset replication on othengkemetecting missing files in
HPSS and automatic deletion of files from NFS (keeping a copgtistributed storage).
The distributed storage is primarily used for data access jobs.

STAR has been intensively involved in deploying distrilsuteodel for storing and
accessing the data. The main reasons behind focusing onsthieuted solution and its
basic advantages are:

e Scalability: distributed system can better scale with increasing requents for
the capacity

¢ [Load balancing: the distribution of data implies spreading the load amorgy th
elements

e Fault tolerance: avoiding the centralized single point of failure leads t@roved
fault tolerance

3Eucalyptus: http://www.eucalyptus.com
4Nimbus:[http://www.nimbusproject.org/
SOpensStack: http://www.openstack.org

19

http://www.eucalyptus.com
http://www.nimbusproject.org/
http://www.openstack.org

1.3. Computing challenges 1. Introduction and problenestent

100%
90% — -

M Distributed disk

80% M Centralized disk
70%
60%
50%
40%
30%

Disk type proportion

20%
10%

0%

2009 2010 2011 2012 2013 2014 2015
Year

Figure 1.7: Confrontation of centralized and distributegacity of storage in STAR.

The larger portion of the overall storage space used to veddry centralized systems
in the past; however, as we can see from the graph in[Fig. 1st aidhe data resides
on the distributed disk space and this tendency will be evererdominant in the future.
Since 2006, STAR has been using Scalla/Xrootd system teggtg and access data in
a scalable way. We will outline the main concept of this appto

1.3.2 Scalla system

The Scalla (Structured Cluster Architecture for Low LateAccess)[[28] software suite
offers a framework for aggregating a commodity hardwarettstruct large fault-tolerant
high performance data access. The suite consists of a filersalledxrootdand a clus-
tering server calleemsd The xrootd server was developed for the Rd%ﬁnalysis
framework to serve root files. However, the server is agodsetthe file type and pro-
vides byte level access to any type of file. The cmsd serveesgyded to provide file
location functionality and cluster health and performammmitoring.

One of the fundamental principles of the suite is its strredthierarchical subscrip-
tion model. That is, cmsd’s connect to other cmsd’s in orddbtm a compacB — 64
tree, as shown in Figufe1.8. A special cmsd, called theeetdr, sits at the root of the
tree. This server is given the role of a manager. The managesponsible for issuing
file queries and collecting the responses from nodes loweitree. A server cmsd is in
one-to-one correspondence with a data server (i.e., a mathmat serves data files). This
kind of architecture scales very quickly with a minimum ambaof message traffic (due
to the logarithmic height of a search tree). The limit of 64e®is deliberate. Sixty-four
allows efficient bit-slice vector operations using 64-btegers and deterministically lim-

SROOT - A Data Analysis Framework: http://root.cern.ch

20

http://root.cern.ch

1. Introduction and problem statement 1.3. Computing ehglts

. Redirector
. Supervisor

. Dataserver

64 nodes

64 nodes

64 nodes

Figure 1.8: Example of B-64 tree structure used for clusteservers (and aggregating
the distributed storage).

its the amount of work any particular server needs to do. &tterlis critical in providing
a deterministic time bound for file queries.

DataCarousel

In the STAR environment, files not available at any xrootédatrver are transferred from
the MSS as shown in Fig. 1.9. The component cdDeda Carouselvas developed for
this purpose - to coordinate the requests which would otisertae initiated from all data
servers within the Scalla/Xrootd architecture and othientkequests as well (this would
lead to a collapse of MSS or inefficiency). The DataCarouseke/simply as a HPSS
front-end, managing the asynchronous requests. It aggetfze set of requests from
clients, re-orders them according to the internal polieyd passes them further to the

HPSS. The system itself is composed of a light client programlug-and-play policy
based server architecture component and a permanent piate$acing with the mass
storage using HPSS API calls. The client and server interaata database component
isolating client and server completely from each otheridres may throttle the amount
of data by group (quota, bandwidth percentage per user)lbatpeerform tape access
optimization such as grouping requests by the tape ideatiibic number.

Recently, the Scalla/Xrootd system development is trymgxploit also the bene-
fits of faster and lower latency Wide Area Networks (WAN). Tgrencipal idea is that
missing files can be retrieved over WAN from other Scalla teluggeographically in a
different location) on the fly. This operation allows to stan application at the clus-
ter even if some files are not available. The metric used fdaimgadecision where to
redirect a client considers only the load of the servers. iaddition, the site hosting
the Scalla cluster has to allow direct incoming connectiomis remote clients, what is
often not always feasible in such organizations. There imitely a need for utilizing

21

1.3. Computing challenges 1. Introduction and problenesgtant

DNS round robin @ g
S S

))
Supervisor Supervisor Supervisor

First 64 servers Next 64 servers Next 64 servers

X i | ae ‘ aa L e L i \’
~1. 82 3 S [) ~ (3 ;j} iy
Coordinates requests i
(Sorting, re-queuing failures, ...) =’ DataCarousel
S
L]
i _ HPSS layer

Figure 1.9: The Scalla/Xrootd overview with DataCarousgétgration as deployed in
STAR.

22

1. Introduction and problem statement 1.3. Computing ehglts

the more and more available sources over the WAN and thgmgmand for a “decision
maker”. The question whether to retrieve missing files orofiyyhether to distribute the
data in advance to achieve the proper optimization is thetlgweraging the decision in
one way or another.

23

Chapter 2
Problem analysis

This chapter, after the preliminaries, introduction andreiew of the STAR’s comput-
ing challenges, is devoted to more elaborated problem sisalyVe will introduce the
goal of the automated planning system remarking the mairkfieov principles, opti-
mization features and the motivation for further softwarehéecture. We will discuss
the related works, give summary of the current approacheseamniques, and bring the
basic solving attitudes the system is based on. Because bftiad range of factors the
components have to deal with, we will not step into the deepudision about all of them,
but present an overview of some like fair-share, cache pdic.

2.1 Use case and requirements

The purpose of our research and work is to design and devel@ot@mated planning
system acting in a multi-user and multi-service environt@anshown in Fig[_211. The
system acts as a “centralized” decision making componeiht the emphasis oapti-
mization, coordination andload-balancing The optimization guarantees ttieTesources
are not wasted and could be shared and re-used among usessuaices. Coordination
ensures multiple resources do not act independently seasitam or clogging do not oc-
cur, while load-balancing avoids creating bottle-necksh@resources. The intent is not
to create another point-to-point data transfer tool, butde available and practical ones
in an efficient manner.

We describe the most important optimization characterisith the help of figures
Fig.[2.2 and 213. Let us suppose there are requests for the (®araverlapping) dataset
from two users, while each of them needs the dataset to begsed at his/her specific
location. The system has to reason about the possible tepesifor the dataset, select
the proper ones for every file (the granularity is specifiethfiles in our case) and pro-

24

2. Problem analysis 2.1. Use case and requirements

Xrootd DlStdraltbaUted Multiple users
—_— Multiple requests
D
2 A a
<=4f HPSS \
= t
N PLANNER
= a
7
] nes], AN ’
. ’ Optimization
r
a
1
n . . T
! Coordination
1 S 1
f
e .
Load balancing % %‘
r ~
7
, ~
N
~| t
& wess N
= ’ 0 N ﬁ
_ 7 .
= opm \
= }
= \ A/_\-‘v
(Jggga Service
8 J

Figure 2.1: General view of the automated planning systerne Joal is to achieve
controlled and efficient utilization of the network and datvices with a proper use
of existing point-to-point transfer tools. At the highestél of abstraction, the planner
should appear as a “box” between the user’s requests andgberces.

duce the transfer paths for each file. The output plan shautzbtimal with an objective
of the overall completion time of all transfers. Thus, thgimization characteristic is
focusing on the network structure and respective link badtdhwAs illustrated in Figure
[2.2, itis conceivable in our example that optimization wdlise data movement to occur
once on some network links while datasets will be moved todifferent destinations.
Moreover, the files are usually served by several data ssyguch as Xrootd, Posix
file systems, Tape systems [58]) with different performaand latencies. Therefore,
the optimization and reasoning on where to take the filedaaifrom multiple sources

s

Request for Dataset A Request for Dataset B
-ttt TTTeT T 2} poomooocoooo '
0 1
! '
. |
' 1

i Shared path for !
..... L.. Separate
destinations

' = TEBN { Prague
e <" Repositories S — ‘

Figure 2.2: Optimization of the transfer paths with regaaodthe network structure and
link bandwidth. Some network path may be re-used to satisfitipte requests for the
same data.

25

2.2. Related works 2. Problem analysis

Figure 2.3: Optimization of the transfer paths with regaalthe different data service
performance/latency. Multiple sources for the same datg lbeanaturally combined
alternatively to avoid overload and service clogging.

choice will allow making the proper selection for a file repory, respecting their in-
trinsic characteristic (communication and transfer speed scalability (Fig[213). In
other words, as soon as multiple services and sources al@@®aoad balancing would
immediately be taken into account by our planner.

2.2 Related works

The needs of large-scale data intensive projects arisihgfaeveral fields such as bio-
informatics (BIRN, BLAST), astronomy (SDSS) or HENP comriti@s (STAR, ALICE)
have been the brainteasers for computer scientists fosy#&@dhilst the cost of storage
space rapidly decreases and computational power allowstsis to analyze more and
more acquired data, appetite for efficiency in Data Gridobexs even more of a promi-
nent need.

While the “traditional’Computational Gridsvere developed due to the need to solve
problems that require processing a large quantity of omersittheData Grids[13] pur-
pose was extended for another dimension. They primarily el data repositories,
sharing access and management of large amounts of distliiblatta. In such systems
many types of algorithm, such as replication, are imporaicrease the performance
together with data copy and transfer. In other terms, dafation is important in such a
type of scheduling, because it is not only important to atedasks, jobs or application
to the fastest and reliable nodes but also minimize data mexmeand ensure fast access
to data.

Decoupling of job scheduling from data movement was stubdieRanganathan and
Foster in[[47]. Authors discussed combinations of replocastrategies and scheduling
algorithms, but not considering the performance of the ngtw The nature of high-
energy physics experiments, where data are centrally sedfjumplies that replication to

26

2. Problem analysis 2.2. Related works

geographically spread sites is required in order to prodass distributively. Intention
to access large-scale data remotely over wide-area netvasrkurned out to be highly
ineffective and a cause of often sorely traceable troubles.

The authors of [55] proposed and implemented improvemerttset Condor, a pop-
ular[clustdr-based distributed computing system. Thegnitesl data management archi-
tecture is based on exploiting the workflow and utilizingedd¢pendencies between jobs
through study of related direct acyclic graphs. Since thekflmwv in high-energy data
analysis is typically simple and embarrassingly paralleghaut dependencies between
jobs these techniques don't lead to a fundamental optimizat this field.

Sato et al. in[[54] and authors of [46] tackled the questiomepiica placement
strategies via mathematical constraints modeling an opdition problem in Grid envi-
ronment. Solving approach in [54] is based on integer lipragramming while[]46]
uses Lagrangian relaxation method![21]. The limitationathbmodels is a characteriza-
tion of data transfers which neglects possible transfdrgand fetching data from a site
in parallel via multiple links possibly leading to the bettetwork utilization.

We focus on this missing component considering wide-aréaark data transfers
pursuing more efficient data movement. An initial idea of ptesented model origi-
nates from Simonis [56] and the proposed constraints féfidaacement problem were
expanded primarily on links throughputs and consequentlyotiow-up transfer allo-
cations in time. The solving approach is based on ConstRaimgramming technique,
used in artificial intelligence and operations researche @inthe immense advantages
of the constrained based approach is a gentle augmentdtibe model with additional
real-life rules. Constraints identify the impossible aaduce the realm of possibilities to
effectively focus on the possible, allowing for a naturatldeative formulation of what
must be satisfied, without expressing how.

2.2.1 Static vs. dynamic scheduling

A workflow application is typically a set of tasks linked byoplucer-consumer commu-
nications. In general, it can be represented as a directiagyaph (DAG), where the
node is the individual job and edge represents the intedggendence. If we restrict
ourselves to Grid environment and data transfers, a nodesepaesent data transfers
over individual links and the connection between nodesesgits the order of trans-
fers. One of the key functions of a workflow management sys{@is to schedule and
manage the tasks on shared resources to achieve high panicem\When it comes to
implementation, the planner and executor are two core coets in terms of how the

27

2.2. Related works 2. Problem analysis

resource mapping decision is made and how a task (transfptamned. However, the
characteristics of the Data Grid environment make the doatin of its execution very
complex [11/68].

Static approach, i.e. classical planning/schedulingyii$ &n creating full plan ahead,
where the planner makes the global decisions in favor of ttigeeworkflow perfor-
mance. Assuming the environment is static, there is no teiogy in the behavior of
resources and activities which are given in advance anarasguhe performance of the
planning system is robust enough to cover the scale of thieleorg this approach can
lead to (near) optimal plans.

However, in a grid environment static strategies may pearfpoorly because of the
Grid dynamics: resource can join and leave at any time; iddal resource capability
varies over time because of internal or external factord;raquests (tasks) arrive as time
goes. Also computation cost of each job is not easy to acgyrastimate, which is the
foundation of any static approach [64].

Because of several performance requirements and optionzatteria, the Grid prob-
lem is multi-objective in its general formulation. Therefdsolated simplé_heuristics
(also known as dispatching rules and policies) like Firsti@ First-Served, Earliest
Deadline First, Shortest Job First, etc. cannot meet alhgeds of the complex ob-
jective. However, since they are optimal for specific praide easy to implement, and
adapt well to high dynamics, they (or some combination afrthare often used in theory
and practice [49]. To mention some production schedulis¢esys based grrgqueue-based
policies, one can look at Condar |59], LSFE [66] or PBSI[20].

Local search (LS) [29], as a metaheuristic method for sghdomputationally hard
optimization problem, has been also applied to several &iebduling domains. Sev-
eral LS methods based on Hill Climbing have been studied tohid an Levine[[51].
[Simulated annealing, which accepts also worse solutiofis @@rtain probability, has
been proposed for Grid scheduling by Abraham et @l. [1] andkh&n and Dongarra
[67]. Tabu search is more sophisticated and usually regjurere computation time to

reach good solutions. Several use were reported [33, 68]avgursuit to optimise an
initial schedule computed with the help of dispatching sutea dynamic Grid environ-
ment. LS methods are often considered to be very time comgyrout authors showed
that with an incremental approach based on a previously atedpschedule one can
outperform queue-based approaches with very reasonatilngirequirements.
Another large family methods for solving combinatorial iogzation problems is

population based heuristics. They often require largeinghtime, but when objective
is reduced to find feasible solutions of good quality the tdb@m may be appropriate.

28

2. Problem analysis 2.3. Workflow analysis

Genetic algorithms for Grid scheduling have been addrasgédbraham et al. 1], Braun
et al. [10], Zomaya et all [75], Page and Naughton [43].

There are many other approaches that have been appliedticuf@arGrid related
problems and research papers frequently report some lsepéfitne sort or another.
However, most of the work has been done in academic grouridnasbme simulated
environment and to our best knowledge most of them have ot &eplied and deployed
for the real production environment facing a comparabléesoiiproblems like STAR
experiment does.

Designing and implementing the automated planning systeandynamic environ-
ment like Data Grid is, will not be fruitful unless we addrése three main issue$i)
Accuracy of estimatianEstimating the computation cost of a job (w.r.t. either poita
ing or transfer) is the key success factor, but at the same tthe system can be hardly
effective if it has to reason about all peculiarities frore #nvironment. The proper ab-
straction of the real world is needed to provide balance éetvaccuracy and complexity.
(2) Adaptation to dynamic environmeiiture static approaches assume that resource and
task set is given and fixed over time. Since this assumptioatialways valid, the adap-
tation to the changing condition is needed. In other words,system has to provide
proper balance between beidgliberative andreactive at the same timg3) Separation
of planner from executoiFundamentally the first two issues are related to the lacklef
laboration between planner and executor. Without a cotiperghe planner cannot be
aware of the grid environment change and cannot adapt todhe accurate estimations.

In the following chapters we will deep into the process ofigieing, implementing
and deploying the automated planning system in data inteesironment targeting the
above mentioned issues.

2.3 Workflow analysis

In this section we explain the workflow of the planning pracasd further file transfer
execution with regard to the storage issue. The systemsdifertransfers over interme-
diate sites if it leads to higher performance or load balancBy higher performance in
this case we mean achieving a higher network throughputl{gmation of faster network
links), while load balancing assures the network load igapithrough the diverse path
if it is possible and beneficial. Since the transfer pathsicelude the intermediate site,
one can clearly see there is a need for a temporary storagelagssite. To handle this
there are two possible solving approaches.

The first one addresses the storage component directly maldel. In this case, the

29

2.3. Workflow analysis 2. Problem analysis

model is extended for additional restrictions (namely thenalative resources) which
emulate the selected disk usage increase (during thee¢raosidecrease (after the trans-
fer). While the model would appear as “fully consistent” amtompassing all the de-
tails, this approach brings further complications to theleiéeading to the higher solving
complexity and also the fact that real data transfers doln@tys correspond to the com-
putations from the model (network is a dynamic environmeith & lot of unpredicted
behavior). Therefore, handling these “exceptions” woudniecessary outside of the
planner anyhow.

The second approach is based on the idea that the modekiseild stay simple and
the storage resource handling is achieved dynamicallyndtfiie transfers. To explain
how we handle the restrictions from a storage space witmwotving it into the planner,
let us first look into the workflow of the transfer mechanisneiothe link (Fig. [Z2.4).
We start with the general (high-level) explanation andrlate¢he text we address several
details.

Start End

decrease_free_space @ End

[increase_free_space @ Start]

YES init_transfer(Start -> End)
F = get_file_size ,--7 “i
YES oo*
S = get_free_space @ End T N R34
NO Wait
A 7/
e,
| handle the problem

Figure 2.4: Flowchart of the transfer mechanism.

Before the transfer tool is executed, the free space at thindéon site is checked
and compared with the required space for temporary cachimgjle. If there is enough
space, the actual information about the available spagedatad and the transfer starts.
Otherwise, the system waits until some other process edidvwe space. Upon the suc-
cessful transfer, the space at the starting site is rele@sedt, the transfer problem is
handled). Generally, each consequent transfer atomidadigks and updates the required
space for itself.

When the next iteration of the planner is called, severas fifem some previous
plan may be still in a transfer. They may already be in a temngh the last portion of
the planned path or still waiting to be transferred from @ermediate site. The system
keeps track of the current status of all files and the planaesiders this information.

30

2. Problem analysis 2.3. Workflow analysis

Hence, if some link is being occupied (or files are waiting ¢éattansferred over it), the
planner includes this “waiting” time into the reasoning. &ihsome link is creating a
bottleneck because of the low bandwidth or similarly sonte due to the very limited
storage space, the planner will automatically reuse otmyurces if it will lead to the
better (shorter) plan. Therefore, the dynamic storagelimandutside of the planner will
not cause the separation between the plans and the reality.

This process is illustrated in figure 2.5. For the simplidigy the network consist of
only three sites. In the beginning, there are no files in asteanso no link is occupied.
The planner produces the transfer plan for requestedfil&andC , for demonstration
let us assume all files are available at the Sit&rt, have to be transferred to the siéed
through the intermediate sitater. After a while, filesA andB are already transferred
at siteEnd and fileC is in a transfer fronStartto Inter site. When the next pass of the
planner is executed, the two links will be occupied, thenefine next requested fil@
will be transferred directly fronstartto theEnd

- Plan: transfer files A, B, C from
Start to End via Inter site

Inter

- C in a transfer - C planned for a transfer

Start End

O - A,B available

it

- Further plan reflects the usage of links
because of C and the next file D is planned
directly from Start to End

Inter

- C in a transfer - C planned for a transfer

Start End

)O - A,B available
- D in a transfer

Figure 2.5: lllustration of links usage by the planner indim

Regarding the storage issue, an important observation ee teemention is that the

31

2.3. Workflow analysis 2. Problem analysis

time while the file is stored at intermediate site is assurndxetshort and the total space
needed at the site not to be a critical part of the mechanigpicél available disk space
versus an average space taken by files in a current transferjher words, if we look
at the flowchart in Fig[214, the check whether there is enapgte for a file at the
intermediate site would be mostly positive. However, frdra flowchart one can also
see a possibleace conditioh [62]which can theoretically occur. A race condition is
an execution ordering of concurrent flows that results inesiteéd behavior. Since the
transfer tool, in case of not enough storage space at thimdish site, relies on another

tool instance to release the space, there exists a pogsdiil deadlock (as can be seen
in Fig.[2.8).

Site A Site B

waiting for Site B . waiting for Site A
Race condition
to release space to release space

Figure 2.6: Schematic drawing of a theoretically possiatzrcondition.

Closer look at the flowchalt 2.4 raises a question when toidena transfer instance
as not possible to act due to the locked destination storage'try-wait” block can lead
to the resource starvation and there is a need for maximunbeuai tries (with smartly
defined intervals in between). After reaching the maximuestand if the storage lock
still persists, the deadlock state has to be checked anddsolv

To be able to detect and jump out of a deadlock, we proposect@ asrected cycle
detection in a resource graph. During operation, if thedfi@mtools are waiting and we
detect an oriented cycle in the corresponding graph thew,ftre race condition occurs.
To solve it we can restart one of the transfers from the baggiwhile the other one
resumes itself. A transfer path (partial task of the plarseiected, the intermediate file
copies are deleted and the transfer is marked to be planra@d iaghe next batch. The
space is released and other transfer can be resumed.

Similarly, flowchar2.4 also uncovers the possible trangfeblem due to any rea-
son. The point-to-point transfer can fail because of a brdkek (which can be temporal
or permanent), software failure (client or server sideas$uor other third parties con-
tainment. Analogous to the previous case, there is a needdsonable number of retries
with updating and storing the failure information, up to gwnt when the link is marked
as broken. This indicates to the next iterations of the matmexclude the link from the
reasoning until it will get back to the normal operation (5&g [2.7).

32

2. Problem analysis 2.4. Fair-share

Start End
failure

O

update dtb.
increase retries

update dtb.
enqueue the transfer

Figure 2.7: Handling the possible failure of a transfer dterlink.

0
0
.
0
0
.
0
‘e
...

2.3.1 Working with chunks

We decided to work and plan with chunks (batches) of filessgdtof reasoning about
the full waiting list at once. This brings a lot of benefits amohplifications:

e Adaptability to the changing network situation.

e Smaller the input faster the computation we get. This is@afig important, since
the problem i§ NP-hald (as we will sein 3]1.3).

e Adaptability to the new incoming requests from differengrss
e User fair-share can be thus realized using queue-basecamenh

The global optimality does not have to be achieved when denisig chunks instead of
the whole list of queued files, but the very first measuremgimsved that planning file
transfers by small chunks (tested different sizes) doedeaok to significant impact on
the lost on global optimum. This is demonstrated in the foilg graphs (Figl_218).

TheX axes denote the number of files in a request whikethe time (in units) needed
to generate the schedule and percentage loss on optimébsolWe can see that time
to find an optimal schedule without any additions grows exotially and is usable only
for a limited number of files. Splitting the input into chuniesults both in the very
promising running time and also in the quality of the makespa

2.4 Fair-share

The illustration of the batch selection is depicted in HIg9.2This mechanism is also

called adispatching scheduling rule where the idea is to assign priorities to the in-
coming tasks and the tasks with higher priorities win (theyajlocated to the resources
faster).

33

0
0 100 200 300 400

2.4. Fair-share 2. Problem analysis
Time to produce a schedule (weighted) = Makespan loss on optimum (weighted)
300 — ‘ — S 100 ‘ ‘ — ‘
CP optimum —— ‘ Peer-2-Peer ——
Peer-2-Peer 1S CP with increasing timelimit -
250 CP with symmetry breaking -~ > ‘ Optimum CP with chunk size 1
CP with increasing timelimit e 80 Optimum CP with chunk size 6

Optimum CP with chunk size 1 = ‘ Optimum CP with chunk size 16 ~-«--
—~ 200 Optimum CP with chunk size 6] [=3
(8] Optimum CP with chunk size 11 -~~~ ©
] Optimum CP with chunk size 16 - -~ - =
2 =

=
o 150 5
E ‘]
F 100 i gt ®
g o [oR
; o IS
50 . . 2 o
¥ “ o &
D @i s e S st N)] e e .
8 DY B Y L 17,) S o T . o T B

o
-

Files to schedule

500 600 700 800 900 1000

60 _80 100 120 140 160 180 200
Files to schedule

Figure 2.8: Approximation of the solver’s runtime depermgim different strategies (left)
and corresponding loss of the makespan comparing to an ajgohedule (right) for the

weighted case.

Distinct requests from users

Dispatching rule

[priority queue]

/\

I — — [i
! o I P,
t o [oo™
m Ll [| 1

g .
. .
N .

. .

. Selected requests for
N 9 Planner

the current batch

Figure 2.9: lllustration of a dispatching process. Depegdin several factors, the trans-
fers from distinct users are selected for the current batch.

Dispatching rules do not have to lead to the global optimdhit generally provides
very sufficient results and fit well into a dynamic environmeith the requirements for
a high throughput (also used in routers, grids, etc.).

As we know, requests can be made by many users and askingvemakdifferent

datasets spread over many locations.

These requests arallyadis-organized (ahead

of the time) affecting an overall performance and a delayativdry with respect to the
users. The ultimate goal of a dispatching rules is to “orgahrequests according to
several criteria and deliver a sustained performance almgiaximal quality of service
where all users have ideally identical allocations of thevyated service (i.el_fair-shdre
for users). The criteria are for example parameters inflingrtie performance in order
to accomplish the sustained data throughput, but alsosuseportance (e.g. priority)

34

2. Problem analysis 2.4. Fair-share

determining how the system’s allocation should be distadilamong users. Generally,
such system has to present a strategy fulfilling many reoargs.

If we look back at the Fid._219, where there are incoming retgigom multiple users,
the most simple dispatching rule canB-O (First In First Out) [34]. In this case, the
requests are ordered exactly as they appear in the systenoantider attributes are taken
into an account. Introducing the priorities (i.e. impoamf a request) to different users
can lead to assigning a different weights to their partictdaks, consequently give birth
to the Weighted Fair Queuing (WFQ) rule. This rule (WFQ) is a generalization of a
Round Robin (RR), where users are considered equal and their tasksckedpevenly.
RR strategy is one of the simplest algorithms, resourcesissigned to tasks in equal
portions and in circular order, without priority (also knoas cyclic executive).

Clearly, more attributes (requirements) we want to invahie the dispatching rules,
more likely they will be “conflicting” (e.g. preferring hig throughput can lead to
unfairness between users, and vice versa). Most often tiaaion function looks like
a linear combination of the desired factoFg) (vith their appropriate weight§/\{):

N .
P; = ZW{ -F¢, whereZW.’ =1 (2.1)
i= I

As an example, we can look into the DataCarousel, a systeutiihgrthe requests
for the tape system in the STAR experiment. The tape systerksves a tertiary storage,
where the medium used to store files are magnetic tapes loimgéerobotic arm. One of
the most costly aspects of dealing with robotic tertiaryage system is the time it takes
to switch a tape. Another latency problem is searching foleaofi a tape depending on
the tape size and the search speed and also a size of the Blencioig the tape. Working
toward avoiding or minimizing these delays results in adapgrformance gain. The
dispatching rule which was studied in STAR[30] led to thédaing parameters/factors
in an evaluation function:

Pt = Wawitch- FP" N - Waize- F3728 - Wjsages Fy *29° (2.2)

In this case, th®¥\witch IS a constant factor (weight) characterizing the importanic
a tape switched)\size an importance of a file size, aMil;sagean importance of a usage
history. Similarly, the corresponding attributes are:

e FSWieh_ number of files from the same tape

o FfSize- the size of a requested file

35

2.5. Cache policy 2. Problem analysis

o F°%- usage history of a user who submitted the request

In our system, the dispatching rule is a modular componedégpendent of the plan-
ner itself. It operates independently with the data stored database. Therefore any
rule can be plugged into the system, supposing all requaetbffs are provided by the
database.

2.5 Cache policy

[Cache policy controls how much and which data are kept atecgplce and when flush-
ing occurs. The idea for keeping data within a cache is tharéurequest for that data
can be served faster. One can clearly see that if files oteerawailable only at tape
system (with long response time) are duplicated at the ¢ableedata delivery can be
speed up.

Cache algorithms (also called replacement policies) ahadsch items to discard to
make rooms for new ones when cache is full. The “hit-rate” chahe describes how
often a searched-for item is actually found in the cachecéinis generally impossible
to predict how far in the future information will be needéke replacement policies are
based on experience of access patterns which have locéligfevence([18]. We will
outline several most widely used replacement algorithms.

Least/Most Recently Used (LRU, MRU) LRU [31] is based on discarding the least re-
cently used items. The implementations required keepigg-laits” (may be expensive),
keeping track of what was used when in order to find the leashitdy used items.

In contrast to LRU, MRUI[16] discards the most recently ugedhs. For random
access patterns and repeated scans over large datasetsadirtJatgorithms have more
hits than LRU due to their tendency to retain older data.

Random Replacement (RR) and Least Frequently Used (LFU) Randomly selecting
a candidate file to discard if space is needed doesn't reeeping any information
about the access history. In contrast to LRU and MRU wher@floemation considered
for discarding was age of the file, LFU algorithm counts hotewffile is needed. The
ones which are used least often are deleted first.

There also exists th&daptive Replacement Cacf&RC) [38] which constantly bal-
ances between LRU and LFU to improve combined results.

36

2. Problem analysis 2.5. Cache policy

Cache space

| .
A ! (cache occupancy

| |(oossOBBRRRREEES> high mark i should not exceed this level |

data 3
growth !
S = low mark [, cache occupancy i
| ' should not fall below this level
S >

Figure 2.10: lllustration of High-low water marking pripde.

Multi Queue Caching Algorithm (MQ) It often turns out that considering only the
age of the item may not be often enough for effective replacgrstirategy. Zhou, Philbin
and Li in [74] introduce MQ algorithm which considers:

o different cost of files: keep files that are expensive to ohtaig. those that take a
long time to get (from slow sources like MSS).

e size of files (taking up more cache): if files have differerzesi the cache may
want to discard a large file to store several smaller ones.

e expiration time of files: keep information that expires andsequently delete files
that are expired.

2.5.1 Water marking

The second role of the cache policy is to decide when the cslobeld be flushed and
how many items should be deleted. In it's simplest form theheamay be completely
flushed when there is no more space for a new element; howewer sophisticated
strategies are usually usetVater mark algorithms are widely implemented in cache
management routines. There are two thresholds, low andrhagk (see Fig.2.10), that
represent the percentage cache occupancy. The low maegk ttat cache should always
contain some amount of files and high mark states up to whiat tee cache may be
maximally filled. For example if a low mark is set to 40% and ghhimark to 70%,
the algorithm tries to keep the cache level between thes@pénentage levels. In other
words, discarding of files is activated and deactivated deipg on these thresholds.

There exist also adaptive algorithms|[39], where the tloleishare dynamically ad-
justed according to the varying 1/0 workload. Two threslsadde defined as the multi-
plication of changing rates of the cache occupancy leveltlaadime required to fill and
empty the cache.

37

2.5. Cache policy 2. Problem analysis

As we will see in Chaptdr]4 any cache replacement strategpegiugged into the
system. Since our intent was not to study cache managememtmmemented only the
simple LRU rule within water marking policy.

38

Chapter 3
Planning problem formalization

In this chapter we will present a formal description of thelgem using mathematical
constraints which present restrictions from reality.

The input of the problem, which can be constructed at anytpoitime, consists of
two parts. First one has a static character and representetivork and file origins. The
network, formally a directed weighted graph, consists oétac$ nodesN and a set of
directed edge&. Nodes represent computing sites while edges transfes lekween
sites. The weight of an edge corresponds to the link bantiwigdt throughput of units
of file size per unit of time. The information about file’s drig is a mapping of that file
to a set of sites where the file is available. In reality, thigut part is not static since the
load of the links varies with time, hence their bandwidth tliates as well. Moreover
some links may break and become unavailable. However, éptinpose of defining a

planning and scheduling model we will consider these inputspstatic received at the
beginning and which do not change during the solving process

The second part of the input is a user request, namely thé Bletsathat are going to
be transferred and their destination site. The goal of theess to produce:

e a transfer path for each file, i.e. selection of one origin andlid path starting
from the origin node and leading to the destination,

¢ for each file and its selected transfer path, allocation diqdar link transfers in
time, such that

¢ the resulting plan has minimum makespan (the finish time®fdht transfer).

The solving process is composed of two iterative stages awilvdescribe each of
them separately continuing with the explanation of thetieraction and possible reduc-
tion of search space exploration.

39

3.1. Constraint programming approach 3. Planning probtamdlization

3.1 Constraint programming approach

An alternative approach to programming which relies on almoation of techniques
that deal withreasoningand computing is calledconstraint programming [48, [17].
The central notion is that of a constraint - a relation over domains of sequence of
variables. One can view it as a requirement that states wdoahbinations of values
from the variable domains are admitted. In turnganstraint satisfaction problem
(CSP) consists of a finite set of constraints, each on a subseq of variables.

To solve a given problem by means of constraint programmiedirst formulate it
as a constraint satisfaction problem. This part of the gnolkdolving is calleagnodeling.
In general, more than one representation of a problem as a&&St8. Then to solve the
chosen representation we use mostly the general methoad) ate concerned with the
ways of reducing the search space and with spesgigach methodsThe algorithms that
deal with the search space reduction are usually catledtraint propagation algorithms
They maintain equivalence while simplifying the consiadlbpeoblem and achieve various
forms oflocal consistencyhat attempt to approximate the notion of (global) consisye

In practice we are interested in:

e determining whether the chosen representation has a@oligi consistent)
¢ finding a solution, respectively, all solutions

¢ finding an optimal solution, respectively, all optimal sadms w.r.t. some quality
measure (objective function)

The basic characteristics of constraint programming are:

e Two phases approach:The programming process consists of two phases: a gen-
eration of a problem representation by means of constramds solution of it.

e Flexibility: The representation of a problem by means of constraintsysfhei-
ble because the constraints can be added, removed or modifiesiflexibility is
inherited by constraint programming.

Problems that can be best solved by means of constraintgsmwging are usually
those that can be naturally formulated in terms of requirgs)eeneral properties, and
for which domain specific methods lead to overly complex falirations.

40

3. Planning problem formalization 3.1. Constraint progmanmg approach

3.1.1 Planning stage

The aim of planning stage is to generate a valid transferfoaitach requested file from
one of its origins to the destination node. The followingiiatism is used for defining a
model in a mathematical fashion.

The seOUT (n) consists of all edges leaving nodghe setN (n) of all edges leading
to noden. Input received from a user is a set of file names needed aestendtion site
dest We will refer to this set of file names as to demands, reptesdnyD. For every
demandl € D we have a set of sourcesg(d) - sites where the fild is already available.

We will present two approaches, namdilyk-basedand path-basegdfor modeling
planning constraints.

Shared links - constraints or nodes? At the beginning we thought about using cumu-
lative resources in CP model for modeling a shared link oteoat some site. To fully
model the layout of the real network is impossible and the ehdjust an approxima-
tion. We decided to model the shared parts if necessary dsimgnynodes and respected
bandwidth ordummylinks. This allows us to keep the model simple and if needdd on
extend the input graph.

Modeling with binary variables Animportant and very common use of variables

is to represent binary choice. Let’s consider an event thet ar may not occur, and
suppose that it is part of the problem to decide between tinaspossibilities. To model
such a dichotomy, we use a binary variakknd let

0 ifthe event occurs
X =
1 ifthe event doesn’t occur

The event itself may be almost anything, depending on theifspsituation being con-
sidered.

Link-based approach.

The essential idea for this principle is to use one decisarrable for each demand and
link of the network (edge in[a graph). We will refer to thi 1} variable as{ye, denoting
whether demand is routed (value 1) over the edgef the network or not (value 0).

Mathematical constraints, ensuring that if all decisionalaes have assigned values
the resulting configuration contains transfer paths, areduoiced below.

41

3.1. Constraint programming approach 3. Planning probtamdlization

vdeD:
Xe=1 Y Xe=0 3.1
ecUOUT (n|neorig (d)) ecUIN (n|neorig (d))
ecOUT (des(d)) ecIN (des(d))
vd € D,Vn ¢ orig(d) U{des{d)} :
<1 (3.3)
YecouT(n) Xde < Xe= 3 Yo
YeeiN(Xde <1 edTrm) ecfN(n)

The path constraint§Eq. (3.1), [(3.2),[(3]3)) state that there is a single pattefxh
demand. The demand must leave exactly one of its origins amaod be transferred to a
site where it already is (Eq._(3.1)). It has to enter the desiton site from exactly one of
its incoming links and once it is there it cannot leave it (§8.2)). Each demand must
enter some site by at most one link (the same holds for leqeing if it enters some site
it must also leave it (EqL(3.3)). These constraints alotmvakolated loops along with
the valid paths and therefopgecedence constraingse used to eliminate such loops.

Precedence constraints (Ed._(3.4)) use non-decisioniymositeger variable®ye
representing possible start times of transfer for denthoder edgee. Let durge be the
constant duration of transfer dfover edgee. Then the precedence constraint

vdeDVneN:

Xdo' (PactdUige) < S Xao-Pae 34
eciN(n) ecOUT (n)
ensures a correct order between transfers for every derttarglrestricting loops. Un-
fortunately, constraints (Ed._(3.4)) do not restrict thendins ofPye until the valuesXye
are known and therefore we suggest using a redundant constrastimate better the
lower bound for eacliPye. Let start be the start vertex o# not containing demand
(start ¢ orig(d)):

min (R, durgs) <P, 3.5
feIN(start)(af + df>_ de (3.5)

VariablesPy4e can be used not only to break cycles but also to estimate ipakes the
plan as shown in Secti¢n 3.1.5

42

3. Planning problem formalization 3.1. Constraint progmanmg approach

Path-based approach.

Similarly to thelink-basedmodel, we useXye variable for every demand and link, but
in this case, theX variables are not decisional. Instead, we generate alilgegsaths

P from each node to the destinatidest For every demand and pathp € P a {0,1}
decision variabld, is introduced. Its assignment to 1 means the file will be fieansd
over pathp, 0 means the opposite. If we denote the set of all possiblesgedm siten

to destinatiordestasOP(n), then the following constraint ensures that each file leaves
exactly one of its origins using a single path:

vdeD:

Pap=1, S Pyp=0 (3.6)
PEUncorig(d) OP(N) PEUncorig(d) OP(N)

The assignment ok variables is provided automatically via constraint prcadagn
by a constraint defined as:

VdeD,VecE: Xge= z Pap, (3.7)
plecp

stating that demand is transferred via edgeif and only if it is transferred by one
of the paths incident te.

3.1.2 Scheduling stage

The goal of thé¢ schedulihg stage is to evaluate the path eoafign in the sense of the
required makespan. Essentially, it works as an objectimetian because the realization
of the schedule will not depend on particular transfer timesulated in this phase, as
we will show in Section 4]1.

We will use the notion ofasks andresourcesfrom the area of scheduling. For each
link e of the graph that will be used by at least one file demand, wednte a unique
gmary resource Re. Similarly, for each demand and its selected links (defiaigansfer
path) we introduce a set of tasks in the following way (deggdh Figuré 3.11):

¢ if demandd should be transferred via link(i.e. Xqe = 1) we will create tasK ge,
encapsulating a positive integer variabtartye (with domainl0,, horizor]) and
constantdurye, representing starting time and a duration of the transdspec-
tively. We will assignTye to resourceRe

43

3.1. Constraint programming approach 3. Planning probtamdlization

R, m
R”l Td2,62

Figure 3.1: Example of assigning tasks (file transfers oeetiqular links) into unary
resources (links). In this case the transfer paths of des@dnandd, share linkes, and
consequently resourd®., as well.

o for any two demandsd; andd, assigned to resourd&, the constrainstarty,e +
durg,e < startg,e V starty,e + durg,e < starty,e must hold

e for each demand we construct precedences among tagjsn such a way that a
file transfer from a siteTy out) can start only after the previous file transfer leading
to this site Tq,inc) has finished, i.estarty jnc + durg inc < starty oyt

The idea behind using unary resources insteaghefgeticones, which seem more
appropriate, is their availability in current constrainhgng frameworks. However, this
statement needs a proper elaboration and study of assuhatcssing this approach will
not cause an inefficiency. We reserved the explanation arasumements to the next
sections.

An objective is to minimize the makespan of a schedule, he.ldtest finish time of
the tasks.

3.1.3 Complexity of the problem

We will show that computational complexity of the problemparticular of the schedul-
ing stage which is strongly NP-hard. Primarily, let's exfily state an instance for the
scheduling phase. The input consists of:

¢ the directed weighted graph (eventual loops are allowebgreithe weight of an
edge determines ithroughputand

¢ the set of paths without loops, all of them leading to the saentex

Each path needs time defined btheoughputof a particular edge for crossing it (for
a given edge, this time is identical for all paths). Crossingedge cannot be interrupted
and only one path can cross an edge in a given time. The pathamss its edges in

44

3. Planning problem formalization 3.1. Constraint progmanmg approach

JSSP instance Data Transfer instance
Mmoo L] R
V! dest
]W2 \—‘ - . : '62—» —————— »o
M o, Lo
J =< Ay Ay, Ay > Path defined by job J

Figure 3.2: The jok) =< A3, A1,A2 > defines a transfer path to tlikestvertex using
links e3, e1, e, with order given by precedences of actions. Connectiohsdan links
(and dest vertex) are achieved bgummyedges (dashed lines) which hasiewdown
equal to 0, thus not affecting allocation timesreal edges.

an order defined by the path itself. The goal is to alloeatge crossefor every path in
such a way that time when the last path reaches destinatitgxve minimized.

We will use the well-known three field classificationB|y for scheduling problems
as described in_[26]. We will demonstrate a possible polyiabtime reduction from

J3|pij = 1|Cmax @ 3-machine unit-time Job-shops scheduling problem (1S®i trans-
formation of the JSSP instance is following:

e for everymachine M, M2, andM3 a unique linke, 2, andes is created
e a single destination sitestis created

e every job with orderedhctionsdefines a transfer path with alternatidgmmy
edges, as depicted in Fig. B.2.

¢ slowdownfor eachdummyedge is set to 0, e.g. edge is not causing delays to any
transfer. The role olummyedges is to provide correct paths for each job.

The transformation written above can be realized in a patyiabtime, as the size of
a transformed instance increases linearly by the factorcaii3ed bylummyedges. Due
to the fact that the3|pij = 1/Cmax problem belongs to the strongly NP-hard class [61],
the direct consequence implies that computational conitglekour problem is at least
the same.

3.1.4 Unary resources

The real network links behave more like elastic resourcegrathe time needed for a file
to be transferred depends on the current situation and #tedba resource. Due to the
lack of elastic resources in available CP frameworks wed#gtto model it using unary

45

3.1. Constraint programming approach 3. Planning probtamdlization

resources which brings also several simplifications (@sgtef and more efficient filtering
algorithms). This approximation seems to be accurate dntugstimate the total trans-
fer time in a complex network environment. We verified thisuamption by executing

several measurements on the network links, as explaindtifotlowing text. The real

transfers are realized in a “parallel” fashion to achieveappr bandwidth saturation.

Multi-stream vs. parallel instances transfer study

The purpose of the following measurements is to demondtnatesaturation of the net-
work link can be achieved either by running several insta¢a transfer tool in parallel,
or by running a single instance in a mulii-Stream mode. Whikefirst case, each instance
is transferring an independent portion of data (separa&s)filn a multi-stream mode an
instance is transferring a single data set in time, thus\oegas a unary resource.

The reason why one uses parallel methods for sending data liee operation of the
underlyingTCP (Transmission Control Protocol). It is a reliable streartivéey service
that guarantees delivery of a data sent from one host to anatithout duplication or
losing data. Since packet transfer over the network is niafdle, a technique known as
positive acknowledgment with retransmiss@)is used to guarantee reliability of packet
transfers. This fundamental technique requires the recéwrespond with an acknowl-
edgment message as it receives the data. The sender keeggdhateach packet it
sends, and waits for acknowledgment before sending thepaekiet. The sender also
keeps a timer from when the packet was sent, and retransrpasleet if the timer ex-
pires. The timer is needed in case a packet gets lost or cedtuPne can easily see that
the time for transferring the real data is just a part of theralf time the sender needs for
communication with a receiver. This overall time dependp&ads) on the characteristic
of the network, especiallyoundtrip time (RTT), distance and the packet loss.

The measurements were done using three different linkgingain a distance of end
points, routing andRTT. The transfer tool used for all the measurementsipagla. We
used the defaulfCP window size set to 64 Kb. One can calculate the window size for
the best performance according to the formula R@i@sired_bandwidthi([42]). However,
since we are interested in comparing multi-stream verstallphinstance transfer, the
environment will be consistent for the comparison and thermeo need for adjusting it
now.

1TCP protocol specification - RFC 793
2|perf: |http://sourceforge.net/projects/iparf/

46

http://sourceforge.net/projects/iperf/

3. Planning problem formalization 3.1. Constraint progmanmg approach

Prague local link The link is betweerBulovkaand Golias two local laboratories in
Prague. The link is dedicated with a static routing, with aimaim bandwidth Gbit/s
and~ 0 RTT (optical fiber used over LAN). The endpoints used:

e df pch. ujf.cas. cz (source)
e ui 5. farmparticle. cz (destination)
BNL = LBNL link The link is betweeBNL andLBNL laboratories, STAR’s Tier-0

and Tier-1 site, respectively. The link is not dedicated snuted over Esnet provider.
TheRTTfor the tested endpoints is 854ms The endpoints used:

e stargrid03.rhic.bnl.gov (source)

e pdsfsrm nersc. gov (destination)
BNL = Praguelink Thelinkis betweeBNLandPrague, Bulovkdaboratory, STAR'’s
Tier-O and Tier-2 site, respectively. The link is dedicateith a static routing, with

a limited bandwidth 150 MBit/s. Th&TT for the tested endpoints is 928ns The
endpoints used:

e stargrid03.rhic.bnl.gov (source)

e df pch. uj f. cas. cz (destination)

Bandwidth saturation Bulovka-Golias Bandwidth saturation (Bulovka - Golias)
1000 T S ‘d/Th d I T 1000 T S J‘II ‘ T I T
— N .. Spel 7 reaI s|(Iperf) @\ peed/Instances (Iperf)
T ———
800 800 : _,{——er A~ i
0 o f
9 600 9 600
=3 2
k5 ®
3 400 by 400
jo Q.
0 0
200 200
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Threads Instances

Figure 3.3: DedicatedlAN. Left. Link saturation using multiple streams in a single
instanceRight. Link saturation using multiple instances.

In general, the outcome of the measurements is as expectedveAncrease the
number of streams or instances, the transfer rate and peafae increase as the net-
work bandwidth saturates. For thé\N transfer (Fig.[3.3), increasing the number of

a7

3.1. Constraint programming approach 3. Planning probtamdlization

Bandwidth saturation (Bulovka - Golias)

35
lsercentagé diﬁerenée/lnstancés(Threads) (Iperf) —
o 30
(&)
cC 25
2 oI\
@ 20
= N—1
T 15 '—{‘ /\1\
- NSO RN
©
c 5 \L[/l \i\
8 |
g o
&
-5
-10
0 10 20 30 40 50 60 70

Instances (Threads)

Figure 3.4: DedicatettAN. Comparison of both transfer methods, Y axis showing the
percentage gain in multi-stream mode over multiple ingtan@ he positive value means
the multi-stream mode outperformed multi-instance one.

streams/instances does not lead to significant speed s&csiiace at orle threlad, a dedi-
cated transfer already takes the full link speed. This istduke negligibleRTTand thus
minimal overhead in packet acknowledgements. But moredvsrclear from Fig.[3.3
that the thread handling does not decrease performanceiogbe thread usage (overall
transfer performance remains constant as the number afdimereases), an observation
which gives confidence that we do not suffer from any otheoséorder effects due to
thread handling.

Figured 3.4 3]6 and 3.8 represent the confrontation of tsattsfer methods for the
three studied links. The horizontal axis displays the nundbe¢hreads or running in-
stances and the plot captures whether multiple thread=a(as) method outperformed
the multiple instance one. For instance value 15 means thtgastreams were in 15%
better than multiple instance method, while the negatileevavould mean the reverse
benefit. The error bars represent the standard deviatioheoflifference. When mul-
tiple instance transfer mode was running, we observed arlpesormance comparing
to handling it with threads (Figl_3.4) and infer this deceea$ performance is due to
higher resource consumption and potentially, across peosgnchronization problems
(two instances ofperf do not know about each other, each making aggressive resquest
for resources - any operation needs to be coordinated by #)eA0several observation
from the measurements are:

e Dedicated WAN (Fig.[3]7,_318). A reasonable case and exhibipattern with
benefit of multi-threads up to 40.

48

3. Planning problem formalization 3.1. Constraint progmanmg approach

Bandwidth saturation (BNL - PDSF) Bandwidth saturation (BNL - PDSF)
1100 . . y . 900
Speed/Threads (Iperf) —+— Speed/Instances (Iperf) ——
1000 800 e - Aﬁ\}
1L ’i"'{‘-o—%*\
. T T —~ 700 ~
® 800] N % -
= —~ TN 2 /
8 700 /. E 600
s / S Wl f
< 600 < 500
= f = |
o 500 / 8 a0
400 = /
n / 9 300
300 /
200 ,l 200 i
100 100
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Threads Instances

Figure 3.5: Non-dedicated/AN Left. Link saturation using multiple streams in a single
instanceRight. Link saturation using multiple instances.

¢ Not dedicated WAN (Fig._3]%, 3.6). We can see clear benefitudfisthreads over
multi-instances at lower thread count (up to 30-40).

e Dedicated LAN (Fig.[3.8,3]4). The best case for study - no Rrfor bars and
fluctuation are small over short distances allowing to bsstrate the effect of the
two modes without interferences or convolution from otHézats.

For debating unary resources, the LAN Prague measuremigntB) serves as the
key plot. On WAN, things are more complicated but the trendimilar and we can
conclude the observations into the following:

(a) threads (streams) and sending file by file are more effisidrandwidth saturation
and cause less resource overhead than trying to send radikgd in parallel

(b) having multiple senders may bring the advantage of rddooy but this can be
done from multiple sender nodes rather than multiple ircgaron one node (for
spreading the load)

(c) link can be saturated using threads or instances (nderoeither ways as far as
resources are available)

3.1.5 Constraint model and solving strategy

In the previous section we have explained the main notiodglambasic decomposition
idea of the solving mechanism with two iterative stages. S&lected solving approach is
based on Constraint Programming technique, used in aatiiitelligence and operations
research, where we search for assignment of given variiblesheir domains (ranges),

49

3.1. Constraint programming approach 3. Planning probtamdlization

Bandwidth saturation (BNL - PDSF)

50
lsercentagé diﬁerenée/lnstancés(Threads) (Iperf) —
40
3]
% 30
E 20
‘-Iq: 10 ._-\'_"ﬁo—k._ ——
° s TN |/
(] 0 N’
()]
& -10
c
Q -20
=
o -30
o
-40
-50
0 10 20 30 40 50 60 70

Instances (Threads)

Figure 3.6: Non-dedicated/AN Comparison of both transfer methods, Y axis showing
the percentage gain in multi-stream mode over multipleaimsts. The positive value
means the multi-stream mode outperformed multi-instanee o

in such a way that all constraints are simultaneously satisind value of an objective
function is optimal.

Regarding the constraint model of the planning stage, dhestin the Sectionh 3.11.1,
a link-basedmodel is realized directly by arithmetic constraints (E§.1f - (3.3)) and
a path-basedne by constraints in Eq[(3.6)[-(8.7). Implementation & $sicheduling
stage, namely disjunctive constraints, is modeled by uremgurce constraints with Edge
Finding, Not-First/Not-Last, and Detectable Precedeffittesing rules based on Theta-
Lambda-tree structures [63]. The precedence constraiatsmglemented by inequality
constraints amongtartye variables.

The principle of the search procedure and iteration of desdrtwo stage model is
outlined in Alg.[1.

Algorithm 1 Pseudocode for a search procedure.
makespar— sup
plan« Planner.getFirstPlan()
while plan != nulldo
schedule— SchedulergetSchedule(plan, makespan) {B-a-B on makespan}
if schedule.getMakespan{)makesparhen
makespar— schedule.getMakespan() {better schedule found}
end if
plan<+ Planner.getNextPlan(makespan) {next feasible plan with cut amirst}
end while

The actual best makespan is used as a bound for schedulisg (8ranch-and-bound
strategy). Moreover, the actual makespan can be effegtigd also fof pruning the

50

3. Planning problem formalization 3.1. Constraint progmanmg approach

Bandwidth saturation (BNL - Prague) Bandwidth saturation (BNL - Prague)

140 Speélehreaﬂs (Iperf) —— i 140 ‘ Speeﬂllnslanc es (Iperf) ——]

120 120
T NEPURy 2 10 Y
= = I
: AT :
2 w0 i 2 /X
° j/%f o VX
L 60 A L 60 /
jo Q.
N 40 /XX/ N 40 /Yk/

20 1 20 14

0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Threads Instances

Figure 3.7: DedicatedVAN Left. Link saturation using multiple streams in a single
instanceRight. Link saturation using multiple instances.

search space during the first (planning) stage. The ideaisatitording to the number
of currently assigned demands per some link and their plessibrting times, we can
determine the lower bound of the makespan for schedule titidtevcomputed later in

the scheduling stage. Hence if we have some upper bounddanékespan (typically
obtained as the best solution from the previous iteratigolarining and scheduling) we
can restrict plans in next iterations by the following coastt:

VecE: min(Pde)erz Xge- durge+ SR < makespan (3.8)
deD =)

whereSR stands for the value of the shortest path from the endingsido dest

Therefore as soon as the lower bound of a makespan from antyiibeing generated
paths configuration exceeds the stored best one, the saesnd need to explore more
branches under the current node of a search tree.

Symmetry breaking

One of the common techniques for reducing the search spalstdasting and breaking
variable symmetries [7]. This is frequently done by addiagable symmetry breakihg
constraints that can be expressed easily and propagateiérmfy using ordering. One
idea that can be applied in the planning stage is the follgsee Fig.319):

¢ let two file demandsl; andd, have overlapping sets of origif® = orig(dy) N
orig(dy), such thatO| > 2

¢ the set of all outgoing edges from the common origins will baated byl (L =
UneoOUT (n)) and will be paired with the total ordet

51

3.1. Constraint programming approach 3. Planning probtamdlization

Bandwidth saturation (BNL - Prague)
80

60
40

” \WLH\H\H- L]

-20 - i “‘*/lTl\\

-40
-60
-80

-100

-120

Pércentage‘differencéllnstancés(Threads) (Iperf) —

Percentage difference

0 10 20 30 40 50 60 70
Instances (Threads)

Figure 3.8: DedicatetVAN Comparison of both transfer methods, Y axis showing the
percentage gain in multi-stream mode over multiple ingtan@ he positive value means
the multi-stream mode outperformed multi-instance one.

Figure 3.9: In the configuration shown, demadgsndd, have an overlapping sets of
origins. The outgoing links from this intersection agel,,l3, andl,. If demandd; is
assigned to link,; and demandi, to link I3, relationl; < |3 must hold.

e if both file demandsl; andd; are leaving their origins via links from the deive
will require ordering between particular linkég,b € L : b < a = post constrainty, o =

0V X4, =0)

In other words if we have checked the configuration where ties &re leaving their
common origins by two links, it is not necessary to check #isswappedase .

Similar idea can be applied in the scheduling stage as wethi$ case, let’'s suppose
that several file demands are going to be scheduled for afératosthe destination by
exactly the same path. Since file demands have an identeeglvge can fix the order in
which files are allocated to each link from their common pa¥tare precisely, among
the corresponding tasks assigned to each unary resounaseating the link from the
path, we introduce additional precedences fixing theirorde

Both presented methods significantly contribute to segpeloes reduction because a
real network topology and distribution of files tend to a \@siount of symmetries.

52

3. Planning problem formalization 3.1. Constraint progmanmg approach

\Ul 0/1 0/1 0/1 X0/1 0 0
T=10\ s >

Figure 3.10: A configuration depicting a state of decisiomaldes for some demand that
is going to be transferred to the bottom destination sitéhdforigin of demand consists
of two sites, symbolized as upper leftmost vertices, solauld still try an assignment

for two rightmost links. By the filtering procedure we canued their values as can be
seen on the right graph.

Implied constraints of X variables

The usual purpose of filtering techniques is to remove soroal imconsistencies and
thus delete some regions of search space that do not comgisoéution. By remov-
ing inconsistent values from variable domains the effigyepicthe search algorithms is
improved.

A filtering principle we can apply for the decisidfivariables in thdink-basedplan-
ning model is following:

e letS andS, be two sets of the decisiok variables,
o letS be asubsetdd, .. C S,

o if there exists a constraint statirfk.s X = 1 and similarly for the second set
> xes, X = 1, we can reduce domains of variablesSin, $; to value 0 (depicted in
Fig.[3.10).

The filtering procedure is simple. During posting of consirainto the model, each
set of variables, summation of which must equal to 1, is stoféen, search for pais
andS, is achieved by a quadratic nested loop over the sets stored.

Search heuristics

In constraint programming, the variable and value selackieuristics determine the
shape of the search tree, which is usually traversed in &dept order. A clever branch-
ing strategy is a key ingredient of any constraint satigdacapproach. We have tested
several combinations of variable selection and valuetitardneuristics.

Initially, in the planning phase well knowstomstrategy([25] for labeling decisiod
variables was tested, which corresponds to selecting Aoolariables in a fixed order
(filtering of a variable immediately implies an instantoat). In addition, we suggested
also aFastestLinkselection forlink-basedplanning approach and similarBastestPath

53

3.1. Constraint programming approach 3. Planning probtamdlization

for path-basedne. The principle for thé&astestLinkis that at the decision point from
unassigned variables of dematidthe selectecqe corresponds to the fastest link<
argmin-1_._mslowdowne)). If several such variables exist for demands, the first sne i
picked up from a fixed order. The selection principle FaistestPaths analogous, just
the speed of a path is defined as a sum of slowdowns of its links.

According to the measurements shown in Section B.1.6, therityaof time was
spent in the planning phase, hence we proposed an improviadbieaselection heuristic
that exploits better the actual transfer times by usingrmétion from variable®ge. In
particular, the heuristic, callddinPath, suggests to instantiate first variablg such that
the following value is minimal:

inf Pye+ durge+ SR, (3.9)

where infP4e means the smallest value in the current domaiRygf

Concerning the value selection heuristics, both variamseviested, particularlyn-
creasing(assign first 0, then 1) anDecreasing(assign first 1, then 0) value iteration
order.

In the scheduling phase two approaches were consideret .ofig, callebetTimes
is based on determining Pareto-optimal trade-offs betwegkespan and resource peak
capacity. Detailed description and explanation can bedonif44]. The second one is a
texture-based heuristic call@umHeightusing ordering tasks on unary resources. The
used implementation originates from [6] and supp@#stroidsequencing of the most
critical activities.

3.1.6 Comparative studies

We have implemented and compared performance of both attees of the model,
namely usindink-basedand path-basedpproach. Several combinations of heuristics
were tried and in addition comparison with simulated PeBe2r method is shown.

For implementation of the solver we u@hoco@, a Java based library for constraint
programming. The Java based platform allows us an easegration with already ex-
isting tools in the STAR environment.

3Choco] http://choco.sourceforgelnet

54

http://choco.sourceforge.net

3. Planning problem formalization 3.1. Constraint progmanmg approach

Peer-2-Peer simulator

The Peer-2-Peer (P2P) model is well known and successfséig in areas such as file
sharing, telecommunications or media streaming. P2P naw=n’t allow file transfers
via paths, only by direct connections. We implemented a R&filator by creating
the following work-flow: a) put an observer for each link leading from an origin to the
destination) if an observer detects the link is free, it picks up the fileiatdite (link
starting node), initiates the transfer, and waits untilttaesfer is done. We introduced a
heuristic for picking up a file as typically done for P2P. Lioliserver picks up a file that
is available at the smallest number of sites. If there areerfilms available with the same
cardinality oforig(n), it randomly picks any of them. After each transfer, the fdeard

is removed from the list of possibilities over all sites. §process is typically resolved
using distributed hash table (DHT) [40], however in our diamor only simple structures
were used. Finally an algorithm terminates when all fileghehe destination, thus no
observer has any more work to do.

Data sets

Regarding the data input part, the realistic-like netwadpip consists of 5 sites, denoted
as BNL, LBNL, MIT, KISTI, and Prague and all requested files supposed to be trans-
ferred to Prague. The distribution of files origins at ondipalar site, is following: the
central repository is at BNL where 100% of files are availabBNL holds 60%, MIT
1%, and KISTI 20% of all files. All presented experiment weegfprmed on Intel Core2
Duo CPU@1.6GHz with 2GB of RAM, running a Debian GNU Linux.

Experiments

CPU time limit was used for both phases and more preciseleftop-level search
loop detects that time cumulatively spent in planning aritedaling phase exceeded 30
seconds, the search is terminated. Tablé 3.1 shows comparisix combinations of
search heuristics fdink-basedand path-basednodel with a Peer-2-Peer one, with an
emphasis on a makespan, as quality of the result. We canagmkhbasedmnodel gives
generally better results thgrath-basedand the most efficient combination of heuristics
is FastestLinkvariable selection ilbecreasingvalue order with th&SumHeighteuristic
used in a scheduling phase. In this case the solver prodebedisles that were better
than P2P for all input instances, while the most significamdiits & 50% gain) are for
instances up to 50 files. For instances of 40 and more filespaibinations of heuristics
reached the time limit of 30 seconds. For P2P all makesparesot®ained in less than 1

95

3.1. Constraint programming approach 3. Planning probtamdlization

Link based [Path based
. dom 7 fast\, fast\, dom 7 fast\, fast™,
‘ Files || P2P | "oy ST SH ‘ ST ST SH
1 1 1 1 1 1 1 1
20 24 12 12 12 77 15 15
40 40 22 22 22 149 33 33
60 56 42 42 42 237 48 48
80 72 57 57 57 ? 64 64
100 88 73 73 73 ? 81 81
120 104 89 89 89 ? 104 103
140 120 103 103 103 ? 128 127
160 144 117 117 117 ? 150 149
180 152 137 134 132 ? 172 172
200 168 165 165 146 ? 193 192

Table 3.1: Comparison of makespans', \, - Increasing, Decreasing value selection,
ST - SetTimesSH - SumHeighheuristic.

Files number of requested files to transfer

RunTime time in seconds taken by solver to generate result

% in 1 percentage of overall time spent in the planning phase
% in 2nd percentage of overall time spent in the scheduling phase
of 2nd number of scheduling calls

P2P-M time in general units to execute plan from P2P simulator
Makespan || time in general units to execute plan from CSP solver

[Files][RunTime [%in 15 | %in 2" [#of2"@ | P2P-M | Makespan |

1 0.353 70% 30% 1 8 1
20 3.548 7% 23% 18 24 12
40 30 91% 9% 169 32 22
60 30 98% 2% 42 56 43
80 30 98% 2% 23 72 58

100 30 98% 2% 28 88 73
120 30 80% 20% 119 104 89
140 30 95% 5% 40 120 103
160 30 94% 6% 45 144 117
180 31 92% 8% 47 152 134
200 32 89% 11% 57 168 146

Table 3.2: Results folink-basedapproach withFastestLinkselection in™\, order for
planning phase an8iH heuristic for scheduling phase.

second. Makespans are in general time units, where 1 uraality depends on real link
speeds, and we can roughly estimate this 1 unit to the cofigkconds. Hence, the time
taken to compute a schedule is paid-off by savings resuitorg a better makespan.

In reality the network characteristic is dynamic and flutdsan time. Hence, trying
to create a plan for 1000 or more files that will take severalrfido execute is need-
less, as after the time elapsed the computed plan may norlbegelid. Our intended
approach is to work with batches, giving us another benefinplementing fair-share
mechanism in a multi user environment. Particularly, thguests coming from users
are queued and differ in size and priorities of users. Theipoy to pick demands
from waiting request into batch within reasonably shoréimals is very convenient for
achieving fair-shareness. The experiments give us an &stiom the number of files per
batch.

For a better decomposition and estimate of times spent irpliases we studied
heuristics combinations such &astestLink+ SumHeighisee Tablé 312). On the ba-

56

3. Planning problem formalization 3.2. Mixed Integer Peagming approach

Heuristics performance for 50 files Heuristics performance for 150 files

50 w w : 150 : : .

a8 | l FastestLink | \ FastestLink
. { MinPath . 145 \ MinPath
2 46 ¢ \ Peer-2-Peer e 1 2 140 Peer-2-Peer ,
c c
3 3‘2‘ \ 3 135
7 [0 \
8 3! \ § 125 \
S 36 S 120
p = \

34 1 115

32 110

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)

Figure 3.11: Convergence of makespan during the searclegsdorFastestLinkand
MinPath

Solution time | Makespan
| Files || FastestLink MinPath | FastestLink| MinPath | P2P
25 3.862 1.431 14 14 24
50 26.508 27.556 36 32 40
100 8.627 3.176 73 73 80
150 16.52 14.618 111 110 120
200 26.167 14.031 146 146 160

Table 3.3: Comparison of heuristics with emphasis on timemwtne best solution was
found and the makespan.

sis of detailed measurements, we can see that the majortiynefspent in a solving
process happens in the planning stage. According to thisfatan average number of
scheduling calls (5-th column in Takle B.2) the implemeatabf the scheduling stage
seems to be fairly efficient. Therefore, we have focused enrtiprovements for the
heuristicMinPathin the planning stage as proposed in Secfion B.1.5 and ceuhpae
performance with th&astestLink Figure[3.1ll shows that convergence of the hiw-
Path heuristic is faster than théastestLinkand both heuristics achieve better makespan
than the P2P approach.

Table[3.8 shows similar comparison of heuristics and the i@Bel including the
time when the best solution was found for several input ima.

3.2 Mixed Integer Programming approach

Linear programming is a method of minimizing a given lineandtion (minc™ x) with
prog g gag

respect to the system of linear inequalitids € c¢) [37]. Vectorx represents the variables

57

3.2. Mixed Integer Programming approach 3. Planning protitamalization

to be determined. If all can be rational, the problem can Iheesdn polynomial time.
However when some or all of the variables must be integeresponding to pure integer
or Mixed Integer Programming (MIP) respectively, the peshlbecomes NP-complete
(formally intractable).

Because of robustness of the general model, a remarkahlyaitety of Mixed inte-
ger models can be used to formulate just about any discréimiaption problem([41].
They are heavily used in practice for solving problems inggortation and manufactur-
ing: airline crew scheduling, vehicle routing, productanning, etc. The applications
also include operational problems such as the distributf@yoods, production schedul-
ing, and machine sequencing.

Several algorithms from operation research are widely @rsesolving integer pro-
gramming instances in reasonable time. Reformulation efpitoblem into the set of
linear inequalities often involves relaxation of sevemhstraints. In the following text
we introduce the extension of the data transfer problemeidttP problem with involved
approximations.

Branch and bound This is the most widely used method for solving integer pangs.

The idea is to ignore the integer restriction and solve thdehas though all variables
were real-valued. ThilsP-relaxationprovidesbound on the best objective function value
obtained, and sometimes (coincidentally) results in alié&asolution. The second aspect
is branching. As a node is expanded, two child nodes are created in whistvagable
(one which didn't get integer value) bounds are added to tbhblem. More generally,
let’'s consider candidate variabtgthat has a non-integer value between the next smaller
integerk and the next larger integ&r- 1. The branching then creates two child nodes:

¢ the parent nodeP with the new bound; <k
e the parent nod&P with the new bound; > k+1

These new nodes (bounds) fongeaway from its current non-integer value. If the-
relaxationat a node assigns integer values to all integer variables, tifie solution is
feasible, and is the best that can be obtained by furthernsipa of that node. The
solution value is then compared to the incumbent and repladéit is better. If the
LP-relaxationis infeasible, then the node and all of its descendents &asible, and it
can be pruned. The search proceeds until all nodes have bked ®r pruned, or until
some specified threshold is meet between the best solutiomdfand the lower bounds
on all unsolved subproblems.

58

3. Planning problem formalization 3.2. Mixed Integer Peagming approach

Branch and cut For branch and cut, the lowdound is again provided by the LP-
relaxation of the integer program. The optimal solutionhis tinear program is at a
corner of the polytope which represents the feasible re@iom set of all variable set-
tings which satisfy the constraints). If the optimal sadatto the LP is not integral, this
algorithm searches for a constraint which is violated bg #alution, but is not violated
by any optimal integer solutions. This constraint is cablecltting plane. When this
constraint is added to the LP, the old optimal solution isargkr valid, and so the new
optimal will be different, potentially providing a betteawer bound. Cutting planes are
iteratively added until either an integral solution is fowr it becomes impossible or too
expensive to find another cutting plane. In the latter caseditional branch operation
is performed and the search for cutting planes continuek@subproblems.

3.2.1 Extension of the model

Since required datasets usually overlap together, we wikaltlo minimize also the data
movement of the common parts. In other words, if the samedfitequired by different
users and the transfer paths share a link, we transfer thenfikt@mmon link only once.

For this extension we have to slightly modify the constranatdel, since the transfer
path for a file can form &orest- using the terminology from the graph theory.

We denote the weight of an edge corresponding to the link Wwihld asbw(e) -
bandwidth between two sites or average latency time for ihvage elements (e.g. the
time to stage the file from the tape system). The informatioou& file’s origins is a
mapping of that file to a set of nodes where the file is available

The input received from the users is a set of file nafeshere for every filef € F
we have a set of sourcesig(f) - sites where the fild is already available and a set of
destinationglest(f) - sites where the filé is supposed to be transferred.

The essential idea is to use one decision variable for eaghitl destination and
edge in a graph. We will refer to thi,1} variable asX;eq, denoting whether filef
is routed (value 1) over the edgeof the network or not (value 0) to its destinatidn
Mathematical constraints (Ed. (3110)-(3.12)), ensurhag tf all decision variables have
assigned values the resulting configuration contains ttiependent transfer paths, are
analogous to the Kirchhoff’s circuit laws.

VfeF, vdedestf):

Xted= 1, > Xted=0
ecUOUT (n|neorig(f)) ecUIN (n|neorig (f))

(3.10)

59

3.2. Mixed Integer Programming approach 3. Planning protitamalization

- Xfedest; dest
orig o -
o desty X_/_(, desty
»>
Xf_(»_d(rsf.) o dest; orig :: destsy
orig -
~——ae desty

Figure 3.12: Two independent paths gtaedtogether, so the file using their common
links will be transferred only once (e.g. the file is stagety@nce, then transferred to
two different destinations).

Vi e F, vd e desl(f) . Z Xted = 0, Xiedq=1 (3.11)
ecOUT (d) ecIN(d)

Vf eF, vd edest(f), vn¢ orig(f)u{d}:
YecouT(n) Xfed <1 (3.12)

Xted = Xted
Yeein(m Xfed <1 edTr(n) ee%(n)

Having generated all independent paths for a file to eaclsafastination, we need
to gluethem together. One can look at it as creatirfgrastusing the terminology from
the graph theory (Figufe 3.12). We achieve it by defining navaty two-indexvariable
Xie Stating whether filéd uses linke (apart from reasoning about destinations).

VfeF, VeecE, vd e dest(f): Xied < Xte (3.13)
vVfeF, VecE: Z Xted > Xie (3.14)
dedest(f)
VfeF, Vné¢orig(f)u{d}: Z Xie<1 (3.15)
ecIN(n)

Finally, since we are minimizing thenakespanthe time to transfer all files to the
requested destinations, we define the constraints ([EgQ)j¥dr estimation of the com-
pletion timeT variable and appropriate objective functioninimize T

. < Sizeg(f) - Xe
veEE';T(e)ST (3.16)

Files sizes (identical or not)? In the former CP model we were assuming the identical
file sizes, what allowed us to use particular symmetry bregpkechniques to achieve

60

3. Planning problem formalization 3.2. Mixed Integer Peagming approach

more reasonable running time. The formulation of the objedunction in the MIP
model does not limit us in this way while the running time oé flanner is still faster
than the previous one. Hence, we gained the flexibility to ptea single batch files from
different datasets differing in sizes.

Planning without scheduling?

The model does not reason about the exact scheduling (fjroiride transfers in contrast
to the former one explained in Chapitér 3. The estimation®tdbal makespan is based
on the idea, that this value cannot be smaller than the maritimae needed to transfer
planned files over the link (in a serialized fashion - oneraitether, considering the full
bandwidth is available for each transfer). This can be simpdeled using the formula:

VeE{zt

It is much faster to include this estimation already in thenping phase than reasoning
about the exact schedule as we saw most of the time is spdm later phase.

f x
S'Ze(fe 1 (3.17)

According to the simulation of the network behavior (for aiiwe developed a stan-
dalone package) if the real transfers are realized in a gresthner comparing to fol-
lowing the exact schedule we loose3% of time, which is negligible. By greedy manner
we mean that as soon as the file is available at the source dih&rgnd the plan says it
has to be transferred over the link, the transfer is executed

Benefit of this greedy approach is that it is much easier taleanaccuracies of any
kinds caused in real life scenario rather than relying orfdbethat exact schedule would
be always possible to fulfil. For instance, if some file woudddelayed it would cause
disorganizing of the next part of the schedule.

3.2.2 Implementation

The model consists of all linear constraints usiogary (X) andreal (T) variables. As
explained in the previous section for realization of filewskers we do not need an exact
schedule, only the plan (the transfer paths) that will béoteéd by the distributedink
managers Therefore, after the comparison of solving techniqueshese Mixed Integer
Programming (MIP) approach which provides the most efftaiesults. As the backend
MIP solver we us&NU LinearProgrammingKit (GLPK [23]) from Java programming
language via SWIG interface ([24]).

61

3.3. Coupling with CPUs 3. Planning problem formalization

..

..

Figure 3.13: Computing centers in STAR experiment.

Files | 10 | 25 | 50 | 75 | 100 | 200
Time (s) | 0.024] 0.258| 0.786| 1.324| 2.518| 9.574

Table 3.4: Average time in seconds to find optimal transféngpa

The real-life network structure amoriger-{0,1,2} sites in the STAR experiment is
depicted in Figuré_3.13. The distribution of files is takeonfrempirical data, where
100% of the files are kept at MSS, 60% at LBNL, 20% at KISTI and &3 spread
amongTier-2 sites.

According to the results (Table 3.4) planning in batchesleéffto achieve adaptive-
ness to the network and fair-shareness to the users) sedragealizable and payed-off
by the gained optimality.

3.3 Coupling with CPUs

In the previous chapters we addressed and focused on th&aadéer problem, where
the task was to bring data sets to user specified locatioresrdié of the planner was to
decide how to achieve it considering all constraints andrgaminimal makespan as an
objective. However, very often the task is not finished bytthree data are moved, but
when data are analyzed. In other terms, the data movemelfitatdy precedes the data
processing.

This section discusses the extension of the model and dexesréhe approach for
reasoning about CPUs. We will start with reformulating theljbem and introducing a
few notations in an effort to cover additional computingo@es and their restrictions.

Before we turn our attention into the mathematical constsailet us underline the
benefit of CPU coupling by explaining the real case with patigun processing in STAR
(see Fig. [3.14). Part of the production is being done at Angocomputing cloud
(Chicago) together with PDSF/NERSC computing center (Blesy. The workflow is

62

3. Planning problem formalization 3.3. Coupling with CPUs

" Argonne:
P N !\ < cloud |
~ no

BNL

Figure 3.14: Representation of production processinggusigonne cloud with no cache
space and PDSF farm with 20TB cache. Because of limited caicB&IL it turns out
practical to feed Argonne cloud with data streaming fromhbmtasts (PDSF and BNL).

following: files are continuously staged from BNL's HPSSteys to the local 2TB cache.
Since Argonne cloud is not equipped with any cache, the firelmtransferred from
BNL to Argonne only if there is a free CPU slot. To the contrd?PSF site has suffi-
cient 20TB cache and can hold data even if all the CPU slotsanapied. Therefore, and
this is being solved by handit turns out that it is advantageous to feed Argonne’s CPUs
(when free) simultaneously from BNL and PDSF cache. If we &agstem capable of
dynamically solve this in automatic fashion the benefitddde clearly seen.

While in the pure file transfer problem the task was to locaie laring files to re-
guested destinations, with CPU coupling the problem hasteelormulated. A user
doesn't specify a single destination anymore, but a lisvaflable processing sites along
the full set of files. Each requeB is therefore composed of set of files which need to
be processedk) together with a set of destinations - processing sibgg) (Wwhere user
is allowed to run jobs (Eq[(3.18)). By saying allowed we m#wt user has access and
can run jobs on any of these sites.

Ro={{f1....fn}.{d1,....dw}} (3.18)

'

Fr Dr

The task of the planner is to find transfer paths for all file®(g file has to appear in one
of the destinations for each request it belongs to) conisidéne processing phase of the
file at the computing site. The system may distribute filesifeorequest among available
destinations and execute job on the portion of data set apabny siteA while on the
other fraction of data set at computing dte

63

3.3. Coupling with CPUs 3. Planning problem formalization

orig(f_l) D{R.i}

orig(f_m

Figure 3.15: Let there be 2 file§ and fy, belonging toFr of some reques®. Blue
vertices represent the origins 6f while red ones the origins df,. The possible desti-
nationsDr (processing farms) are depicted with grey vertices on tjie side. First, we
need to establish if there exists a transfer and processsiggDummyedges) path for
each file.

The graph representing the network is extended folxhenmyedges joining com-
puting sites with thelummyvertex (Fig.[3.1b). A file put on sondummyedge means
the particular site will provide the CPU power for runningets job dependent on that
file.

A computing site is represented with an average time it née@socess a unit size
file. The functionavg(f,e) takes a filef and edgee € Dummyand returns the average
time it takes to process fil¢ at site assigned to the edge The number of currently
available (free) slots (CPUs) at the site is denotedrbg(e). Since we will use this
function later in the denominator of the relation, the retailue has to be always positive.
In case the site is fully occupied and there are no free slo¢sfunction returns small
€>0.

Similarly to the MIP approach for solving pure file transfepiplem, the 3-index
binary X variables (indexed by edge, request, and file) will form deyaths for every
file respecting available origins and processing sites.urei@.1b visualizes this on a
simple example.

We will use again mathematical constraints Eq.(B.19)EERZ), ensuring that if all
binary decision variables have assigned values the reguttinfiguration contains the
independent transfer paths. There is a slight modificatothé transfer MIP model
with destination constraints, because with CPU couplingghth has to lead ummy
vertex and through exactly one processing site (Eq. (3(2®2)).

,oorig(f)y |

ey Vi=1,... IR, VfeFg:
e " C @19)
Xire=1, > Xtre=0 '
’ o ecUOUT (n|neorig(f)) ecUIN (n|neorig(f))

64

3. Planning problem formalization 3.3. Coupling with CPUs

orig(f_1)

orig(f_m)

Figure 3.16: Let there are two fildsand f, which need to be processed by 3 independent
jobs. Filef| (blue color) is sent for processing to two separate farnis. fifj (red color)

is sharing the part of transfer path and processing farm thighfirst copy of the file

fi. Numbers over the edges indicate whether the edge patgsipathe file transfer (or
processing) or not. First number refers to the fjland the second to the filig,.

Vi=1,...,|R, VfeFg:
Xire =0 (3.20)

XfRie = 17

eEUOU-l%wEDRi)
e¢Dummy

D ecUIN (%deDRi)

Vi=1,...,|R|, Vf € Fr, Vn ¢ orig(f) UDR :

Xtre <1 (3.21)
Y ecOUT(n) XfRe XiRe= ¥ Xire
YeeiN(m XfrRe <1 occGrm) eciN(n)

Vi=1,...,|R,Vf €eFr, Vd € DR :

~D_{Fe_u) o Z XfRie: Z XfRie (322)
ecIN(d) ecOUT(d)
ecDummy

Thegluingmechanism applied to individual transfer and processitigga@arked by
3-indexX variables) is similar as described in Secfiod 3.2. Howesiece the processing
of a file which belongs to different requests has to be constiseparately (two different
users’ jobs are assigned to separate CPUs, even if bothdepahe same file), we need
to handle this in the model.

Let us first look at Fig[3.16 depicting the sample processasg. We will first ex-
plain how variables will refer to the configuration so one batter understand what we
need to achieve. There are two fil§sand f,, which need to be processed by 3 inde-
pendent jobs (requests). Fifg represented by blue color, is transferred from the origin
over two links and then sent for processing to two separatestaFile f,, represented
by red color, is transferred from the origin over the firsklend afterwards sharing the

65

3.3. Coupling with CPUs 3. Planning problem formalization

transfer path and processing farm with the first copy of theffii Numbers over the
edges indicate whether the edge participates in the filsfeafor processing) or not. In
our example, the first number refers to the fileand the second to the fillg,. The first
farm will be then processing once filg and once filef,, while the second one will be
processing once only the copy 6f

To form thegluedtransfer paths (using edges Dummy into aforest(Eq. (3.23) -
(3.28)) we introduce 2-index binaby variables stating whether the edge patrticipates in
the file transfer path (from one of its origin to the procegssite). The file processing
at the site is modelled usinigummyedges and since a single file may be processed by
different jobs the 2-indeX variables have to be non-negative (and not strictly binary)
when dealing with edgese Dummy

Vi=1,...,|R, Vf € Fg, Ve € E: Xire < Xte (3.23)

Vi e Uj:l,A.A,|R\FRj :

IR|
o>
i;xm,e > XieVe ¢ Dummy (3.24)
IR|
ZleR‘e: XteVe € Dummy
i=
\ANS Uj:l,A.A,\R|FRj7 vn ¢ orig(f)UDR : Z Xie<1 (3.25)
ecIN(n)
0/1 e¢ Dumm
XiRe € {01} Xe= /1 e Dummy (3.26)
O,...,|UfeFRiRi| e € Dummy

Finally, since we are minimizing thHigakespanthe time to transfer and process all
files at available sites, we define two sets of constraints (@d1)) for estimation of
the completion tim&@ variable and appropriate objective functioninimize T. First set
of constraints Eq.[(3.27) estimates the transfer time aadsétond one Eq[(3.28) the
processing time.

size(f) Xre _ 1 (3.27)

Vee E e¢ Dummy: we =

feu R

an(f7e) ! Xfe
feu R; mln(free(e)7 ZfGUFRi)

Vee E ec Dummy. (3.28)

66

3. Planning problem formalization 3.3. Coupling with CPUs

Dummy edge for ‘____/’:‘:t’“" .
20TB cache as destination .- N "TT~~__ Dummy edge for
- - ’ 2TB cache_as destination

Argonne-
- cloud |
no

Figure 3.17: Representation of production processingguangonne cloud as the graph
input for the model. The storage cache nodes are also cathtedthedummydestination
in order to allow the model to bring files closer to the CPUslevthiey are taken by other
jobs.

The constraint EqL(3.27) creates a lower bound of the makelspsed on necessary
transfers. It simply counts the aggregated size of filegyassi to transfers over each
link and estimates the time it takes to move them knowing itiésl bandwidth. The
constraint Eq. [(3.28) is a bit more complicated since the jofmcessing happens con-
currently on parallel CPUs. The estimate is therefore dgneumber of free slots and
number of files to be processed on the site. Recall that fombtée(e) returns always
positive value.

With the above extensions to the model we are able to addressasoning not only
about file transfers but also about file processing at diffiesges. However, there is one
remaining issue that needs to be solved. If we look back intaratial motivation from
Fig. [3.14, displaying the production processing schemalRs we can see that there
is a substantial benefit of bringing files to the storage caatleser to the processing
sites, even if all the slots are used. The model, as it is difab®ve, reasons about
bringing files to the processing sites since they are asdiga¢he only destinations. If
the processing sites are occupied we would still like thgesdio reason about bringing
files to the storage space closer to the CPUs. In order to smtuif reasoning we can
create additionatlummylinks from the storages to thrdummydestination vertex in the
graph as represented in Fig._3.17. The weights for theseiacalidummyedges need
to be properly set so the solver will prioritize bringing §iléo the cache space in case

67

3.3. Coupling with CPUs 3. Planning problem formalization

the processing slots are taken. By setting the appropriaightvwe can also control the
preference between storage spaces.

68

Chapter 4
Technical implementation

Having described the methodology of solving approach amdiisitions of various alter-
nations of the model, now we turn to technical implementatibproposed techniques.
Regardless of how optimistic, universal and versatile tfoppsed approach may seem,
even if simulations confirm the assumptions (which is theessary step), only the func-
tional implementation of them delivers the benefits andwleess in the production en-
vironment. This thesis tries to provide a proper balance/éen the theory and practice;
and this chapter presents the building blocks of the praicside.

The software design yielding the specifications, we alreadlined in the previous
chapters, has to address and consider many aspects. Hgpedata Grid environment,
which implicitly brings distribution and loosely coupledraponents, it has to keep in
mind modularity , maintainability andreliability . The software has to consist of well
defined independent components which should be testedlati@mo before further in-
tegration. On the other hand, grandiose and extensiverdshiguld not overwhelm its
compactness as one can often see in the family of Grid tootsthésame time, the
software should perform the required functions and delvieat was expected and well
defined in specification.

Let us start with the software architecture with the aim tespnt the conceptual
integrity for a system.

4.1 Architecture

It is important to pay close attention to the architectur¢hef system - the conceptual
glue that holds every phase of a project together [14]. Ia $leiction, we will describe
the elements of the system, properties and relations battheen. We introduce briefly
each component following the work-flow (see Hig.14.1 forsthation).

69

4.1. Architecture 4. Technical implementation

Let us start with explaining how requests are put into théesgsEnd users (or stand-
alone services) generate requests using the web intevfaitesn in PHP following the
MVC design pattern. There are two possible ways how a requedteapecified.a)
either as an encapsulation of the meta-data query (as wodérsy STAR’s File and
Replica Catalogue), dv) providing the list of files using &lelist. An example of the
catalogue query is:

e production=P10ik,
o filetype=daq_reco_MubDst,
e trgsetupname=AuAu39_ production

where we specified type of the production (data set), what ofgdiles we are interested
in and some trigger setup. This meta-data query covers 20000 files with a total
size of 48TB. The population of the database with files balon¢p the request is done
asynchronously by separate component as we will see soon.

The second approach of entering the request is using atfilehgch has the following
syntax:

SI TE; STORAGE; PFN

Each line then describes exact location of the file given bypitysical file name, the
storage that holds it and finally the site where the storatpeéted.

The part of a request is also a desired destination for a datanghe form of site and
storage) which user selects using the web interface.

Afterwards, the request is stored inS®L database (system suppoMySQLand
PostgreSQLin a Catalog agnostic manner (any Catalog should work aasféiney have
a LFN/PFN concept our approach relies on) with the additianfarmation like user
name, group or date of the request.

Later, the component callddle Feedercontacts thé-ile and Replica Cataloguand
makes the query for the requested meta-data. The outputnatmn is stored back to
the database, including all possible locations for evegyifila request. This is when
population of the internal database with file repositoriapgens. Because of usually
large volume of records that needs to be stored in a datatheedele Feederuses.OAD
DATA | NFI LE syntax that provides high performance.

The main logic and reasoning about the plan happens in the bfdhe system, a
component called thBlanner It is the place where realization of the model is done and
where the plan in iterations is computdétlannertakes a subset of all requests for files to

70

4. Technical implementation 4.1. Architecture

% File Catalogue

1 SO —
A (Web interface R -
— - 1

Internet /—h - PHP 1
— e - MvC design pattern) =

_——— = = - - 4 e
g Unix0DBC

- Postgresql

7 FiTe Feeder—
1

—, - database
population]

=

v - tySal
g HPSS Dtb.
Data Move 4

FOT

________ -
“Planner \ | Watcher E
[- Java ! - status

' - cp (Choco)) 1 propagation
\ - MIP (GLPK) 1 \

Figure 4.1: Architecture of the system.

be transferred according to the preferred fair-share fonctt creates the plan (transfer
paths, as we explained in the previous chapter) for the tseleequests and stores the
plan back to the database.

The individual file transfers are handled by the separatellised component called
Data Mover As we specified at the beginning, we want to use existingtgohpoint data
transfer tools and use them as the back-end instrumentDdtagViovershould serve as
an intelligent wrapper on top of such tools handling the wditke role of these workers
is to perform a point-to-point data transfer on a particlitek following the computed
plan. The results and intermediate status is continuoesigrded in the database and
user can check the progress at any time.

Because of the asynchronous nature of the communicatierebatcomponents, the
system has to have well defined states and transitions frarstate to another given
by state diagrams. We will explain the flow in the followingcBen. TheWatcher
independent component running at each site, is resporfeiblghanging states of the
objects and cache management.

We can see that the whole mechanism is a combinatictebberative (assuring
optimality) andreactive planning (assuring adaptability to the changing enviromthe
Since this is crucial to the argument, we will continue wikplanation of the workflow
and inter component communication with the direction to(flannerandData Move)
serving up as a “reasoner” and a “worker”.

71

4.1. Architecture 4. Technical implementation

4.1.1 Web interface

The user interface, the space where interaction between asd system occurs, serves
for providing operations, control and getting feedbackrfrihe components in a simple
and compact way. It allows users to enter their requestsraitithe file catalogue query
form or by uploading a file list, as we mentioned in the presieaction. A set of screen-
shots from the user’s web interface is shown in Hig.] 4.2. @ydieedbacks the initial
information like total size of the requested dataset, sarfil@d paths for control and ex-
pects the confirmation from the user. If user checks and fildefarmation correct,
the request can be confirmed. Afterwards, (Wk@ée Feederpopulates the database,
Plannercreates first transfer paths aBéta Moverstarts executing transfers), the web
interface continuously provides information about eaduest in the system. Among
others, it includes:

e number of succeeded files (already at the destination),
e number of failed files,

e estimated time to the finish, etc.

When the processing of the request is finished, the user siathdi failed files and even-
tually resubmit only this portion again.

The interface also provides updated information for adstiator/operator, where it
displays the current load, speed and quality of the serviteepch link/service. Each
resource also provides detailed graphs showing the peaficenand usage for past 6
hours, 24 hours and 1 week. The graphs include the histateckto Quality of Service
(QOS), number of files assigned to the resource in a partictddge (Placed, Queued,
Processed) and speed of the resource.

Keeping all distributed services up and working is often sstafor administrators.
Therefore, the web interface provides simple service neoing, where one can check if
the component is running or what was its last alive state.

The core of the web interface is written in PHFZH language, under thilodel-
View-Controller (MVC) architectural pattern (see Hig.4.3). The patteraitas the
application logic from the user interface (input and préaston). The purpose of the
separation is that changes to the view can be implementedeoradditional views cre-
ated, without having to re-factor the model. TWiew generatesXHTML input/output
and this is the only place where it can be generated. dwroller dispatches requests
and controls flow, while th&lodelholds data representation and business logic.

'PHPwww.php.net

72

http://www.php.net

4. Technical implementation 4.1. Architecture

Monitoring Network usage

Files count for status Processing

User's request - detai

Gommanpage

Request's details

Figure 4.2: Several screen-shots of the Web interface.

Application

updates

manipulates

Figure 4.3: The basic MVC concept.

Couple of dynamic parts is written i]'avascrip@, especially the module for display-
ing plots. For this purpose we uquIotE, thejQueryplugin to generate pure client-side
dynamic charts.

For accessing the SQL database we QpenDatabaseConnectivity (ODBCE in-
terface which provides the translation between applicasiod the DBMS. Because of
the independence of underlying database server, the mitpotting to another SQL
database should be smooth.

4.1.2 Database design

This section introduces the design of an overall databasesy A correct design is
essential to achieving goals of the project and providesssto up-to-date, accurate

2Javascript: http://www.javascript.com
3jgPlot: [http://www.jgplot.com
4PHP and ODBC: http://phpodbc.com

73

http://www.javascript.com
http://www.jqplot.com
http://phpodbc.com

4.1. Architecture 4. Technical implementation

information. We will concentrate on and determine the retethip between the different
data elements and the logical structure on the basis of te&genships.

When designing a database system one should try to creatperfralance between
a logical design and technical optimization. On one harelaim of logical design is to
apply Codd’s rules to every table. These rules are definirgf velrequired from DBMS
in order to be considere@lational. It is guided by rules. On the other hand, it doesn't
guarantee the optimal performance of the database sysemaife some queries can be
very complex. The technical optimization makes sure thattiost important functions
perform good. It is often case dependent which steps leatyteehperformance of the
database. Usually it is a combination of

e denormalisation - to avoid an expensive join in a high frequency function,

combining tables- to remove a redundant table,

storing derived data- to avoid repetitive time intensive computations,

adding indexes- to speed up joins and look-ups for large tables,

partitioning - to increase manageability, performance or availability.

The primary idea was to keep database design compact atylmeasiageable while
having all information and functions provided. Due to thetfdnat STAR is exclusively
usingMySQL H DBMS and has experts for the performance tuning and maintenaf
the servers, the decision which system to use was pre-defidedever, we aimed to
build it as portable as possible and tested it also \}VirblstgreSQLH. We uselnnoDB
transaction-safe storage engine WHREI GN KEY referential-integrity constraints. Due
to portability we use minimum server side triggers, onlyesal/constraints to ensure the
data integrity.

The overall database schema is shown in[Eig. 4.4. The tatdeg@uped into several
categories, differentiated by colors, depending on theippse. Some information in
a database are rathstatic (although they also change in time, but due to the very low
frequency of changes, we will consider them as permaneat)leSusers, groups and
membershipkeep such information about users recognized by the sygtesimgle user
can be a member of several groups with different prioritretationship of table users
and groups via membership).

Next static tablestatuseskeeps possible states in which a main user request or single
transfers can be. There are five possible states:

SMySQL: http://www.mysgl.com
5PostgreSQL: http://www.postgresgl.brg

74

http://www.mysql.com
http://www.postgresql.org

4. Technical implementation 4.1. Architecture

reguests

(Pl a3z |

FE: | user_id wsersiid) _ members P
I F | group_id groupsiiay s varchar-255 :
W Fx | destination | modesqar W -7 P
K | status_id | statusestid) 4 PR fid) |
N | initi_date datetime Redti
A [finish_date | datetime wa B e
N | query varchar-1024 [i| s
N | quenylimit | int I ki
N_|total_files | int | |
N | success_files | int I =
N | falled files | int i H‘_“-‘h statuses
N | confirmed | bool T T
A dest_path warchar-1024 il i
- b 21 e i
) B =
/ | .
.
/ |: ® b
' = — a .
/ i ‘ requested_filelist | \]
/ i q = requested_files
i i
] ' T s =
! v _'fi’_‘d int | PK | request_id requests(id)
[] i PE

FK

files(ifn)
FK | nadeid | nodestia) | Rk | statusid | statusesiid) |

messages

request_id | requestsiid) |

=

| file_pf | v_an‘har—éﬁ_
A |size int

N retries int

® -]

' /

] p’

\ PK id int

t [L__catalogue |

i catalogue [3

! — : 4 files FKC file_lfn filesiifn)
! | PK [file_pfn | varchar-255 | PIC I | int e -] FE limid) linksiid))
; PK | node_id | nodeslid) [gy- - - - (s sssmmmmmmn FE status id statusesiid)
v - i
| £ | file_lfn | filesdn) A lsize |int A starttime datetime
] R 5 2= K path varchar-255 A end_time datetime
v K A enabled bool == == N retries int
| o

i accoun 'ng

y PK | id
p
B :
FE | fink_ links{id)
P
7 = 2
, . .
o “.- N _msenTnme_.tf_nl'eilme_
=
e A | gos
| PK | it thar-32 el
A | rache_size | int
A service_id | char-32 A speed e -
| A | nex [Rechae Rh A estspeed it monitoring_speed|
A port it A qos int — - -
Al patiare i fvarcher 24 A | last_alive datetime int
N_| site thar-32 A enabled bool K | link.id lk
AR itta i v
N insert_time datetime B =5
[Jcatalogue
Al sued pn [INetwark
A gos int

[—_IPanner

Figure 4.4: Database schema of the system outlined in eptationship diagram.

75

4.1. Architecture 4. Technical implementation

BNL site\ Entries in
| links
' table

Entries in ,,“/
nodes
table

FDT @ Prague

Figure 4.5: Example of a part of logical network structure.

e Placed- Used for user's meta data request, the initial state wherrgfuest is
placed in a system.

e Queued- Used for user's meta data request, logical file names a#goldio some
request, and also particular link transfers. The infororasitates the request/file is
gueued in a system and waiting for processing.

e Being processed Used for logical fle names associated to some request, and
particular link transfers. The information states the &lénia transfer.

e Done- Used for user's meta data request, logical file names assocto some
request, and also particular link transfers. The infororasitates the request or file
transfer is successfully completed.

e Failed - Used for user’s meta data request, logical file names asgocio some
request, and also particular link transfers. The infororasitates the request or file
transfer is completed, but there were errors or failureghduhe operation.

As we can see, statuses are used for logical requests assyelt andividual file
transfers. The detailed separation and the way how we dtera ts explained in the
following sections.

The logical network structure used by the Planner and lateghe Data Movers is
stored in tablesNodesand Links. The first one maintains information about logical
nodes, while the second one characteristics of links betweam. We deliberately use
term logical network, because as can be seen fromEif). £5dtwork doesn't always
correspond to the physical decomposition of the serviceEs.

We will explain the remaining parts of the database schemagutw diagrams
representing the interaction of the user with the systemvamavill follow the flow of
data throughout the system.

76

4. Technical implementation 4.1. Architecture

Incoming request

As we previously mentioned, users interact with the systeimguthe web interface. The
request including metadata catalogue query is procesgadt@®nously. After user sub-
mitted the request, a new record is added into the t&gjeests Thestatusof the record
is “Placed” and contains the requested destination for #te sket, user’s id, and group’s
id together with the time when the request was placed. Freldgesenting the number
of total, success and failed files are initiated to 0. Thixcpss happens immediately
while query with the catalogue and populating the databaefiles is an asynchronous
process.

Query with the catalogue

The next step in a data flow is querying the catalogue. Forphipose, there exists a
separate daemon which monitors the records inrélageeststable. If there is a placed
request, the file metadata catalogue is queried with thesponding data. Afterwards,
the status of the record is changed to “Queued”. The numbtatalf files as returned
by the catalogue is updated as well. Thes table is populated with the new logical file
names and file sizes (ones not yet in a system). As statecehstweral logical files from
different metadata queries may overlap (Figl 4.6). Thegassent of logical file names
to the metadata request is stored in tbquested_filestable, where the status of each
file is initiated to state “Queued”. Finally, the taldatalogueis populated with possible
physical locations of each new file.

Planning the subset of files

As soon as the information about possible locations of féggapulated in a database
the Plannercomponent can start its job. According to the fair-sharecgglexplained

in Section[2.4) a subset of files (logical file names from ribxguested_filestable) is
selected and processed by tRkanner Their status is changed to “Being processed”
and corresponding transfer paths are storesthreduled_transfergable. A single path

is stored as several records depending on the number ofthekgath consists of. The
initial state of the individual transfer is set to eitherdBéd” or “Queued” depending on
the position of the link. The transfer on the link outgoingrfr the repository holding the
file (first edge in the graph) is set to “Placed” while transfen the remaining links are
set to “Queued”.

77

4.1. Architecture 4. Technical implementation

logical files \\ /physica'L file§\
I |

[
[
[
[
[
[
[
[
|
[
[
[

Figure 4.6: Hierarchy representing 1:N:M relationshipniestn metadata query, logical
files, and physical files. Logical files from different quearimay overlap.

Transferring files

Transferring files is the core of the whole mechanism and thetraomplicated part
from logic flow point of view. One can easily imagine that gystmust be able to adapt
to several case scenarios, such as temporal (permandnfilure, not responding ser-
vice, etc. Each physical site is hosting a Data Mover ingandich is responsible for
data transfers either in or out of the site. The Data Moveviges for each service a sep-
arate configuration. In an optimistic scenario a serviceebes a file transfer on its link
(following the plan) and updates the status in a databaséhso service can work with
the file, until the file is transferred to the destination.c®ipassing and flipping the status
information is a critical part, we will first look at the flowhart (Fig.[4.7) representing
the mechanism how transfer system works wgitheduled_transfergable.

As one can see, the system stores information from the ugeesein three separate
levels, that creates 1:N:M relationship (Eigl4.6). At tbp,tthere is a user's meta data
request (1) which contains (N) logical files and system néetiack individual transfers
for each of such file (M). Therefore, the information of stescer failure of any operation
from one level has to be properly propagated to the other.ones

The flow-chart from Fig.[4]7 represents information flow witthe lowest level -
individual transfers. The propagation from this level te thtermediate one (logical
files in requested_filestable) is handled asynchronously by the separate servilszlca
Watcher

The flow-chart from Figl_418 depicts the status flow within tequested_filesable.
Finally, the flow-chart in Fig[419 represents informatiaasging regarding to the top-
level structure handled by threqueststable. Similarly to the previous layer, the infor-

78

4. Technical implementation 4.1. Architecture

Being processed

Success

Figure 4.7: Flowchart representing the status flow relai¢te individual files in sched-
uled_transfers table.

79

4.1. Architecture 4. Technical implementation

! Flow-chart for requested file status e -

q / Legend]
(requested_files table) ‘ 9]
3 C] status of file ‘ :
File Feeder: 3 3
i1 rocess "
=X

i <> decision
Watcher:
check result

No

Watcher:
retries++

Success
?

A

Yes
Success

Figure 4.8: Flowchart representing the status flow relatethe logical files in re-
guested_files table.

mation propagation from theequested_fileso meta-data queriesgquestg is handled
by theWatcher

4.1.3 Watcher

As we have seen, propagating some parts of information idledmside the Data Mover
component. Nonetheless, it would be inefficient to propagaerything “in-time” due
to the frequent and intensive database querying. Theref@dave a component called
Watcherthat periodically monitors the database and performs thiau@s. It is written
with the use ohooks If there is an operation which needs to be periodically atest, it
is hooked into the Watcher and information such as the frecuand additional details
are put into the configuration file. There is a central Watchening at BNL site with
these following hooks:

e accountingandmonitoring tables update
e accountingandmonitoring tables delete
¢ links table update
e requested_filegable update
e cache management
We will briefly describe what each of this hook is doing.

80

4. Technical implementation 4.1. Architecture

! Flow-chart for metadata queries status e = 1
: (requests table)]

3 C] status of query :
O process :

|
| Q decision
|

Success

Figure 4.9: Flowchart representing the status flow relatethe top-level metadata
gueries in requests table.

Updating and deleting accounting and monitoring tables

Accounting table holds statistical information for caktibn of links speed. During the
update, we store the actual speed and QOS for each link &rgeiin the time point when
the measurement was done. Since some transfer tools wdrlbaiithes, estimating the
speed is a bit tricky. The updating hook loops through a settefvals and queries the
scheduled_transfergable for files which were newly transferred (since the lgstate)
and the transfer took less time than the current intervaé gpgeed is then calculated as
an average of all measurements through the intervals aedt@asinto theaccounting
table.

The monitoring tables keep information for statistics, which allows thebvirgter-
face to create plots displaying speed and data profiles. Thmpe is to see what was
the amount of records in time assigned to each link by stdee¢H, Queued, Being
processed, Done, Failed).

Deleting accounting table is performed in order to keep #idet small - as we will
explain in the following paragraph, for updating tivks table we need only several most
recent values. Deleting records from the monitoring tab&gsends only on decision how
long historical records we want to keep. All of this is defimea@ configuration file.

Updating links table

Updating the links table is important to have accurate anérrespeed and QOS data for
each link, so the Planner can produce realistic plans. Tible ta updated by usiniy

81

4.1. Architecture 4. Technical implementation

most recent records and by computing the weighted averapewi. The weight of each
record represents the importance of that particular spe€Q$5 value and it usually
decreases with the age of the record. The weights and nurmbieera is configurable.
The calculation using the Python lambda mechanism is thewing:

speed = reduce(lanbda x, y: x +vy, [speeds[i] * self.acc\Wights[i]
for i in range(len(speeds))])

wherespeeds is an array of most recem speed values anatc\Wéi ght s array of par-
ticular weights. The computation of QOS is similar.

Updating requested_files table

When individual file transfers are done, the propagatiorht uppemrequested_files
table is not immediate. Watcher periodically checks whitdsfare already at the des-
tinations, which transfers have failed; and updates thadri¢evel tables. The update
involves refreshing the total number of succeeded anddfdilles in a request, handling
the retries (if maximum not reached) and switching statasese described in Section
4.1.2.

Cache management

The cache space is also handled by the Watcher and this hagkilable for every site
participating in the system. This hook is a placeholder fmhe management algorithm,
as we described in Sectibn R.5.

4.1.4 Planner

The Planner (Fig. [4.10-left), the brain of the system, is built on the staint-based
mathematical model. The theoretical background and outiraowus progress were de-
scribed in previous sections. The solver uses methods franst@int Programming and
Mixed Integer Programming and the logic tries to minimize thakespan considering all
possible combinations. The tree of possibilities may vee}l wontain solutions where
transferring data once on a given link lead to a minimum oaiahg between services
lead to the fastest transfers. In all cases, the optimaltisalwill only be determined
by the input parameters. Our planning is also incrementa have previously demon-
strated ([69]) that a full plan comparing to incrementahplag would not make a large
difference on the makespan overall - the gain of an increat@piproach is the ability to
self-adapt based on tidover’'sfeedback.

82

4. Technical implementation 4.1. Architecture

Y =~ N (
. Current network
characteristic

DB conn
Planner as a black-box || | database connectivit

sssss
ssssss

ackends
— : : Optimal transfer paths for files :
H HPSS _—_ -
Catalogue information | : :
b - Back-ends

Input Output Threads

Figure 4.10:Left: Planner as a black boRight: Data Mover component.

The Planner is written idava SE & programming language. The database-independent

connectivity between the Java programming language an8@iedatabase is handled
using Java Database Connectivity (JDBC). The Planner iskaw from the wrapper
script centrally from BNL site. As we remarked in theoretisactiong 3.1 and 3.2, for
mathematical computations Planner relies upon two libsa@NU LinearProgramming
Kit (GLPK[23]), an ANSI C library intended for solving largesale linear programming,
mixed integer programming, and other related problems lisdtaia SWIG interface
([24]). For implementation of the CP model we lEEOCOB a Java based library for
constraint programming. The main logic consists of gatigerequired data from the
database and transforming them into the format understgdbebimplemented model
in a particular library. The solution, the plan, is then stammed again back from the
MIP/CSP language into the database. Such a plan then sexthe aork instructions
for Data Mover component.

4.1.5 Data Mover

The Data Moveris the distributed component responsible for performinig di@nsfers
in areactive way. Each instance is controlling data seswaéhin a given computing site
and also the wide-area network connections from/to the Kitelies on the underlying
data transfer tools and uses them for data movement. In quiementation, we did not
address interoperability of Wide Area Network (WAN) datansfer tools (which is not
the object of this work) but settled in using by tRastDataTransfer tool (FDT([19]).
The way data movers operate is reactive which means thabossas a file appears at
the source node (either at a data service or in a cache spture AN transfer) it is

7Java! http://www.java.com
8Choco] http://choco.sourceforgelnet

83

http://www.java.com
http://choco.sourceforge.net

4.1. Architecture 4. Technical implementation

Figure 4.11: lllustration of data flow from Xrootd service @\Bto NFS service @
Prague via intermediate cache @ LBL.

marked as “ready for transfer” and moved by the proper ugihgrltool. As soon as
the transfer is finished another instance realizes the fdgagable and initiates the next
move (along the computed path from the solver).

We will describe this process in more detail using an exardpfgcted in Fig.4.71.
In this example, let us suppose the transfer path for somevéikeadvised by the Plan-
ner starting from Xrootd service (BNL site), using an intediate cache space at LBL
site and finally ending at NFS service at Prague site. Ther¢haee independent Data
Movers running at each site. First, the Data Mover at BNLizeslthere is a work for its
thread which is responsible for Xrootd service. The trangten Xrootd to local cache
is initiated. As soon as the file is prepared and checked,t#tessis updated and Data
Mover running at LBL side can start. In this case, the WAN s$fanis started in a pull
mode, and file is brought from BNL's cache to the intermedi&é’s one. The status is
updated again and following the same principle, WAN transfiiated by the Prague’s
Data Mover may start. Finally, another thread responsin®&\fS service moves the file
to the requested NFS destination.

Our approach is also adaptive: from the initial transfer amdsequent monitoring,
the real speed can be inferred and re-injected as a parafoetiie next incremental
plan, helping the system to converge toward realistic feanmates rather than relying on
theoretical optimum alone.

TheData Moveris written inPythonlanguage; communication with the SQL database
is handled by pyodb@ library (module that allows to use ODBC to connect to almost
any database) and concurrent link/service control is aeldidy separate threads (Fig.
[4.10-right). Every module has own configuration prescgbivow the underlying tool
should be used, what is the number of retries in case of &s|urme limit defined for
single execution, etc. We will outline the major underlyitogls Data Carousel relies
on, namely FDT for WAN transfers, DataCarousel for HPSS +aamkss, Xrootd for

9pyodbc http://pyodbc.sourceforge.het/

84

http://pyodbc.sourceforge.net/

4. Technical implementation 4.1. Architecture

read-access from Scalla system and traditional NFS.

Fast Data Transfer (FDT)

The system is using FDT tool for WAN transfers. FDT is a clisetver application ca-
pable of reading and writing at disk speed over wide areaonsywith standard TCP).
It is written in Java SE 6, runs an all major platforms. It isé& on an asynchronous,
flexible multi-threaded system and is using the capalslibiethe Java NIO libraries (in-
put/output API for working with channel and buffers). Itsiméatures are:

e Streams a dataset (list of files) continuously, using a medagpol of buffers
through one or more TCP sockets.

Uses independent threads to read and write on each physidakd

Transfers data in parallel on multiple TCP streams, wheessary.

Uses appropriate-sized buffers for disk I1/0 and for the oetw

Restores the files from buffers asynchronously.
¢ Resumes a file transfer session without loss, when needed

The FDT has been tested and used in the STAR collaboratiael@ral years. The Data
Mover invokes FDT client in a pull mode with a file list contaig the files which needs
to be transferred (pulled) from the opposite FDT server. itmaber of files composing
a filelist is configurable. Setting this number adjusts tlweratity of the single WAN
transfer.

DataCarousel

The interaction (reading) with the Mass Storage System GJPShandled by the fault
tolerant policy driven framework called DataCarousel [B8Hfeady outlined in Section
[1.3.2). The tool has been developed in STAR and is in use €06&. It is based
on client/server mechanism and allows requests for ardhites to be managed and
coordinated the same way as “full-fledge” batch system wolilg entirely written in
Perl and uses SQL based database storage as the back end. Thes@iémn script
which sole purpose it to add requests to a central datab&sesérver is the heart of the
system - it sorts the records, creates a job of files to retiaen submits that job to HPSS
(software at another layer) according to policies.

Operl: http:/iwww.perl.org/

85

http://www.perl.org/

4.1. Architecture 4. Technical implementation

The integration into the Data Mover is similar to the FDT. Tent is invoked with
a list of files that are requested (planned) to stage from HPB&transfer mode is asyn-
chronous - the client just enters the request into the DaitaSal’s database and returns.
Data Mover itself waits and checks for the presence of rdgddges (considering time
limit). The number of files that are submitted to DataCarbumsa batch is configurable.
It is important to remark that this number influences thegrenaince of the full system.
If the number is too large, once the HPSS slows down or otheicgeincreases its per-
formance, the system has to wait longer for the files to beestagnstead of using some
other service if available. On the other hand if the numbdited is too small, the perfor-
mance of the HPSS is not optimal as was shown in [30]. One cathsee are multiple
factors biasing the overall motion of the system.

Scalla/Xrootd and NFS

We have presented the overview of the Scalla/Xrootd systesady in Section 1.312. It
aggregates data spread over hundreds of disks and protiglasto the clients running
mostly as jobs written with the use of RO&L analysis framework. Along with this
Scalla/Xrootd provides the command-line client cakedicpfor retrieving files from the
cluster to the local disk. Data Mover usesicpin a synchronous mode for getting files
from the Scalla system.

The communication with the traditional NFS system is hasidienilarly in a syn-
chronous mode using standard tools provided by the opgrayistems.

4.1.6 Show case

To prove the validity and soundness of our planning straitegyactice, one has to design
and implement several cases. The system has to be testedserded under different
and changing condition to see if it reacts and works as eggded/e will start with the
simple short-time test to affirm the software componentskveorxd communicate in the
expected way and the quality of the computed plan is confid¥v# can look at the
environment for this case as “ideal”, where all data ses/aed network were working
smoothly without any breakdowns. The environment was fopéicity formed by two
computing sites, the centrBNL and remotd’rague The available data servicesBL
were: Xrootd NFSandHPSS while in Pragueonly NFSwas available. The wide area
network (WAN) transfer was controlled by FDT. The configioatis shown in Figl 4.12-
left. The purpose was hence to challenge the planner in gakioper decisions when

HROOT: http://root.cern.ch

86

http://root.cern.ch

4. Technical implementation 4.1. Architecture

Performance
100

Xrootd+NFS+HPSS ———
90 HPSS
80
70

|

|

|

60 I
!

{

!

i

Xrootd —»—
NFS —e&—

50

40

30

Transferred files (%)

20

10 {

0 .
17:02 18:02 19:02 20:02 21:02 22002 23:02 00:02 01:02
Time

Figure 4.12:Left: The network and service configuration for the ted&ght: The
performance of the system using 4 different configurati@sthe X axis, we represent
the time of transfers while Y is the percentage completidme X-range of each curve is
hence representative of the makespan.

multiple sources were available at the same site. We weeeesiied to see how fast the
requested files can be brought to the destination if we oé$be system to reason only
about particular sources.

The request consisted of files available at all data sendatB$L at the same time
and the task was to bring them to tReagueNFS service. The test was composed of
four different configurations. The planner consecutivelgsidered:

e only Xrootd repository

e only NFS repository

e only HPSS repository

e a combination of Xrootd, NFS and HPSS repository conculyent

The results of each configuration are shown in [Eig. 14.12trigls expected, while
all files are located on mass storage in STAR, transfers ##8S(in green) are the
longest to accomplish and hence, lead to the longest delajalivery. In our setup, the
green and blue curves are near equivaldiigdirect transfers are slightly faster) but it
is to be noted that not all files are held bifrS (central storage) in STAR and pulling
all files from Xrootd may cause significant load on a system in use primarily foctbat
based user analysis (hence, an additional load is not d&siraVhen we combined all
storage sources, the makespan was equivalent to the onexhawtd while the relative
ratio of files transfers from the diverse sources was 19%, 88&043% fortHPSS NFS
and Xrootd respectively with no load caused on any of the services. Atethd, the
overall bottleneck was only the WAN transfer speed - we infertest proved the planner

87

4.1. Architecture 4. Technical implementation

= N\

1'.“' [l
ﬁ
w
_‘21
Y
(o1

Vs
1
n"—"""
AN

Figure 4.13: Direct data flow.

works as expected, since the full reasoning consideringpakible repositories led to the
optimum makespan. Additionally, the utilization of all gies brings the advantage in
the form of load-balancing and automatic use of replicas.

The test above was facing ideal conditions where none oféhgces was fluctuat-
ing in a performance and the test was short termed. To validhat workflow between
the software components (explained in Secfion 4.1.2) argkéothe proper file status
propagation we present another real-case.

The task was to bring dataset from BNL's HPSS to LBNL's NFSage. In this
case, there is a straight flow of data, since files were notemicated (see Fid. 4.13).
This allows us to concentrate on data and information pgsagchanism between Data

Movers and inspect the monitoring interface.
The dataset containing more than 3100 files was defined bytlosving catalogue

request:
e trgsetupname=production_dAu2008
o filetype=online_dagfilename~st_zerobias
e tpc=1tpx=1.emc=1runnumber[]8341061-902709%yvents>20

In this setup, there were two Data Movers. One running at BNite responsible for
acquiring files from HPSS to local cache, and another oneimgret LBNL's site and
performing WAN transfers and consequent NFS placementswNVérst inspect how
the system cooperates with underlying HPSS service usitgd2aousel tool. Graphs
in Figured 4.14 and 4.15 represent the amount of files witlist®Queued” or “Being
processed” assigned to the particular service as a funofibme. Let us look first at
central BNL site.

The system schedules all files to be acquired from HPSS, ginee the only repos-
itory holding the dataset. The BNL's Data Mover was submiffiles to DataCarousel in
batches of 500. As soon as the batch arrived (the status ofiged files changed from
“Being processed” to “Done” or to “Failed”) the system toatogher burst of queued files

88

4. Technical implementation 4.1. Architecture

HPSS performance

Queued files

Processing files

Figure 4.14Top. Graph displaying the number of files with status “queuedigassd to
the HPSS Data Mover as a function of tinBottom. Identical plot inspecting files with
status “Being processed”.

89

4.1. Architecture 4. Technical implementation

FDT performance

Queued files

Queued files count - last 1 week
1885

B zercla
1414 o M kapitan

Files
count:

o
2011-04-29 2011-04-29 2011-04-30 2011-04-30 2011-04-30 2011-04-30 2011-05-01 2011

3 05-01
Time

Processing files

Processing files count - last 1 week

Files
count

2011-04-29 2011-04-30 2011-04-30 2011-04-30 2011-04-30 2011-04-30 2011-05-01 2011-

. 05-01
Time

Figure 4.15Top. Graph displaying the number of files with status “queuedigas=] to
the FDT WAN Data Mover as a function of timBottom. Identical plot inspecting files
with status “Being processed”.

and submitted them too. This can be seen inFigl4.14-bottospi&es in a graph, where
each spike is defined by the speed how fast the files in a curagch were staged. Simi-
larly, the amount of queued files was decreasing, what isqul@ts steps in Fig.4.114-top.
Let us move up now to the destination LBNL site.

As soon as first batches of files were staged from HPSS andrpcefoat WAN trans-
fer, the number of queued files for FDT service (initiated uil pnode from LBNL)
started to increase (Fig.4]15). We can see that for the witmé&eof movement the WAN
was saturated - the number of processing files was consthaistiriiplies that the DataC-
arousel was able to prepare files from HPSS tapes faster tAdhaNowed to transfer.
Hence, we see the increasing number of queued files, wadimgd T service.

This data movement took approximately 1 day and at the enérayseported 108
files that failed to be staged, even upon retries.

90

4. Technical implementation 4.1. Architecture

Figure 4.16: Data transfer scheme for P10ik dataset.

Adaptation to service failure

It is important to verify whether the system reacts in cassenfice failures the way it

is expected to act. We will present our experience from thieviing task. The system
has been used actively for replicating the production @afB0ik from STAR’s Tier-0
center BNL to LBNL (Tier-1 center). The size of the dataset was aboUtB&nd at the
time of writing the text more than I has been already transferred. The corresponding
catalogue request was:

e trgsetupname=AuAu39_production
e production=P10ik
o filetype=daq_reco_MuDsffilename~st_zerobias

The system was leveraging all data sources from BNL siteaasbe seen at Fig.
4.16. We will focus now on the situation how the system hamdiederlying service
failures. As we can see, last part of the data transfer clsausing NFS service for
storing data at the final destination. In the case of high sxégads or problems of
servers exporting the mounts, there may appear temporagy-inas. During this time,
the Data Moverinstance responsible for NFS service is waiting and numbgueued
files at NFS service is increasing. This happened also dtinegnove ofP10ik dataset
as we can see in Fig._4]17. The graph is showing the increasd tf files theData
Moverreceived but was not able to store due to the stalled NFScgerWhat we want
to illustrate now is that the system realized the problemthedappearing bottleneck at
the end of the transfer chain. The system realized that dinetailed NFS service there
was an increasing number of queued files at the last part méfeachain and adapted
to this situation in further planning (see Fig.4.18). Sitloere was no reason to increase
even more the number of stucked files, the system reacteddiiegly and postponed the
transfer of further files. This can be seen in Kig. 4.18 as tagfgraph with decreasing
tendency of queued files at FCOata Mover As soon as the problem was resolved the

91

4.1. Architecture 4. Technical implementation

Queued files count - last 1 week

5
==
556 [kapitan
NFS system stucked restored
Files 57
count
0
20110509 20110509 2110509 20110509 20110510 20110510 0110510 01t
05-10

Time

Figure 4.17: Graph displaying the number of files with stédtusued” assigned to the
NFS Data Mover as a function of time. Because of not resp@ntliRS server, the
number of queued files started to increase until the servdragi to the normal mode.

Queued files count - last 1 week

zerola adaptation
™ s (waiting)

0510

Figure 4.18: Graph displaying the number of files with stédtusued” assigned to the
FDT Data Mover as a function of time. The system realized tiveeiasing bottleneck
due to failed NFS service and adapted the further plans.

system started to plan files again in regular mode and nunfoguened files retained
back to the normal level.

4.1.7 Performance comparison

In this section we will elaborate on the performance of themated system under differ-
ent environment configurations. The principal benefits efsbiver depend on leveraging
available data services and network links between sitesud focus first on performance
comparison experienced by relying on data sources withrgiveharacteristic. All the
following measurements were taken in real production emirent while monitoring
other exterior activities and requests for shared systeamurees. The monitoring in-
cluded the control oHPSSusage over submitting large-size requests, extensixél
third-party transfers between laboratories, etc. Theegfthe measurements spanning
over several hours (and often repeated multiple times)tatistscally stable and sound.
The performance of the system can be nicely described by aongpthe makespan
- the time it takes to bring requested files to the destinatlors important to see also
the convergence, how fast were files appearing at the dastinklence, we will display

92

4. Technical implementation 4.1. Architecture

this tendency as a function of time in the following graphsguFe[4.19 is displaying
the comparison when the system alternates reasoning abtausdurces. The transfer
was required between STARer-0 BNL laboratory andrier-1 center at LBNL, without
involving any third site. We could concentrate therebyrehtion data sources and elimi-
nate the influence of diverse network paths. We were comgénia data services which
served as a source of the data. The services are in contrdgtdrgnt characteristic:

e HPSS- holds all the files, works asynchronously. Usually invalveaiting time at
the beginning upon submission, then high throughput.

e Xrootd - holds only the portion of data, works synchronously. Ulupiovides
low latency and high throughput.

The comparison consists of three several hours long tremgfieen solver was acting
always in different mode. The blue line represents the mdaervsolver was using ex-
clusively onlyXrootdas the source service. We can see that files started to appeest a
immediately at the destination and the slope of the line shiitw fastest throughput. For
better resolution the small plot in the same figure is dispiayhe zoomed region in the
first 40 minutes. However, sinc&rootd repository holds only a portion of all data, full
data set could not be transferred. What portion of data thacgeholds usually depend
on the age of files. Files from recent datasets are more likebe available aXrootd
service. The red line represents the mode when system wasgeinly on HPSS. We
can see that there was an initial small waiting time untilsféarted to appear. More
important is to realize also the “step-like” trend of thedlinThis is caused by the HPSS
utilization. HPSS prioritizes requests from different igséepending on tape locations,
history, and other factors; and when there is our requestsmnit serves the files usually
fast. During several hours our request can be postponedthasare prioritized and we
have to wait. Unfortunatelly, this “step” can often take esa hours, depending on the
current circumstances and load. The third black line iseggmting the last mode, when
the system relied on both services concurrently. We camlglsae that the combination
of both sources outperforms counting on the stable but rdietstest oneH{PSS even if
Xrootdcannot provide all the files. Realizing which files wheredesand coordinating
the access to providing services is not something what usergfficiently do by them-
selves and hence, they often rely on the single one - stablgldw one. This is when
automated solver can bring a significant benefit and incrigsseffectivity of their work.

Let us bring our attention now to the system'’s reasoning aitiding diverse network
paths. For the purpose of keeping the environment transpanel eliminating the effect

93

4.1. Architecture 4. Technical implementation

Makespan comparison based on
source selection

1200 T T T
(- source HPSS ———
@) source HPSS+Xrootd
% 1000 F source Xrootd ——— JI [
e
g — /
% 800 /_
S /
E 600 f600 . T ;
d—
= 400 /
3 400 , ,
© /[200 / N
7p]
@ 200
- — 0 1 1 1
LL 0 0 10 20 | 30 40
0 100 200 300 400 500 600

Time (min)

Figure 4.19: Graph displaying the trend how fast is the pldfilled concentrating on 3
different modes of source access. First one uses s¥lelgtd service, second only the
HPSSsystem, and finally third one uses combination of both.

of multiple data services, in this case we will concentratehe soleXrootd service as
the source of all files. The slow latency and constant modastwidth of this data
service allow us to concentrate on the influence of reasasiogit network paths. The
data transfer scheme is illustrated in Eig.4.20, where degabeing moved from BNL
laboratory (Tier-0 center) to Prague site (Tier-2 centéhe system is allowed to reason
also about intermediate site (LBNL laboratory, Tier-1 eghin order to increase the
throughput. It is important to state that the connectionveen the BNL and Prague site
is using static routing over dedicated link and is diverseithe path between BNL and

Figure 4.20: Transfer scheme for diverse network pathsa Daivement relies on the
Xrootdservice as the sole source of files while leveraging alsorirediate LBNL site.

94

4. Technical implementation 4.1. Architecture

Makespan comparison
4000

Ieveragi'ng LBNL ——

g 3500 direct transfer
=
qy] /
3000
= /
@ 2500 /.
E / 31% faster
< 2000 -
c /
S 1500 ’
© 1000 /
(7p]
Q 500
T

=

0 50 100 150 200 250

Time (min)

Figure 4.21: Graph displaying the trend how fast is the pldfiled comparing 2 dif-
ferent modes in network paths. Green line represents the nvben only direct transfer
to Prague was allowed and red one the mode when part of tliie trafs allowed to be
routed via LBNL site.

LBNL as well as LBNL and Prague (using ESnet, Geant, and CESigEting). We will
again compare the speed how files appear at the destinatiooeshile looking at the
impact of using intermediate site in parallel.

The graph in Fig.4.21 is exposing this comparison. The gtieenrepresents the
mode where only direct BNL to Prague network path was usedgwihe red line the
mode where also additional path through LBNL site was althwé/e can see the clear
and very visible benefit in leveraging additional networkhpand routing part of the
traffic via intermediate site. The overall gain in makesgaw(less user waited for files)
was almost one third of total time comparing to the direct aswll approach.

95

Chapter 5
Conclusions and future work

This work deals and attacks the complex problem of efficiexth dnovements on the
network within a distributed environment. Although the wdras included theoretical
research it was shaped from the beginning in order to depivactically useful tools.
Therefore it is willing to provide balanced combination béoretical and practical re-
sults.

The problem itself arises from the real-life needs of thenrag nuclear physics ex-
periments, while all the studies were obtained on the runekperiments with more than
a decade long history - experiment STAR, and its peta-segeirements for data stor-
age and computational power. Unlike projects which relyepuon simulations we have
been working with real STAR data, infrastructure and se&widuring regular operation
of the experiment.

This has been the first time in nuclear physics large scalererpnts when auto-
mated planning approach was used for reasoning about datddrs and cpu allocations.
We showed that computational complexity of the transfebfenm is strongly NP-hard
using polynomial-time reduction frod8| pi; = 1/Cnax @ 3-machine unit-time job-shop
scheduling problem (JSSP).

We proposed and presented the two stage constraint modslirmg path planning
and transfer scheduling phase for data transfers to théesitggtination. Several tech-
niques for pruning the search space, like symmetry breallimgain filtering, or implied
constraints, are shown. We proposed and implemented $eearah heuristics for both
stages and performed experiments for evaluating theiicgiplity.

Further, we presented the extension of the solver which wssdon pure Constraint
Programming techniques for multi-site data movement withie multi-user environ-
ment. We introduced the Mixed Integer Programming methotisthe model and sev-
eral simplifications in scheduling phase. The comparisowvga that the simplification

96

5. Conclusions and future work

of the scheduling phase and linearization of the conss&aid to the faster solving times
while loosing only neglecting fraction of the quality of theakespan.

We have implemented the model and designed the architecturgonents and per-
formed implementation of the framework with other STAR $egg. Simplistic yet ro-
bust architecture allows users to express their requenteneently via a Web interface
while the back-end planner and the set of data movers takeotéine work on the user’s
behalf. We have presented observations and results on reowysdtem behaves from
multiple long term measurements that were taken in STAR. &aded on service fail-
ure recovery, comparison of overall makespan improvemgainat classic techniques
and benefits of automated leveraging multiple data sourtgsli@erse network paths.

With upcoming requirements for more frequent Cloud commqutvhere data storage
is constrained and the needs for prompt feeding CPUs by slatgbrtant, the automated
data transfers and job allocation can greatly simplify theris task. We have addressed
this and proposed the extension of the model for reasoningtatmmputational power
as well.

It is always positive when solving approach and techniquaigersal enough so it is
possible to apply it in other related areas. We have resedralso the field of robotics
and automated planning used in autonomous robots. Dematuhigues from planning
the data transfers in large scale physics experiments weoessfully applied in vehicle
routing variants.

The journey to the fully automated and intelligent systeresiling user’s tasks
considering all relevant constraints is certainly long #rete are still numerous aspects
that need to be addressed. The intelligent cache manageeikating the prediction
of the future needs or advanced bandwidth reservation nighhe ideas for the next
improvements of the system. We believe that the presenteld eamtributed to this
collaborated effort with several sound ideas, techniquescancepts.

97

List of Figures

LIST OF FIGURES LIST OF FIGURES
- P. .. 52
|39 Symmetry breakir']g 52
iteri ables. 53
|3 11 Makespan conv. - comparison of heuris]tics. T - Y
|3__’|_2_G_I_ui_ng ANSTEr DAMNS. . . . o o o ot 60
3.13 Computing centers in STAR expefiment. 62
|3__’|_4_Ar_gonne cloud comouti*g. 63
blS_C_BLLm_o_d_eJ_exLensj_o_n;graoh struclure. 64
|3.15 CPU model extension - example w|1h2f|les.. N ¢ 1<)
517 Agome coudcompute, -
|41 Architecture of the svstelm. 71
M&mﬂﬂs&ﬁﬂ[&mﬂaw 73
|£L3Jh.e_baﬁi.(LMl&_QQn.c.eot. 73
4.4 Database schema-ERdiaglam. 5. 7
4.5 Example of a part of Iog_i_ca.Ln_e_mLo_Lk_s_LLu_QtLre. 76
4.6 Hierarchy reoresenting_l;N_‘M_LeLa.Li_o_nship. Y <
4.7 Flowchart - status flow in scheduled_transferstable. 79
14,8 Flowchart - status flow in requested_files table. 80
|49 Flowchart - status flow in requests t;ble. T < 1 A
|4_10_Elann.eLand_Dala_MmLechmp_Qdent 83
4.11 lllustration of data flow. oo oo 84
|4 12 Test of the components and planning mechahism. T - Y £
|4 13 Direct transfer experience -fIJ)W 88
|4 14 Direct transfer experience - HP|SS. 89
|4 15 Direct transfer exoerience-FbT. .2 [0
éliDﬂaitansiemh&m&taLEle_dmﬁset. 91
4.17 Queuedfilesat NES DataMover. 92
|4 18 Queued files at FDT Data M0\|/er 92
|4 19 Makespan comparison over data ser\}ices. 94
|4 20 Transfer scheme for diverse network Djaths. 94
B_E_Makﬁpanmmpaﬂsmmmmaelmkﬂaths. 95
AL Examoleof6+3robotolannmg_[alsk 102
IA.2_Graph descnbmg_th_e_mb_o_ts_enmmnm_lent. N L0 X
|A__3_An_|_n_e_ug|ble loop satistyin i imts. 105
IMe. e 13

LIST OF FIGURES LIST OF FIGURES

10 System architecture. e 118

100

Appendix A

Towards Routing for Autonomous
Robots

Path planning is one of the critical tasks for autonomoustsibNe will study the prob-
lem of finding the shortest path for a robot collecting wagtead over the area such that
the robot has a limited capacity and hence during the routeigit periodically visit de-
pots/collectors to empty the collected waste. This is savdiof often overlooked vehicle
routing problem with satellite facilities. We present twapaoaches for this optimisation
problem both based on Constraint Programming technigues farmer one is inspired
by the operations research model, namely by the network fielie the second one is
driven by the concept of finite state automaton. The experiai&omparison and en-
hancements of both models are discussed with emphasis éurther adaptation to the
real world environment.

A.1 Introduction

Recent advances in robotics have allowed robots to opematuiitered and complex
spaces. However, to efficiently handle the full complexityhe real-world tasks, new
deliberative planning strategies are required. We ded#l thi¢ robot performing a routine
task of collecting waste for example in large departmenestavhere the remote control
is boring for humans and hence error prone. In particularseee the problem of plan-
ning a route for a single robot such that all waste is colctebot’s capacity is never
exceeded, and the route is as short as possible. We assustevitenment to be known

and not changing, in particular, the location of waste argbtieis known and the robot
knows how to move between these locations. To handle chandles environment we

101

A.1. Introduction A. Routing for Autonomous Robots

Figure A.1: Example of 6+3 robot planning task. The roboe (g circle) collects waste
(six small circles) and uses collectors (three squareshftyethe bin when it is full.

focus on anytime planning algorithms that can be re-run vthennitial task changes,
for example, the distances between the navigation poirgeg#n due to cluttered areas.
We propose to use Constraint Programming (CP) to solve thielgmn because of the
flexibility of CP. This allows us to use a base model descgtilve core task and to add
new constraints later when necessary. Such a new constaittt be the restriction on
allowed combinations of entrance and exit routes when ciitig the waste or visiting
the depot for robots with limited manoeuvring capabilitiegyurelA.1 gives an example
of the initial environment (left) and the found path for tlbot (right). The task we are
dealing with is to develop a robot solving a specific routingigbem - an often overlooked
variant of the standard Vehicle Routing Problem (VRP). In setting, the robot has to
clean out a collection of waste spread in a building, but utiteecondition of not exceed-
ing its internal storage capacity at any time. The storagk tan be emptied in one of
available collectors. The goal is to come up with the rougitagn minimising the travelled
trajectory. This is a similar setting to a Vehicle RoutingBlem with Satellite Facilities
(VRPSF) studied in (Bard et all /[4]), where the task is tow@&ligoods rather than to
collect waste. Our primary goal is to develop an algorithit fleturns good solutions
in a short time (almost anytime algorithm) and that can bédyeestended by additional
constraints. Hence ad-hoc exact techniques are not apg®pue to long runtime and
limited extendibility and we decided to use Constraint Paogming to solve the prob-
lem. Neither of existing CP-oriented works solves the abanadlem, but we can use
them as the initial motivation for the design of our consttanodel. Most of the routing
models are based on the formulation of the problem usingar&tflows (Simonis[[56])
so we also proposed a constraint model based on this statetdmique. Nevertheless,
the performance of this model was not satisfactory in ouedrpents so we proposed a
radically new approach to model the problem using a finiteestatomaton. In our pre-
liminary experiments, this model outperforms the tradiéibmodel and can solve larger
instances of the problem. The text is organised as follows. WM first formally de-

102

A. Routing for Autonomous Robots A.2. Problem formulation

Robot Wastes Dest

— Collectors

complete no edges
undirected graph

Figure A.2: A schema of the graph describing the robot’sremment with the naviga-
tion points.

scribe the problem to be solved. Then we will formulate tlaglittonal model based on
network flows that we customised to solve our problem. Afteit ive will describe the
novel model based on finite state automata. Finally, we witlatude the preliminary
experimental results.

A.2 Problem formulation

Recall that we are solving a single robot path planning gnobWith the capacity con-
straint. The robot’s environment consists of the naviggpioints defined by the locations
of waste and collectors. We use a mixed weighted gi&pk) with both directed and
undirected edges to represent this environment. The rdasasing undirected edges
is minimising the size of the representation. The set ofisesy = {| } UWUCU{D}
consists of the initial positioh, the seMW of waste vertices, the s€t of collectors and
the destination verte®. From the initial position the robot has to visit some waste s
we have directed arcs frohto all vertices inWV. The robot can travel between the waste
vertices so we assume a complete undirected graph betwetresanW. From any
waste vertex the robot can go to a collector so we use a direckge there and from any
collector we can go to any waste which is again modelled usidigected edge. We need
directed edges here as we need to count the number of inca@nthgngoing edges for
the collectors. There are no edges between the collectoce®gr As mentioned, we use
a dummy destination vertex that is connected to all colleatetices by a directed edge.
The weight of each edge describes the distance betweentigatian points. The edges
going to the dummy destination vertBxhas zero weight so the robot can actually finish
at any collector. The task to find a minimal-cost path stgranl, finishing atD and
visiting each vertex iW exactly once such that the number of any consecutive vsrtice
fromW does not exceed the given capacity of the robot. Figure Aof/stthe schema of
the graph with the navigation points.

103

A.3. Model on network flows A. Routing for Autonomous Robots

A.3 CP model based on network flows

The first model that we propose resembles the traditionatadipas research models of
vehicle routing problems based on network flows and Kircfih&dws. Basically, we are
describing whether or not the robot traverses a given edgeevery edge we introduce

a binary decision variabl¥e stating whether the edge is used in the path (value 1) or
not (value 0). LetN(v) andOUT(v) denote the set of incoming and outgoing directed
edges for the vertex. For example, fov € W the setiN(v) contains the arc from the
vertex| and the arcs from the vertices @ Let ICD(v) be a set of undirected edges
incident to vertexv. This set is empty for the collector vertices; for waste iced it
contains undirected edges connecting the vertex with ethste vertices. The following
constraints describe that the robot leaves the initialtwrsl, reaches the destination
positionD, and enters each collectothe same number of times as it leaves it:

Xe=1, ¥ Xe=1, (A1)
ecOUT (1) ecIN(D)
veeC: Yy Xe= 5 X (A.2)
ecOUT(c) ecIN(c)

Let us now describe the constraint that each waste vertexvisited exactly once. It
means that exactly two edges incident to a waste veviase active (used in the solution
path) and there can be at most one active incoming and ogtdoiected edge connecting
the waste with the collectors or with the initial node.

YweW : > Xe=2, (A.3)
ecOUT (W)UIN (w)UICD (w)
Wwew: Y Xe<1, (A.4)
ecOUT (w)
WeEW: Y Xe<1 (A.5)
ecIN (w)

The above constraints describe any path leading frémD, but they also allow isolated
loops as Figuré_Al3 shows. This is a known issue of this typmadel that is usually
resolved by additional sub-tour elimination constrainteing any two subsets of vertices
to be connected. In our particular setting, we need to chye$elect these pairs of
subsets of vertices because there could be collector esttirat are not visited. Hence,
we consider any pair of disjoint subseédg S, C (W UC), such that neithe®; nor S
consists of collector vertices only. More precisely, weuass the pairs of subse8, S,

104

A. Routing for Autonomous Robots A.3. Model on network flows

............................

A .v.\. ' . Waste
\- i . Collector

Figure A.3: An ineligible loop (left) satisfying the routinKirchhoff’s) constraints.

such that:
S=WUC)\S, SINW#0, SNW#£0 (A.6)

The sub-tour elimination constraint can then be expressedjuhe following formula
ensuring that there is at least one active edge betB8gandS,.

% Xe>1 (A.7)
ecE:enS #£0 A eNSA£0

Clearly, there is an exponential number of such p&randS,, which makes it imprac-
tical to introduce all such sub-tour elimination consttairsome authors (Pop [15]) pro-
pose using single or multi-commaodity flow principles to redthe number of constraints
by introducing auxiliary variables. However, our combioatof directed and undirected
edges makes it complicated to use this approach so we rgipbec another approach
based on lazy (on-demand) insertion of sub-tour elimimationstraints. Briefly speak-
ing, we start with the model without the sub-tour eliminatmonstraints and we find a
solution. If the solution forms a valid path then we are doD&erwise we identify the
isolated loops, add the sub-tour elimination constraimtstfem and start the solver with
the updated model. This process is repeated until a valldipdound. Obviously, it is
a complete procedure because in the worst case, all sulelimination constraints are
added.

It remains to define the constraints describing the limit@placity of the robot. For
this purpose we introduce auxiliary non-decision capaeégablesC, for every waste
vertexv € W. These variables indicate the amount of waste in the roltet &fsiting
the particular vertex. The non-decision character of thi@alées means that they are not
instantiated by the search procedure, but they are inatadtby the inference procedure
only. In particular, if their domain becomes empty durinfenence then it indicates
inconsistency. The following constraints are used dureimferencew € W). First, if
the waste vertew is visited directly after the collector then there is exacthe waste in
the robot:

Xe=1= Cy=1 (A.8)

ecIN (w)

105

A.3. Model on network flows A. Routing for Autonomous Robots

Second, if the waste verticesandv are visited directly before respectively afigr(or
vice versa) then the following constraints must hold betwibe capacity variables:

Ve f €ICD(w),e={uw}, f ={wv}: Xe+X; =2 = |C,—Cy| =2 (A.9)

Ve={uw} €ICD(w):|Cy—Cy| =1 (A.10)

Finally, to restrict the capacity of the robot by constaap we use the following con-
straints for the capacity variables:

YweW:1<Cy<cap (A.12)
The objective function to be minimised is the total cost ajeslused in the solution path:

Obj= EEXe-Weigh(e) (A.12)

where weight(e) is the weight of edge.

A.3.1 Search procedure

The constraint model describes how the inference is peddrso the model needs to be
accompanied by the search procedure that explores théfmissitantiations of variables
Xe. Our search strategy resembles the greedy approach fongdixavelling Salesman
Problems (TSP) (Ausiello et al. |[3]). The variab{g for instantiation is selected in the
following way. If the path is empty, we start at the initialgsion | and instantiate the
variableX;; , such that wight({I,w}) is the smallest among the weights of arcs going
from I. By instantiating the variable we mean setting it to 1; theraltive branch is
setting the variable to 0. If the path is non-empty then weddrgxtend it to the nearest
waste. Formally, ilu is the last node in the path then we select the varixblg, with
the smallest wight({u,w}), wherew is a waste vertex. If this is not possible (due to
the capacity constraint), we go to the closest collectore dptimisation is realised by
the branch-and-bound approach: after finding a solutioh thé total cosBound the
constraint @] < Boundis posted and search continues until any solution is foureg T
last found solution is the optimum.

106

A. Routing for Autonomous Robots A.4. Model on finite statéomuata

A.4 CP model based on finite state automata

The second model that we propose brings a radically new appnoot seen so far when
modelling VRPs or TSPs. Recall that we are looking for a pattheé graph that satis-
fles some additional constraints. We can see this path asdtaiw a certain regular
language. Hence, we can base the model on the existing regulstraint (Pesant [45]).
This constraint allows a more global view of the problem sohibpe is that it can infer
more information than the previous model and hence dedasesearch space to be
explored.

First, it is important to realise that the exact path lengthnknown in advance. Each
waste vertex is visited exactly once, but the collectorigestcan be visited more times
and it is not clear in advance how many times. Nevertheléss possible to compute
the upper bound on the path’s length. Let us assume that thdeath is measured
as the number of visited vertices, the robot starts at th@inposition and finishes at
some collector vertex (we will use the dummy destination stightly different meaning
here), and the weight/cost of arcs is non-negative.KLet |W/| be the number of waste
vertices and &p > 1 be the robot’s capacity. Then the maximal path lengthKist-2L.
This corresponds to visiting a collector vertex immediatgter visiting a waste vertex.
Recall that each waste vertex must be visited exactly ondeleare is no arc between
the collector vertices.

Our model is based on four types of constraints. First, tieeerestriction on the
existence of a connection between two verticesrewding constraint This constraint
describes the routing network (see FigurelA.2). It rouglyesponds to the constraints
[A.THA.S from the previous model. Note that the sub-tour éliation constraints Al6-Al7
are not necessary here. Second, there is a restriction onlitb&és capacity stating that
there in no continuous subsequence of waste vertices wikeagthl exceeds the given
capacity - acapacity constraintThis constraint corresponds to the constrdint$[A.8-A.11
from the previous model. Third, each waste must be visiteattx once, while the
collectors can be visited more times (even zero times)eamrrence constraintThis
restriction was included in the constraints A.1-A.5 of theypous model, while we model
it as a separate constraint. Finally, each arc is annotateal Weight and there is a
constraint that the sum of the weights of used arcs does meeexsome limit - @ost
constraint This constraint is used to define the total cost of the smiudis il A.1R.

In the constraint model we use three types of variablesNLet2K + 1 be the max-
imal path length. Then we haw variablesNode, N variables @p, andN variables
Costi(i =1,...,N) so we assume the path of maximal length. Clearly, the realmpat

107

A.4. Model on finite state automata A. Routing for Autonom&abots

be shorter so we introduce a dummy destination vertex thatHhié rest of the path till
the lengthN. In other words, when we reach the dummy vertex, it is notiptsto leave

it. This way, we can always look for the path of lengthand the model gives flexibility
to explore the shorter paths too.

The semantic of the variables is as follows. The variabledéNdescribe the path
hence their domain is the set of numerical identificationthefvertices. We use pos-
itive integers 1...,K(K = |W|) to identify the waste verticeX + 1,...,K + L for the
collector verticegL = |C|), and 0 for the dummy destination vertex. In summary, the
initial domain of each variable ddg consists of values,0..,K +L. Cap is the used
capacity of the robot after leaving vertexotllg(Cap, = 0 as the robot starts empty),
the initial domain is{0,...,cap}. Cost is the cost of the arc used to leave the vertex
Nodg(Costy = 0), the initial domain consists of non-negative numbers. Fediym

0 < Nodge <K 4L
Vi=1...,N(N=2K+1): 0 < Cap <capCap;=0 (A.13)
0 < Cost,Costy =0

We will start the description of the constraints with thecurrence constrairgaying
that each waste vertex is visited exactly once. This can beeited using the global
cardinality constraint (Regin_[50]) over the sdtode,...,Nodey}. The constraint is
set such that the each value from the §kt .., K} is assigned to exactly one variable
from {Node,...,Nodey} - each waste node is visited exactly once. The va{deK +
1,...,K+L} can be used any number of times. Formally:

gcc({Node,...,Nodey},
{v: [1,1WwW=1,...,K,
0,],
v: [0,0]VWw=K+1,...,K+L})

(A.14)

wherev : [min,maX means that value is assigned to at leastimand at most rax
variables from{Node, ...,Nodey}. Thegccconstraint allows specifying the number of
appearances of the value using another variable ratherugiag a fixed interval as in
[A.14. LetD be the variable describing the number of appearances of Gafidentifica-
tion of the dummy vertex) in the s¢Node, ..., Nodey }, then we can use the following
constraints instead 6FfA.14:

108

A. Routing for Autonomous Robots A.4. Model on finite statéomuata

gcc({Node,...,Nodey},
{v: [1,1WwW=1,...,K,
: D,
v: [0,0]V/v=K+1,...,.K+L})

(A.15)

Nodey_p >0 (A.16)

The constraint A.16 says thabey_p is not a dummy vertex; actually it is the last
real vertex in the path. We can also set the upper bounD foy using the information
about the minimal path lengtivinPathLengths a constant computed in advance):

D <N —MinPathLength (A.17)

These additional constrairits Al16 dnd A.17 are not necg$sathe problem specifica-
tion but they improve inference (we use them in experiments)

Thecost constraintan be easily described as

Obj= Z Cost; (A.18)
10N

so we can use the constraintd O< Boundin the branch-and-bound procedure exactly
the same way as in the previous model.

For the cost constraint to work properly we need to set theevaf (ost; variables.
Recall that ©st; is the cost/weight of the arc going from verterdg to vertex Node, 1.
Hence, we can connect th@ost variables with the Node variables when specifying
the routing constraint In particular, we use the ternary constraints over theades
Nodg, Cost,Nodeg.1i=1,...,N—1. This set of constraints corresponds to the idea of
slide constraint (Bessiere et dl. [8]). We implement thest@int between the variables
Node, Cost,Nodg_ 1 as a ternary tabular (extensionally defined) constraihtydecall it
link, where the triplg(p, q,r) satisfies the constraint if there is an arc from the vepex
to the vertexr with the costg. In other words, this table describes the original routing
network with the costs extended by the dummy vertex. Fogmall

link(p,q,r)= JecE:e=(p,r),q=weight(e)

(A.19)
V(@=r=0A(p=0Vp>K)

Vi=1,...,2K : link(Nodg, Cost,Nodg 1) (A.20)

109

A.4. Model on finite state automata A. Routing for Autonom&abots

It remains to show how theapacity constraints realised. Briefly speaking, we use a
similar approach as for the routing constraint. The capaanstraint is realised using a
set of ternary constraints over the variablegoCNode,1,Cap_,i=1,...,N—1, again
exploiting the idea of slide constraint. The constraintnglemented using a tabular
constraint, let us call it capa, with the following semastidriple (p,q,r) satisfies this
constraint if and only if:

e gis an identification of a collector vertdg > K) or a dummy vertexq = 0) and
r=0

e (is an identification of a waste nodé < q < K) andr = p+ 1.

Recall that the domain of capacity variableg . ..,cap} so we never exceed the ca-
pacity of the robot. Formally:

capa(p,q,r) = (q=r=0)
V(q>KAr=0) (A.21)
VIO<q<KAr=p+1)

Vi=1,...,2K: capaCap,Node.1,Cap_,) (A.22)

Any solution to the above described constraint satisfagtimblem defines a valid solu-
tion of our single robot path planning problem with the catyaconstraint. Vice versa,
any solution to the path planning problem is also a feasibligtion of the specified con-
straint satisfaction problem. We omit the formal proof doiéirnited space.

A.4.1 Search procedure

Similarly to the previous model, it is important to specifietsearch strategy. In this
second model, only the variable®tlg are the decision variables - they define the search
space. Itis easy to realise that the inference through thtengpconstraints A.20 decides
the values of the @st; variables and the inference through the capacity conssfAi?2
decides the values of thea@ variables provided that the values of all variablesd¥
are known.

When searching for the solution we first use a greedy approdaid the initial solu-
tion (the initial cost). This greedy algorithm instantstbe variables Ndg in the order
of increasing in such a way that the arc with the smallest cost is prefeiésselect the
node to which the least expensive arc from the previouslidéemode leads. Naturally,
the capacity constraint is taken into account so only thesadch that the capacity is not

110

A. Routing for Autonomous Robots A.5. Embedding CP models irs

exceeded are assumed. This search procedure correspdhdssearch strategy of the
previous model. The difference in models allows us to usesglféariable ordering in the
model based on finite automata which simplifies implemeonatf the search procedure.
This second model also has fewer decision variables bugar&ranching factor.

To find the optimal solution we use a standard branch-anakdb@pproach with
restarts. To instantiate theode variables we use themin-domheuristic for the vari-
able selection, that is, the variable with the smallestentrdomain is instantiated first.
We select the values in the order defined in the problem (thrsten@odes are tried be-
fore the collector nodes). Exactly like in the first modeleaftinding a solution with
the total cosBound the constraint ®j < Boundis posted and search continues until
any solution is found. The last found solution is the optimuviote that using the well
known and widely applied min-dom heuristic for the variabédection is meaningful in
this model because we have larger domains, while the samestieis useless for the
previous model which uses binary domains.

A.5 Embedding CP models into local search

The current state of the art techniques for solving VRPs r@guiently based on hybrid

approaches. For example the paper (Rousseau et al. [52)¢stsgusing CP techniques
to explore the neighbourhood within Large Neighbourhooar&e We decided to apply
a similar approach with our CP models to check, if the sotutjoality can be improved

in comparison with the pure branch-and-bound approaclesepted above.

The basic elements in the neighbourhood local search areotieept of the neigh-
bourhood of a solution and the mechanism for generatinghbeigrhoods. It is eminent
that the performance and “success” of the local searchigigostrongly depends on the
neighbourhood operator and its state space. In our casstatgecorresponds to the plan
- a valid path for the robot. The local search algorithm iseepdly choosing another
solution in the neighbourhood of the current solution with goal to improve the value
of the objective function. This move is realised by a so cafieighbourhood operator
We have implemented an operator that is successfully ugesofeing the Travelling
Salesman Problems. The operator relaxes the solution bgviegnan induced path of
a given length and then it calls the CP solver to complete dhgisn. It means that we
add to a given constraint model additional constraintsfikaome edges (for the model
based on network flows) or forbid using some edges (for theeimaked on finite state
automata). These fixed edges correspond to the edges inigireabsolution that were
not removed by the neighbourhood operator. The role of thes@\er is to optimally

111

A.6. Experimental results A. Routing for Autonomous Robots

complete this partial solution by adding the missing edd@é& new solution is the state
to which the local search procedure moves.

As the local search repeatedly chooses a move that improsealue of the objective
function (we are minimizing the value), it can get “trapped’the first local minimum
it encounters. In order to escape the local minimum, a cettonethod of accepting
an ascending move is required. In this paper, we examinegithglified simulated
annealing.

Note finally, that as the initial solution for local search weed the first solution
obtained from the pure CP model (see the description of theekg@rocedures above).

A.6 Experimental results

In this section we will present the preliminary experiméetaluation of the presented
solving techniques. As there is no standard benchmark s¢hdostudied problem, we
generated own problem instances. We used a square-sizeddar@ma where the posi-
tions of the waste and the initial location of the robot wengarmly distributed. The
collectors were uniformly distributed along the boundsueéthe arena and the weights
set up as a point-to-point distance using the Euclideanienetl the following mea-
surements were performed bnt el Xeon CPU@. 5GHz with 4GB of RAM, running a
Debian GNU Linux operating system.

A.6.1 Performance of the network flow model

As stated earlier, the model based on network flows corretgptmthe traditional oper-
ations research approach, but we modified the model to @esspecifics of our robot
routing problem. The model was implementedJava SE 6using Chocq an open-
source constraint programming library. The optimisatiearsh strategy uses the built-in
branch-and-bound method, while all constraints corredgorthe mathematic formula-
tions described earlier.

Figure[A.4 shows the runtime (a logarithmic scale) to obtagmoptimal solution as
a function of the instance size measured by the number okeveast by the number of
collectors. We generated 15 instances for each problemasideghe graph shows the
average time the solver needs for finding and proving thevagtiy of the solution. The
capacity of robot was 3.

As already mentioned in (Bard et all [4]), the satellitelities in VRP (or collectors
in robotics case) heavily increase the complexity of théofgm. The initial experiment

112

A. Routing for Autonomous Robots A.6. Experimental results

Figure A.4: Runtime (seconds) for the network flow model.

shows that the runtime increases exponentially with thebmrrof waste but the runtime
is not significantly affected by the increased number ofemttirs. In fact it seems that
for different quantities of waste there are different numsh# collectors where the best
runtime is achieved. This is an interesting observatiomutay that for a given number
of waste there is some number of collectors that gives therbsslt. Nevertheless, this
observation requires additional experiments to confirm it.

While the graph in FigurE_Al4 represents the total time tHeesaeeds for finding
and proving the optimality of the solution, we are also iegted in how fast a “good
enough” solution can be found. This characteristic can ba seFigurd_A.b, where the
graph displays the convergence of the solution during bea¥e can see that even a
simple greedy heuristic performs very well and the diffeeefrom the optimal solution
was less than 5% within first 6 seconds for the instane87

A.6.2 Performance of the network flow model within local seach

As mentioned above, the CP model can be used within the LaggghNourhood Search
procedure to solve larger instances but obviously withaytgauarantee of optimality. We
generated 50 independent problem instances with 20 waste3 eollectors (referred to
as 20+ 3). The capacity of the robot was set to 7 units. The neighimad operator
was allowed to remove 5 randomly selected consecutive edlgey) the search and the
embedded CP solver was allowed to search for 1 second. Thk gr&igurd A.6 shows
an average one-to-one performance of the pure CP methodhandstmethod (with the
embedded CP model) applied to the produced instances. @pa ghows the difference

113

A.6. Experimental results A. Routing for Autonomous Robots

Convergence of CP search
25

' 7 Wastés, 3 Col‘lectors M-
) 12
> 20 [
N 10 +
€ 8
g 15 6
=
o 4
o , .
c 10f
o 0 1 1 1
) 0 5 10 15 20
[%2]
S 5
\
N
0 Y L
0 10 20 30 40 50 60 70 80
Time (sec)

Figure A.5: Quality convergence for the network flow model.

in the quality of a solution found in the corresponding timanfi the LS viewpoint.

The local search procedure performed better in the longwinen compared to the
pure CP method relaying only on its inner heuristic. Howe@® beat LS in the first
seconds where the convergence drop was steeper. As a censeCP seems to be
a more appropriate method under very short time constraivitde reasonably good
solutions can be found with a combination of LS for largetanses.

A.6.3 Performance of the finite state automaton model

The network flow model represents a standard approach tongdlve Vehicle Routing
Problems so we compared our novel constraint model basdtwedimite state automaton
directly to this approach. The second model was implememelCStus ProIogH.
Figure[A.T shows the runtime (a logarithmic scale) to obta@aoptimal solution using
the constraint model based on finite state automata usingatime problems as for the
model based on network flows (Figlire A.4). The result alsevshtbe exponential grow
with the increased number of waste and weaker dependenbe ominber of collectors.
To directly compare both models, we generated a graph slyothi difference of
runtimes for the network model and for the automata modek-vhlues above zero
mean faster automata model, while the times below zero mesterfnetwork model.
Figure[A.8 shows these difference times. The conclusiowri@aom this graph is as
follows. The automata-based model is visibly better for alten number of collectors
where the problem is more constrained and the capacity r@nist can prune more of

sICStus Prolog: http://www.sics.se/sicstus

114

http://www.sics.se/sicstus

A. Routing for Autonomous Robots

A.6. Experimental results

Convergence of CP vs LS - path operator

15

=
o

" 20 Wasteé. 3 Bins m—

Gain on CP (%)

0
5 I

5 10 15

25

35 40 45 50

Time (sec)

Figure A.6: Comparison of the quality convergence of thevoet flow model in the
pure CP approach and the CP model embedded into local search.

0,01

- 0,001

- 0,0001
0,00001
0,000001

Figure A.7: Runtime (seconds) for the model based on fingtee tutomata.

115

A.7. From high-level planning to real world A. Routing for Bunomous Robots

Figure A.8: Time difference (seconds) between the CP mod&dsitive values means
that the model based on finite state automata is faster.

the search space. A bit surprisingly, it seems that the nm&tlvased model is better when
the number of collectors becomes larger. This feature egjuire a further investigation.

Since in robotic, finding a good plan fast is more importaanthaving the optimal
one late, we started to investigate again the quality of lwegfound by the CP solverin a
limited time. In particular, we embedded the new CP modéhaltarge Neighbourhood
Search procedure as described above and we tried to contygapeite CP model with
this LS approach on much bigger instances with 40 wastes acalléctors. To our
surprise, the LS method was not able to improve the soluband by the CP model in
the 2 minutes runtime. As we need to produce a good solutisedonds, the pure CP
model based on finite state automaton seems more approjorater purpose.

A.7 From high-level planning to real world

To evaluate the overall performance of the system, we usedfagsional commercial
development environment Webatswebots is used to test robots in a physically realistic
world. Our mobile robotic platform is based on the simula®&oheer-2robot equipped
with a laser sensor. The extreme precision of the distan@sunement sensor enables
reliable localization and motion planning algorithms. Tgat responsible for handling
localization and motion planning is based on the well esghbtl open-sourceARMEN
software (Thrun et al _[60]).

2Webots! http://www.cyberbotics.com/

116

http://www.cyberbotics.com/

A. Routing for Autonomous Robots A.7. From high-level plarmgto real world

Figure A.9: Physically realistic robot simulatolpper left: Map built by the robot
corresponding to the testing environment with output ofrtiagion planner module.

The very first step is to create maps (FigurelA.9, upper-dfoth the input graph for
the high-level path planner and the occupation grid for tiiksston avoidance algorithms.
The individual components of the whole process are depiat€iure[A.10. The layer
with the highest priority - the collision avoidance moduis activated when any obstacle
is found to be too close. In that case, the robot executes @diag manoeuvre. The
motion planner component provides the distances to the CG8#gr. This is a form of
integrating the traditional motion (path) planning fronbatics with the more complex
path planning with limited capacity to collect all waste.€Mound plan is delivered back
to the motion planner, which produces the motion commandi® map building layer
updates the map and monitors the plan execution.

In reality, the failures of individual components can cabse performance of the
overall system. For example, the failures of the local@aalgorithm caused by incor-
rect sensor measurements can lead the robot in a wrongidirethe performance of the
localization algorithm depends heavily on accuracy of #gressr system. The more pre-
cise the sensor measurements are carried out, the bettBopestimates are obtained.
The graph in FigureZ’A.11 compares the optimal distance (ctegpby the CSP planner)
and the real covered trajectory as the function of lasere@egsors. The average of ten
simulation runs is taken.

As can be seen from the graph, with precise sensors, thegavirss on optimum
solution was about 5%. In this particular case, the locabracomponent worked flaw-
lessly and no plan recreation by the CSP planner was nee@dld at

117

A.7. From high-level planning to real world A. Routing for funomous Robots

Reactive
layer

WORLD MAP BUILDING

Deliberative MOTION PLANNING

tayer M

CSP PLANNER

Figure A.10: Overall system architecture from bird’s eyewi

Loss on Computed Optimal Solution
. I " Ak, TEE — -
u b
% ¢ B
E T4 Ilik‘
g . R
- :
‘ \“\. e
'y

i1 12 2 = 1 M + M €
Bxdmum Range of Laser Range Sansors (m}

Figure A.11: Comparison of the optimal distance (compute@8P planning algorithm)
and real covered distance as a function of the sensor range.

118

A. Routing for Autonomous Robots A.8. Conclusions

A.8 Conclusions

We developed the robotic architecture incorporating battely reactive execution and
deliberative planning that works in complex and dynamidmmment. The goal of the
robot is to pick up all wastes in a given environment and pattho collectors while
assuming a limited capacity of the robot. We used a constnadalel based on network
flows that is traditionally applied to this type of routingoptems and we developed
a completely new model based on finite automata. Using thst@nt programming
techniques allowed us to naturally define the underlyingehtm which the solver was
able to find the first solution in hundreds of microseconds mblems of reasonable
size. We further studied local search techniques that adgtivnally used to improve
the runtime performance of CP models for vehicle routingofgms and we have found
that our novel model based on finite automata performs betteout local search. The
preliminary experiments showed some interesting behawbthe model in relation to
the number of collectors that we are going to further ingzda.

An important aspect of the presented work is the integratitm a simulation en-
vironment describing real robots in realistic worlds. Timgegration showed that it is
viable to use sophisticated planning methods togethernedhtive techniques.

In summary, there are three novel contributions. First,efermulated the traditional
network flow model to solve the waste collecting problem Jiihited capacity of the
robot. Second, we proposed a novel constraint model basdihiterautomata (state
transitions) and we experimentally showed that it outpen®the traditional approach,
if the number of waste collecting places is small. Finallg integrated the proposed
models with a reactive planner to show that deliberativapilag based on CP can be
used in real robots and environments.

119

Bibliography

[1]

[2]

[3]

[4]

[5]

Ajith Abraham, Rajkumar Buyya, and Baikunth Nath. NatsrHeuristics for
Scheduling Jobs on Computational Grids. IREE International Conference on
Advanced Computing and Communicatigmsges 45-52, 2000.

STAR Collaboration: J. Adams. Experimental and theoedtchallenges in the
search for the quark gluon plasma: The STAR collaborationtiEal assessment of
the evidence from RHIC collision®Nuclear Physics A757:102, 2005.

Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccame@ Ga mbosi, P. Crescenzi,
and V. Kann. Complexity and Approximation: Combinatorial Optimizati®ro
blems and Their Approximability PropertieSpringer-Verlag New York, Inc., Se-
caucus, NJ, USA, 1999.

Jonathan F. Bard, Liu Huang, Moshe Dror, and PatrickelailA branch and cut
algorithm for the VRP with satellite facilitie slIE Transactions 30(9):821-834,
1998.

Roman Bartak, Michal Zerola, and Stanislav Slusny. TalsaRouting for Au-
tonomous Robots - Using Constraint Programming in an Angtitath Planner. In
Joaquim Filipe and Ana L. N. Fred, editotSAART, pages 313—-320. SciTePress,
2011.

[6] J. Christopher Beck, Andrew J. Davenport, Edward M. 1Skg and Mark S. Fox.

[7]

Texture-based heuristics for scheduling revisitedPioceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI-9Pages 241-248. AAAI
Press, 1997.

Belaid Benhamou. Study of symmetry in constraint satiibn problems. Ilifrro-
ceedings of Principles and Practice of Constraint Programgnpages 246—-254,
1994.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Christian Bessiere, Emmanuel Hebrard, Brahim Hnichyriép Kiziltan, Claude-
Guy Quimper, and Toby Walsh. Reformulating global conatrai the slide and
regular constraints. IRroceedings of the 7th International conference on Abstrac
tion, reformulation, and approximatiQrfSARA07, pages 80-92, Berlin, Heidel-
berg, 2007. Springer-Verlag.

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandahd K. Kennedy. Task
scheduling strategies for workflow-based applicationgidsy In Cluster Comput-
ing and the Grid, 2005. CCGrid 2005. IEEE International Syrsipm onvolume 2,
pages 759-767, 2005.

Tracy D. Braun, Howard Jay Siegel, Noah Beck, LadislaBd&loni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, MitEheTheys, Bin Yao,
Debra Hensgen, and Richard F. Freund. A Comparison of ElStesic Heuristics
for Mapping a Class of Independent Tasks onto Heterogenemisbuted Com-
puting SystemsJournal of Parallel and Distributed Computing1(6):810 — 837,
2001.

Junwei Cao, Stephen A. Jarvis, Subhash Saini, and @rdhaNudd. Gridflow:
Workflow management for grid computing. Broceedings of the 3st International
Symposium on Cluster Computing and the GEE€GRID '03, pages 198—, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Petr Chaloupka, Pavel Jakl, Jan Kapitan, Michal Zerd&x6me Lauret, and the
Star collaboration. Setting up a STAR Tier 2 Site at Goliemgee Farm.Journal
of Physics: Conference Serjesl9(7):072031, 2010.

Ann Chervenak, lan Foster, Carl Kesselman, Charlesl@aly, and Steven Tuecke.
The data grid: Towards an architecture for the distributedagement and analysis
of large scientific dataset3ournal of Network and Computer ApplicatiQ28:187—
200, 1999.

Paul Clements, Felix Bachmann, Len Bass, David Gadames Ivers, Reed Little,
Robert Nord, and Judith Stafforocumenting Software Architectures: Views and
Beyond Addison-Wesley, Boston, MA, 2003.

Petrica C.Pop. New Integer Programming Formulatidiie® Generalized T ravel-
ling Salesman ProblenAmerican Journal of Applied Sciengdd:932-937, 2007.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Shaul Dar, Michael J. Franklin, Bjérn T. Jonsson, Div&sivastava, and Michael
Tan. Semantic data caching and replacementPrbteedings of the 22th Inter-
national Conference on Very Large Data Base@&DB '96, pages 330-341, San
Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[17] Rina Dechter. Constraint Processing Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA, May 2003.

[18] Peter J. Denning. The locality principl€ommunications of the ACM - Designing
for the mobile device48:19-24, July 2005.

[19] FDT. http://monalisa.cern.ch/FDT.

[20] Hanhua Feng, Vishal Misra, and Dan Rubenstein. PBS:ifedrpriority-based
scheduler. InProceedings of the 2007 ACM SIGMETRICS international genfe
ence on Measurement and modeling of computer sys®&IBGMETRICS '07, pages
203-214, New York, NY, USA, 2007. ACM.

[21] Marshall L. Fisher. The Lagrangian Relaxation Method $olving Integer Pro-
gramming Problemavianagement Scienc27(1):1-18, January 1981.

[22] B. G. Gibbard and T. G. Throwe. The RHIC computing fagiliNuclear Instru-
ments and Methods in Physics Research Section A: Accelgr&@pectrometers,
Detectors and Associated Equipme#®9(2-3):814 — 818, 2003. The Relativistic
Heavy lon Collider Project: RHIC and its Detectors.

[23] GLPK. http://www.gnu.org/software/glpk/.
[24] GLPK-java. http://glpk-java.sourceforge.net/.

[25] Solomon W. Golomb and Leonard D. Baumert. Backtraclgpamming.J. ACM
12(4):516-524, 1965.

[26] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan.i@ation and approxi-
mation in deterministic sequencing and scheduling: A suren. Discrete Math.
5:169-231, 1979.

[27] H. Hahn, E. Forsyth, H. Foelsche, M. Harrison, J. KeWw|sG. Parzen, S. Peggs,
E. Raka, A. Ruggiero, A. Stevens, S. Tepikian, P. Thiebe@efrbojevic, J. Wei,
E. Willen, S. Ozaki, and S. Y. Lee. The RHIC design overvidNuclear Instru-
ments and Methods in Physics Research Section A: Acceler&@pectrometers,

122

BIBLIOGRAPHY BIBLIOGRAPHY

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Detectors and Associated Equipme#®9(2-3):245 — 263, 2003. The Relativistic
Heavy lon Collider Project: RHIC and its Detectors.

A. Hanushevsky, A. Dorigo, and F. Furano. The Next Gatien Root File Server.
In Proceedings of the Computing in High Energy and Nuclear RRy&CHEP)
conferencegpages 680-683, 2005.

Holger H. Hoos and Thomas Stutzlgtochastic Local Search : Foundations & Ap-
plications (The Morgan Kaufmann Series in Artificial Inigince) Morgan Kauf-
mann, 1 edition, September 2004.

Pavel Jakl. Efficient access to distributed data: 'a yhatorage element paradigm.
Master’s thesis, Faculty of Nuclear Sciences and Physiogirteering, Czech Tech-
nical University in Prague, 2008.

Theodore Johnson and Dennis Shasha. 2Q: A Low Overhégld Performance
Buffer Management Replacement Algorithm. Pnoceedings of Very Large Data
Basespages 439-450, 1994.

Carl Kesselman and lan Fostdrhe Grid: Blueprint for a New Computing Infras-
tructure Morgan Kaufmann Publishers, November 1998.

Dalibor Klusacek, Ludek Matyska, and Hana Rudova. L&march for Deadline
Driven Grid Scheduling. Idn Third Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science (MEMICS 208&ges 74-81, 2007.

R.L. Kruse. Data structures and program desigrPrentice-Hall software series.
Prentice-Hall, 1987.

Jérdome Lauret and David Yu. ERADAT and DataCarousetesys at BNL: A tool
and Ul for efficient access to data on tape with fair-sharécgs capabilities. In
Advanced Computing and Analysis Techniques in PhysicsaRés2010.

T. Ludlam. RHIC and Quark Matter: A Proposed Heavy lordli@er at Brookhaven
National Laboratory. In K. Kajantie, editoQuark Matter ‘84 volume 221 of
Lecture Notes in Physics, Berlin Springer Verlpages 221-240, 1985.

Jiri Matousek and Bernd Gartnednderstanding and Using Linear Programming
(Universitext) Springer, 1 edition, November 2006.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-ifign Low Overhead
Replacement Cache. Froceedings of the 2nd USENIX Conference on File and
Storage Technologiepages 115-130, Berkeley, CA, USA, 2003. USENIX Asso-
ciation.

[39] Young Jin Nam and Chanik Park. An adaptive high-low watark destage algo-
rithm for cached raid5. IPRDC’02 pages 177-184, 2002.

[40] Moni Naor and Udi Wieder. A simple fault tolerant distmted hash table. In
M. Frans Kaashoek and lon Stoica, editdB[PS volume 2735 ol ecture Notes
in Computer Scien¢gages 88-97. Springer, 2003.

[41] George L. Nemhauser and Laurence A. Wolskyteger and combinatorial opti-
mization Wiley-Interscience, New York, NY, USA, 1988.

[42] J. Packard, D. Katramatos, J. Lauret, K. Shroff, J. BpBano, M. Ernst, J. Hover,
T. Ichihara, D. Kim, S. McKee, M. L. Purschke, Y. WatanabéNdo, I. Yoo, and
D. Yu. High performance data transfer and monitoring for Bkind USATLAS.
Journal of Physics: Conference Seri@49(6):062062, 2010.

[43] Andrew J. Page and Thomas J. Naughton. Framework fdt $ekeduling in Het-
erogeneous Distributed Computing Using Genetic Algorghrrtificial Intelli-
gence Revieyw24:137-146, 2004.

[44] Claude Le Pape, Philippe Couronne, Didier Vergamimg &/incent Gosselin.
Time-versus-capacity compromises in project schedulingProceedings of the
Thirteenth Workshop of the U.K. Planning Special Interestup, 1994.

[45] Gilles Pesant. A Regular Language Membership Comgtfar Finite Sequences of
Variables. InPrinciples and Practice of Constraint Programmirgages 482—-495,
2004.

[46] Rashedur M. Rahman, Ken Barker, and Reda Alhajj. Studyitferent Replica
Placement and Maintenance Strategies in Data Gri€€QGRID, pages 171-178.
IEEE Computer Society, 2007.

[47] Kavitha Ranganathan and lan Foster. Decoupling Coatjaut and Data Schedul-
ing in Distributed Data-Intensive Applications. 1ith IEEE Symposium on High-
Performance Distributed Computingolume 0, pages 352—-358, Los Alamitos, CA,
USA, 2002. IEEE Computer Society.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Krzysztof R.Apt. Principles of Constraint ProgrammingCambridge University
Press, 2003.

A. Rasooli, M. Mirza-Aghatabar, and S. Khorsandi. adauction of novel dispatch-
ing rules for grid scheduling algorithms. International Conference on Computer
and Communication EngineerinCCCE 2008, pages 1072 -1078, may 2008.

Jean-Charles Régin. Generalized arc consistencylétmatjcardinality constraint.
In Proceedings of the thirteenth national conference on Atréfintelligence - Vol-
ume 1 AAAI'96, pages 209-215. AAAI Press, 1996.

Graham Ritchie and John Levine. A fast, effective Iagmdrch for scheduling inde-
pendent jobs in heterogeneous computing environmenB&olceedings of the 22nd
Workshop of the UK Planning and Scheduling Special Inte@sup, PLANSIG
'03, pages 178-183, 2003.

Louis-Martin Rousseau, Michel Gendreau, and Gillesa¢ Using Constraint-
Based Operators to Solve the Vehicle Routing Problem witheTWindows.Jour-
nal of Heuristics 8:43-58, January 2002.

N. Saito. Spin physics program at RHIC: the first poladzroton colliderNuclear
Physics B - Proceedings Supplemei®5(1-3):47 — 51, 2002.

Hitoshi Sato, Satoshi Matsuoka, Toshio Endo, and Nadgauyama. Access-
Pattern and Bandwidth Aware File Replication Algorithm iiGed Environment.
In GRID, pages 250-257. IEEE, 2008.

Srinath Shankar and David J. DeWitt. Data Driven WonkflBlanning in Cluster
Management Systems. HPDC '07: Proceedings of the 16th international sympo-
sium on High performance distributed computipgges 127-136, New York, NY,
USA, 2007. ACM.

Helmut Simonis. Constraint applications in networKs. F. Rossi, P. van Beek,
and T. Walsh, editorddandbook of Constraint Programminghapter 25, pages
875-903. Elsevier, 2006.

Stanislav Slusny, Michal Zerola, and Roman Neruda.l Be& robot path planning
and cleaning. In De-Shuang Huang, Xiang Zhang, Carlos AeR&8arcia, and Lei
Zhang, editorslCIC (2), volume 6216 of_ecture Notes in Computer Scienpages
442-449. Springer, 2010.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[58] Danny Teaff, Dick Watson, and Bob Coyne. The Architeetof the High Per-
formance Storage System (HPSS).RAroceedings of the Goddard Conference on
Mass Storage and Technologigsges 28—-30, 1995.

[59] Douglas Thain, Todd Tannenbaum, and Miron Livny. Dizited Computing in
Practice: The Condor Experienc€oncurrency and Computation: Practice and
Experiencel7:2-4, 2005.

[60] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust teararlo localization for
mobile robots Artificial Intelligence 128(1-2):99-141, 2000.

[61] Vadim G. Timkovsky. Is a unit-time job shop not easiearthidentical parallel
machines™Discrete Applied Mathematic85(2):149-162, 1998.

[62] Stephen H. Unger. Hazards, Critical Races, and Mdidgya IEEE Transactions
on Computers44.754—-768, 1995.

[63] Petr Vilim, Roman Bartak, and Ore] Cepek. Extension o®(n log n) filtering
algorithms for the unary resource constraint to optionaivaies. Constraints
10(4):403-425, 2005.

[64] Fatos Xhafa and Ajith Abraham. Computational modeld hauristic methods for
grid scheduling problemg:uture Generation Computer Systerd6(4):608 — 621,
2010.

[65] Fatos Xhafa, Javier Carretero, Bernabe Dorronsord, EBmrique Alba. A Tabu
Search Algorithm for Scheduling Independent Jobs in Coatpurtal Grids.Com-
puting and Informaticspages 237-250, 2009.

[66] M.Q. Xu. Effective metacomputing using LSF Multiclest InFirst IEEE/ACM In-
ternational Symposium on Cluster Computing and the Gradjes 100 —105, 2001.

[67] Asim Yarkhan and Jack J. Dongarra. Experiments witreSialing Using Simulated
Annealing in a Grid Environment. I6RID 2002 pages 232—-242, 2002.

[68] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow ManagemSystems for
Grid Computing.Journal of Grid Computing3(3):171-200, September 2005.

[69] Michal Zerola, Roman Bartak, Jérdme Lauret, and Michaimbera. Using con-
straint programing to resolve the multi-source / multeslata movement paradigm
on the grid. InAdvanced Computing and Analysis Techniques in PhysicaRbse
POS(ACAT08)0322008.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[70] Michal Zerola, Roman Bartak, Jéréme Lauret, and MicBambera. Efficient
Multi-site Data Movement in Distributed Environment. Proceedings of thao"
IEEE/ACM International Conference on Grid Computing (GRIpages 171-172.
IEEE, 20089.

[71] Michal Zerola, Roman Bartak, Jérdbme Lauret, and MicBambera. Planning
Heuristics for Efficient Data Movement on the Grid.Rroceedings of thd™" Mul-
tidisciplinary International Conference on Schedulinghebry and Applications
(MISTA) pages 768-771, 2009.

[72] Michal Zerola, Roman Bartak, Jérébme Lauret, and Michaibera. Using Con-
straint Programming to Plan Efficient Data Movement on th& Gin Proceed-
ings of the215t IEEE International Conference on Tools with Artificial IHigence
pages 729-733. IEEE Computer Society, 2009.

[73] Michal Zerola, Roman Bartak, Jérdme Lauret, and Micambera. Building Ef-
ficient Data Planner for Peta-scale ScienceAdlvanced Computing and Analysis
Techniques in Physics Research. POS(ACAT10@2H0.

[74] Yuanyuan Zhou, James Philbin, and Kai Li. The Multi-QaeReplacement Algo-
rithm for Second Level Buffer Caches. Rroceedings of the General Track: 2002
USENIX Annual Technical Conferenqeages 91-104, Berkeley, CA, USA, 2001.
USENIX Association.

[75] Albert Y. Zomaya and Yee-Hwei Teh. Observations on |dgBenetic Algorithms
for Dynamic Load-Balancing.lEEE Trans. Parallel Distrib. Syst.12:899-911,
September 2001.

127

	Introduction and problem statement
	Document structure and work overview
	RHIC complex and STAR
	The STAR experiment

	Computing challenges
	Flow and data management in STAR
	Scalla system

	Problem analysis
	Use case and requirements
	Related works
	Static vs. dynamic scheduling

	Workflow analysis
	Working with chunks

	Fair-share
	Cache policy
	Water marking

	Planning problem formalization
	Constraint programming approach
	Planning stage
	Scheduling stage
	Complexity of the problem
	Unary resources
	Constraint model and solving strategy
	Comparative studies

	Mixed Integer Programming approach
	Extension of the model
	Implementation

	Coupling with CPUs

	Technical implementation
	Architecture
	Web interface
	Database design
	Watcher
	Planner
	Data Mover
	Show case
	Performance comparison

	Conclusions and future work
	Routing for Autonomous Robots
	Introduction
	Problem formulation
	Model on network flows
	Search procedure

	Model on finite state automata
	Search procedure

	Embedding CP models into LS
	Experimental results
	Performance of the network flow model
	Performance of the network flow model within local search
	Performance of the finite state automaton model

	From high-level planning to real world
	Conclusions

	Bibliography

